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Abstract. We describe a class of toric varieties in the N-dimensional affine space
which are minimally defined by no less than $N-2$ binomial equations.

Introduction

The arithmetical rank (ara) of an algebraic variety is the minimum number of
equations that are needed to define it set-theoretically. For every affine variety
$V\subset K^{N}$ we have that codim $V\leq araV\leq N$ . This general upper bound was
found by Eisenbud and Evans [7]. In particular cases a better upper bound
can be obtained by direct computations based on Hilbert’s Nullstellensatz: this
was done for certain toric varieties in [1], [2], [3], [4], [5]. In all the examples
treated there the arithmetical rank was close to the trivial lower bound, i.e.,
ara $V\leq co\dim V+1$ . In this paper we present a class of toric varieties whose
arithmetical rank is close to the general upper bound, namely ara $V\geq N-2$ .
For proving this result, of course, we need a more efficient lower bound: this is
provided by \’etale cohomology. The same kind of tools was used in [3]. There
they were applied for showing that the arithmetical rank of certain toric varieties
of codimension 2 depends on the characteristic of the ground field, and that
ara $V=co\dim V$ in exactly one positive characteristic. In the present paper,
however, we study toric varieties of any codimension, and obtain the same lower
bound in all characteristics. This lower bound turns out to be sharp if $N=3$ or
$N=5$ .

1. The main theorem

Let $K$ be an algebraically closed field, and let $n\geq 2$ be an integer. Let
$e_{1},$

$\ldots,$
$e_{n}$ be the standard basis of $\mathbb{Z}^{n}$ . Set $N=2n-1$ and consider the following
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subset of $N^{N}$ :

$T=\{e_{1}, \ldots, e_{n-1}, de_{n}, a_{1}e_{1}+e_{n}, \ldots , a_{n-1}e_{n-1}+e_{n}\}$ ,

where $d,$ $a_{1},$
$\ldots,$

$a_{n-1}\in N^{*}$ . We also suppose that $d$ is divisible by two distinct
primes $p$ and $q$ . With $T$ we can associate the variety $V$ admitting the following
parametrization

$V$ : $\left\{\begin{array}{l}x_{1} = u_{1}\\:\\x_{n-1} = u_{n-1}\\x_{n} = u_{n}^{d}\\y_{1} = u_{1}^{a_{1}}u_{n}\\:\\y_{n-1} = u_{n-1}^{a_{n-1}}u_{n}\end{array}\right.$

which is a toric variety of codimension $n-1$ in the affine space $K^{N}$ . Our aim is
to show the following

THEOREM 1. ara $V\geq N-2$ .

This will be done in the next section.

2. The lower bound

We show that ara $V\geq N-2$ by means of the following criterion, which is
based on \’etale cohomology and is cited from [6], Lemma 3’.

LEMMA 2. Let $W\subset\tilde{W}$ be affine varieties. Let $d=\dim\tilde{W}\backslash W$ . If there are $s$

equations $F_{1},$
$\ldots,$

$F_{s}$ such that $W=\overline{W}\cap V(F_{1}, \ldots , F_{s})$ , then

$H_{et}^{d+i}(\overline{W}\backslash W, \mathbb{Z}/r\mathbb{Z})=0$ for all $i\geq s$

and for all $r\in \mathbb{Z}$ which are przme to char $K$ .

Since $p$ and $q$ are distinct primes, we may assume that char $K\neq p$ . Hence
our claim will follow once we have shown

PROPOSITION 3. If char $K\neq p$ , then

$H_{et}^{2N-3}(K^{N}\backslash V, \mathbb{Z}/p\mathbb{Z})\neq 0$ .

Proof. In the sequel $H_{et}$ and $H_{c}$ will denote \’etale cohomology and \’etale coho-
mology with compact support with respect to the coefficient group $\mathbb{Z}/p\mathbb{Z}$ : we
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shall omit the latter for the sake of simplicity. By Poincar\’e Duality (see [8],
Theorem 14.7, p. 83) we have

(1) $Hom_{\mathbb{Z}}(H_{et}^{2N-3}(K^{N}\backslash V), \mathbb{Z}/p\mathbb{Z})\simeq H_{c}^{3}(K^{N}\backslash V)$ .

Moreover, we have a long exact sequence of cohomology with compact support

$\rightarrow H_{c}^{2}(K^{N})\rightarrow H_{c}^{2}(V)\rightarrow H_{c}^{3}(K^{N}\backslash V)\rightarrow H_{c}^{3}(K^{N})\rightarrow\cdots$ ,

where $H_{c}^{2}(K^{N})=H_{c}^{3}(K^{N})=0$ , since $N\geq 3$ (see [8], Example 16.3, pp.98-99).
Hence

(2) $H_{c}^{3}(K^{N}\backslash V)\simeq H_{c}^{2}(V)$ .

By (1) and (2) it thus suffices to show that

(3) $H_{c}^{2}(V)\neq 0$ .

On $K^{n}$ fix the coordinates $u_{1},$
$\ldots,$

$u_{n}$ and let $X$ be the subvariety of $K^{n}$ defined
by $u_{1}=u_{2}=\cdots=u_{n-1}=0$ . Then $X$ is a l-dimensional affine space over $K$ ,
on which we fix the coordinate $u_{n}$ . Consider the surjective map

$\phi$ : $K^{n}\rightarrow V$

$(u_{1}, \ldots, u_{n})\leftrightarrow(u_{1}, \ldots, u_{n-1},u_{n}^{d}, u_{1}^{a_{1}}u_{n}, \ldots, u_{n-1}^{a_{n-1}}u_{n})$

and the restriction map

$\overline{\phi}$ : $K^{n}\backslash X\rightarrow V\backslash \phi(X)$ ,

which is a bijective morphism of affine schemes. For all $i=1,$ $\ldots,$ $n-1$ let
$V_{i}=\{(\overline{x}_{1}, \ldots,\overline{x}_{n-1},\overline{x}_{n},\overline{y}_{1}, \ldots,\overline{y}_{n-1})\in V|\overline{x}_{i}\neq 0\}$ . These sets form an open
cover of $V\backslash \phi(X)$ , and $U_{i}=\phi^{-1}(V_{i})=\{(u_{1}, \ldots, u_{n})\in K^{n}|u_{i}\neq 0\}$ . Moreover,
for all $i=1\ldots,n-1$ , the morphism

$\psi_{i}$ : $V_{i}\rightarrow U_{i}$

$(\overline{x}_{1}, \ldots,\overline{x}_{n-1},\overline{x}_{n},\overline{y}_{1}, \ldots,\overline{y}_{n-1})\leftrightarrow(\overline{x}_{1}, \ldots,\overline{x}_{n-1}, \frac{\overline{y}_{i}}{\overline{x}_{i}^{a_{i}}})$

is the inverse map of the restriction of $\overline{\phi}$ to $U_{i}$ . Hence $\tilde{\phi}$ is an isomorphism of
affine schemes, so that it induces an isomorphism of groups

$\tilde{\phi}_{i}^{*}$ : $H_{c}^{i}(V\backslash \phi(X))\simeq H_{c}^{i}(K^{n}\backslash X)$

for all indices $i$ . The restriction of $\phi$ to $X$

$\overline{\phi}$ : $X\rightarrow\phi(X)$
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maps $u_{n}$ to $(0, \ldots, 0, u_{n}^{d}, \ldots, 0)$ . Hence $\phi(X)$ is a l-dimensional affine space and
$\overline{\phi}$ induces multiplication by $d$ on the second cohomology group with compact
support (see [8], Remark 24.2 (f), p. 135). Now, as it is well-known (see [8],
Example 16.3, pp. 98-99),

$H_{c}^{i}(\phi(X))\simeq H_{c}^{i}(X)\simeq\left\{\begin{array}{ll}\mathbb{Z}/p\mathbb{Z} & for i=2\\0 & lse\end{array}\right.$

Since $p$ divides $d$ , it follows that the induced maps

$\overline{\phi}_{i}^{*}$ : $H_{c}^{i}(\phi(X))\rightarrow H_{c}^{i}(X)$

are all equal to the zero map. Thus $\phi$ gives rise to the following morphism of
acyclic complexes:

$\mathbb{Z}/p\mathbb{Z}?|$

$H_{c}^{2}(V)$ $\rightarrow H_{c}^{2}(\phi(X))$
$\rightarrow^{f}H_{c}^{3}(V\backslash \phi(X))$

$\downarrow$ $\overline{\phi}_{2}^{*}\downarrow 0$

$H_{c}^{2}(K^{n})$ $\rightarrow$ $H_{c}^{2}(X)$

ZI
$\mathbb{Z}/p\mathbb{Z}$

$?|\downarrow\tilde{\phi}_{3}^{*}$

$\rightarrow$ $H_{c}^{3}(K^{n}\backslash X)$

$g$

Note that $\overline{\phi}_{3}^{*}f=g0=0$ , so that $\overline{\phi}_{3}^{*}f$ is not injective. Since $\overline{\phi}_{3}^{*}$ is an isomorphism,
it follows that $f$ is not injective. This implies (3) and completes the proof. $\blacksquare$

3. On the defining equations

Finally we show that the lower bound established in Theorem 1 is sharp,
since it is attained by the arithmetical rank when $n=2$ or $n=3$ .

PROPOSITION 4. If $n=2,$ $V$ is defined set-theoretically by $F=y_{1}^{d}-x_{1}^{a_{1}d}x_{2}$ .
If $n=3$ , then $V$ is set-theoretically defined by the following three binomials:

$F_{1}=y_{1}^{d}-x_{1}^{a_{1}d}x_{3}$ , $F_{2}=y_{2}^{d}-x_{2}^{a_{2}d}x_{3}$ , $G=y_{1}^{d-1}y_{2}-x_{1}^{a_{1}(d-1)}x_{2^{2}}^{a}x_{3}$ .

Proof. If $n=2$ , the claim is clear, since the defining ideal of $V$ is the principal
ideal generated by $F$ . So suppose that $n=3$ . It is straightforward to check that
for all $w\in V,$ $F_{1}(w)=F_{2}(w)=G(w)=0$ . Conversely, we have to prove that
for every $w\in K^{5}$ such that

(4) $F_{1}(w)=F_{2}(w)=G(w)=0$ ,
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we have that $w\in V$ . Let $w=(\overline{x}_{1},\overline{x}_{2},\overline{x}_{3},\overline{y}_{1},\overline{y}_{2})\in K^{5}$ be a point fulfilling (4).
Set $u_{i}=\overline{x}_{i}$ for $i=1,2$ . We show that, for a suitable choice of parameter $u_{3}$ ,
we can write $w=(u_{1}, u_{2}, u_{3}^{d}, u_{1}^{a_{1}}u_{3}, u_{2}^{a_{2}}u_{3})$ . This is certainly true if $\overline{x}_{3}=0$ : in
this case (4) implies that $\overline{y}_{1}=\overline{y}_{2}=0$ , and $u_{3}=0$ is the required parameter.
Suppose that $\overline{x}_{3}\neq 0$ . Let $u_{3}$ be a d-th root of $\overline{x}_{3}$ . By (4) we have that, for
$i=1,2$ ,

$\overline{y}_{i}^{d}=u_{i}^{a_{i}d}u_{3}^{d}$ ,

which implies that

(5) $\overline{y}_{i}=u_{i}^{a_{i}}u_{3}\omega_{i}$

for some d-th root $\omega_{i}$ of 1. On the other hand, from (4) we also deduce that

(6) $\overline{y}_{1}^{d-1}\overline{y}_{2}=u_{1}^{a_{1}(d-1)}u_{2}^{a_{2}}u_{3}^{d}$ .

Note that, by (4), since $\overline{x}_{3}\neq 0$ , for $i=1,2$ , we have $\overline{x}_{i}=0$ if and only if $\overline{y}_{i}=0$ .
If $\overline{x}_{1}=0$ , set $u_{3}^{\prime}=u_{3}\omega_{2}$ . Then $\overline{x}_{3}=u_{3^{d}}^{\prime}$ , and, in view of (5), $\overline{y}_{i}=u_{i}^{a:}u_{3}^{\prime}$ for
$i=1,2$ . Hence $u_{3}^{\prime}$ is the required parameter. Similarly one can reason if $\overline{x}_{2}=0$ .
So assume that $\overline{x}_{i}\neq 0$ for $i=1,2$ . Replacing (5) on the left-hand side of (6)
gives

(7) $u_{1}^{a_{1}(d-1)}u_{3}^{d-1}\omega_{1}^{d-1}u_{2}^{a_{2}}u_{3}\omega_{2}=u_{1}^{a_{1}(d-1)}u_{2}^{a_{2}}u_{3}^{d}$ .

Since $u_{1},$ $u_{2},$ $u_{3}$ are non zero, from this we deduce that

(8) $\omega_{1}^{d-1}\omega_{2}=1$ ,

which implies that

$\omega_{1}=\omega_{2}$ ,
i.e., $\omega_{1}$ and $\omega_{2}$ are both equal to the same d-th root $\omega$ of 1. Thus $ u_{3}^{\prime}=u_{3}\omega$ is
the required parameter. $\blacksquare$

The computation of the arithmetical rank for $n\geq 4$ remains an open question.
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