ON TORIC VARIETIES OF HIGH ARITHMETICAL RANK

By
Margherita Barile
(Received April 19, 2005; Revised July 28, 2005)

Abstract

We describe a class of toric varieties in the N-dimensional affine space which are minimally defined by no less than $N-2$ binomial equations.

Introduction

The arithmetical rank (ara) of an algebraic variety is the minimum number of equations that are needed to define it set-theoretically. For every affine variety $V \subset K^{N}$ we have that $\operatorname{codim} V \leq \operatorname{ara} V \leq N$. This general upper bound was found by Eisenbud and Evans [7]. In particular cases a better upper bound can be obtained by direct computations based on Hilbert's Nullstellensatz: this was done for certain toric varieties in [1], [2], [3], [4], [5]. In all the examples treated there the arithmetical rank was close to the trivial lower bound, i.e., ara $V \leq \operatorname{codim} V+1$. In this paper we present a class of toric varieties whose arithmetical rank is close to the general upper bound, namely ara $V \geq N-2$. For proving this result, of course, we need a more efficient lower bound: this is provided by étale cohomology. The same kind of tools was used in [3]. There they were applied for showing that the arithmetical rank of certain toric varieties of codimension 2 depends on the characteristic of the ground field, and that ara $V=\operatorname{codim} V$ in exactly one positive characteristic. In the present paper, however, we study toric varieties of any codimension, and obtain the same lower bound in all characteristics. This lower bound turns out to be sharp if $N=3$ or $N=5$.

1. The main theorem

Let K be an algebraically closed field, and let $n \geq 2$ be an integer. Let $\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}$ be the standard basis of \mathbb{Z}^{n}. Set $N=2 n-1$ and consider the following

[^0]subset of \mathbb{N}^{N} :
$$
T=\left\{\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n-1}, d \boldsymbol{e}_{n}, a_{1} \boldsymbol{e}_{1}+\boldsymbol{e}_{n}, \ldots, a_{n-1} \boldsymbol{e}_{n-1}+\boldsymbol{e}_{n}\right\}
$$
where $d, a_{1}, \ldots, a_{n-1} \in \mathbb{N}^{*}$. We also suppose that d is divisible by two distinct primes p and q. With T we can associate the variety V admitting the following parametrization
\[

V:\left\{$$
\begin{aligned}
x_{1} & =u_{1} \\
& \vdots \\
x_{n-1} & =u_{n-1} \\
x_{n} & =u_{n}^{d} \\
y_{1} & =u_{1}^{a_{1}} u_{n} \\
& \vdots \\
y_{n-1} & =u_{n-1}^{a_{n-1}} u_{n}
\end{aligned}
$$\right.
\]

which is a toric variety of codimension $n-1$ in the affine space K^{N}. Our aim is to show the following

Theorem 1. ara $V \geq N-2$.
This will be done in the next section.

2. The lower bound

We show that ara $V \geq N-2$ by means of the following criterion, which is based on étale cohomology and is cited from [6], Lemma 3^{\prime}.

Lemma 2. Let $W \subset \tilde{W}$ be affine varieties. Let $d=\operatorname{dim} \tilde{W} \backslash W$. If there are s equations F_{1}, \ldots, F_{s} such that $W=\tilde{W} \cap V\left(F_{1}, \ldots, F_{s}\right)$, then

$$
H_{\mathrm{et}}^{d+i}(\tilde{W} \backslash W, \mathbb{Z} / r \mathbb{Z})=0 \quad \text { for all } i \geq s
$$

and for all $r \in \mathbb{Z}$ which are prime to char K.
Since p and q are distinct primes, we may assume that char $K \neq p$. Hence our claim will follow once we have shown

Proposition 3. If char $K \neq p$, then

$$
H_{\mathrm{et}}^{2 N-3}\left(K^{N} \backslash V, \mathbb{Z} / p \mathbb{Z}\right) \neq 0
$$

Proof. In the sequel H_{et} and H_{c} will denote étale cohomology and étale cohomology with compact support with respect to the coefficient group $\mathbb{Z} / p \mathbb{Z}$: we
shall omit the latter for the sake of simplicity. By Poincaré Duality (see [8], Theorem 14.7, p. 83) we have

$$
\begin{equation*}
\operatorname{Hom}_{\mathbb{Z}}\left(H_{\mathrm{et}}^{2 N-3}\left(K^{N} \backslash V\right), \mathbb{Z} / p \mathbb{Z}\right) \simeq H_{\mathrm{c}}^{3}\left(K^{N} \backslash V\right) \tag{1}
\end{equation*}
$$

Moreover, we have a long exact sequence of cohomology with compact support

$$
\cdots \rightarrow H_{\mathrm{c}}^{2}\left(K^{N}\right) \rightarrow H_{\mathrm{c}}^{2}(V) \rightarrow H_{\mathrm{c}}^{3}\left(K^{N} \backslash V\right) \rightarrow H_{\mathrm{c}}^{3}\left(K^{N}\right) \rightarrow \cdots
$$

where $H_{\mathrm{c}}^{2}\left(K^{N}\right)=H_{\mathrm{c}}^{3}\left(K^{N}\right)=0$, since $N \geq 3$ (see [8], Example 16.3, pp.98-99). Hence

$$
\begin{equation*}
H_{\mathrm{c}}^{3}\left(K^{N} \backslash V\right) \simeq H_{\mathrm{c}}^{2}(V) \tag{2}
\end{equation*}
$$

By (1) and (2) it thus suffices to show that

$$
\begin{equation*}
H_{\mathrm{c}}^{2}(V) \neq 0 \tag{3}
\end{equation*}
$$

On K^{n} fix the coordinates u_{1}, \ldots, u_{n} and let X be the subvariety of K^{n} defined by $u_{1}=u_{2}=\cdots=u_{n-1}=0$. Then X is a 1 -dimensional affine space over K, on which we fix the coordinate u_{n}. Consider the surjective map

$$
\begin{gathered}
\phi: K^{n} \rightarrow V \\
\left(u_{1}, \ldots, u_{n}\right) \mapsto\left(u_{1}, \ldots, u_{n-1}, u_{n}^{d}, u_{1}^{a_{1}} u_{n}, \ldots, u_{n-1}^{a_{n-1}} u_{n}\right)
\end{gathered}
$$

and the restriction map

$$
\tilde{\phi}: K^{n} \backslash X \rightarrow V \backslash \phi(X)
$$

which is a bijective morphism of affine schemes. For all $i=1, \ldots, n-1$ let $V_{i}=\left\{\left(\bar{x}_{1}, \ldots, \bar{x}_{n-1}, \bar{x}_{n}, \bar{y}_{1}, \ldots, \bar{y}_{n-1}\right) \in V \mid \bar{x}_{i} \neq 0\right\}$. These sets form an open cover of $V \backslash \phi(X)$, and $U_{i}=\phi^{-1}\left(V_{i}\right)=\left\{\left(u_{1}, \ldots, u_{n}\right) \in K^{n} \mid u_{i} \neq 0\right\}$. Moreover, for all $i=1 \ldots, n-1$, the morphism

$$
\begin{gathered}
\psi_{i}: V_{i} \rightarrow U_{i} \\
\left(\bar{x}_{1}, \ldots, \bar{x}_{n-1}, \bar{x}_{n}, \bar{y}_{1}, \ldots, \bar{y}_{n-1}\right) \mapsto\left(\bar{x}_{1}, \ldots, \bar{x}_{n-1}, \frac{\bar{y}_{i}}{\bar{x}_{i}^{a_{i}}}\right)
\end{gathered}
$$

is the inverse map of the restriction of $\tilde{\phi}$ to U_{i}. Hence $\tilde{\phi}$ is an isomorphism of affine schemes, so that it induces an isomorphism of groups

$$
\tilde{\phi}_{i}^{*}: H_{\mathrm{c}}^{i}(V \backslash \phi(X)) \simeq H_{\mathrm{c}}^{i}\left(K^{n} \backslash X\right)
$$

for all indices i. The restriction of ϕ to X

$$
\bar{\phi}: X \rightarrow \phi(X)
$$

maps u_{n} to $\left(0, \ldots, 0, u_{n}^{d}, \ldots, 0\right)$. Hence $\phi(X)$ is a 1 -dimensional affine space and $\bar{\phi}$ induces multiplication by d on the second cohomology group with compact support (see [8], Remark 24.2 (f), p. 135). Now, as it is well-known (see [8], Example 16.3, pp. 98-99),

$$
H_{\mathrm{c}}^{i}(\phi(X)) \simeq H_{\mathrm{c}}^{i}(X) \simeq\left\{\begin{aligned}
\mathbb{Z} / p \mathbb{Z} & \text { for } i=2 \\
0 & \text { else }
\end{aligned}\right.
$$

Since p divides d, it follows that the induced maps

$$
\bar{\phi}_{i}^{*}: H_{\mathrm{c}}^{i}(\phi(X)) \longrightarrow H_{\mathrm{c}}^{i}(X)
$$

are all equal to the zero map. Thus ϕ gives rise to the following morphism of acyclic complexes:

Note that $\tilde{\phi}_{3}^{*} f=g 0=0$, so that $\tilde{\phi}_{3}^{*} f$ is not injective. Since $\tilde{\phi}_{3}^{*}$ is an isomorphism, it follows that f is not injective. This implies (3) and completes the proof.

3. On the defining equations

Finally we show that the lower bound established in Theorem 1 is sharp, since it is attained by the arithmetical rank when $n=2$ or $n=3$.

Proposition 4. If $n=2, V$ is defined set-theoretically by $F=y_{1}^{d}-x_{1}^{a_{1} d} x_{2}$. If $n=3$, then V is set-theoretically defined by the following three binomials:

$$
F_{1}=y_{1}^{d}-x_{1}^{a_{1} d} x_{3}, \quad F_{2}=y_{2}^{d}-x_{2}^{a_{2} d} x_{3}, \quad G=y_{1}^{d-1} y_{2}-x_{1}^{a_{1}(d-1)} x_{2}^{a_{2}} x_{3}
$$

Proof. If $n=2$, the claim is clear, since the defining ideal of V is the principal ideal generated by F. So suppose that $n=3$. It is straightforward to check that for all $\boldsymbol{w} \in V, F_{1}(\boldsymbol{w})=F_{2}(\boldsymbol{w})=G(\boldsymbol{w})=0$. Conversely, we have to prove that for every $\boldsymbol{w} \in K^{5}$ such that

$$
\begin{equation*}
F_{1}(\boldsymbol{w})=F_{2}(\boldsymbol{w})=G(\boldsymbol{w})=0 \tag{4}
\end{equation*}
$$

we have that $\boldsymbol{w} \in V$. Let $\boldsymbol{w}=\left(\bar{x}_{1}, \bar{x}_{2}, \bar{x}_{3}, \bar{y}_{1}, \bar{y}_{2}\right) \in K^{5}$ be a point fulfilling (4). Set $u_{i}=\bar{x}_{i}$ for $i=1,2$. We show that, for a suitable choice of parameter u_{3}, we can write $\boldsymbol{w}=\left(u_{1}, u_{2}, u_{3}^{d}, u_{1}^{a_{1}} u_{3}, u_{2}^{a_{2}} u_{3}\right)$. This is certainly true if $\bar{x}_{3}=0$: in this case (4) implies that $\bar{y}_{1}=\bar{y}_{2}=0$, and $u_{3}=0$ is the required parameter. Suppose that $\bar{x}_{3} \neq 0$. Let u_{3} be a d-th root of \bar{x}_{3}. By (4) we have that, for $i=1,2$,

$$
\bar{y}_{i}^{d}=u_{i}^{a_{i} d} u_{3}^{d},
$$

which implies that

$$
\begin{equation*}
\bar{y}_{i}=u_{i}^{a_{i}} u_{3} \omega_{i} \tag{5}
\end{equation*}
$$

for some d-th root ω_{i} of 1 . On the other hand, from (4) we also deduce that

$$
\begin{equation*}
\bar{y}_{1}^{d-1} \bar{y}_{2}=u_{1}^{a_{1}(d-1)} u_{2}^{a_{2}} u_{3}^{d} . \tag{6}
\end{equation*}
$$

Note that, by (4), since $\bar{x}_{3} \neq 0$, for $i=1,2$, we have $\bar{x}_{i}=0$ if and only if $\bar{y}_{i}=0$. If $\bar{x}_{1}=0$, set $u_{3}^{\prime}=u_{3} \omega_{2}$. Then $\bar{x}_{3}=u_{3}^{\prime d}$, and, in view of (5), $\bar{y}_{i}=u_{i}^{a_{i}} u_{3}^{\prime}$ for $i=1,2$. Hence u_{3}^{\prime} is the required parameter. Similarly one can reason if $\bar{x}_{2}=0$. So assume that $\bar{x}_{i} \neq 0$ for $i=1,2$. Replacing (5) on the left-hand side of (6) gives

$$
\begin{equation*}
u_{1}^{a_{1}(d-1)} u_{3}^{d-1} \omega_{1}^{d-1} u_{2}^{a_{2}} u_{3} \omega_{2}=u_{1}^{a_{1}(d-1)} u_{2}^{a_{2}} u_{3}^{d} \tag{7}
\end{equation*}
$$

Since u_{1}, u_{2}, u_{3} are non zero, from this we deduce that

$$
\begin{equation*}
\omega_{1}^{d-1} \omega_{2}=1 \tag{8}
\end{equation*}
$$

which implies that

$$
\omega_{1}=\omega_{2}
$$

i.e., ω_{1} and ω_{2} are both equal to the same d-th root ω of 1 . Thus $u_{3}^{\prime}=u_{3} \omega$ is the required parameter.

The computation of the arithmetical rank for $n \geq 4$ remains an open question.

References

[1] M. Barile, Almost set-theoretic complete intersections in characteristic zero. Preprint (2005). arXiv:math.AG/0504052. To appear in Collect. Math.
[2] M. Barile, A note on Veronese varieties, Rend. Circ. Mat. Palermo., 54 (2005), 359-366.
[3] M. Barile, G. Lyubeznik, Set-Theoretic Complete Intersections in Characteristic p, Proc. Amer. Math. Soc., 133 (2005), 3199-3209.
[4] M. Barile, M. Morales, A. Thoma, On Simplicial Toric Varieties Which Are Set-Theoretic Complete Intersections, J. Algebra, 226 (2000), 880-892.
[5] M. Barile, M. Morales, A. Thoma, Set-Theoretic Complete Intersections on Binomials, Proc. Amer. Math. Soc., 130 (2002), 1893-1903.
[6] W. Bruns, R. Schwänzl, The number of equations defining a determinantal variety, Bull. London Math. Soc., 22 (1990), 439-445.
[7] D. Eisenbud, E.G. Evans, jr. Every Algebraic Set in n-Space is the Intersection of n Hypersurfaces, Inv. Math., 19 (1973), 107-112.
[8] J.S. Milne, "Lectures on étale cohomology". Available at http://www.jmilne.org.

Dipartimento di Matematica
Università degli Studi di Bari
Via E. Orabona 4
70125 Bari
ITALY.
E-mail address: barile@dm.uniba.it

[^0]: 2000 Mathematics Subject Classification: 14M25, 19F27
 Key words and phrases: toric varieties, arithmetical rank, étale cohomology

