A CHARACTERIZATION OF THE RIEMANNIAN SYMMETRIC SPACE Sp(n)/U(n)

By

ANDREAS ARVANITOYEORGOS AND BASIL J. PAPANTONIOU

(Received May 29, 2003; Revised June 28, 2005)

Abstract. We characterize the symmetric space M = Sp(n)/U(n) by using the shape operator of small geodesic spheres in M, and a certain tensor field that satisfies various algebraic properties. We also give a partial generalization to any isotropy irreducible symmetric space.

1. Introduction

This work is a contribution to the problem of characterizing the isotropy irreducible symmetric spaces of classical type and their non-compact duals by small geodesic spheres. Historically, the problem was motivated by L. Vanhecke and T. J. Wilmore in [12] who characterized spaces of constant curvature and spaces of constant holomorphic curvature. The real oriented Grassmann manifolds $SO(p+q)/SO(p) \times SO(q)$ were considered later on by D. E. Blair and A. J. Ledger in [1], and B. J. Papantoniou in [9]. The complex Grassmann manifolds $SU(p+q)/S(U(p) \times U(q))$ were studied by A. J. Ledger in [5], who later on gave a unified treatment of all Grassmann manifolds including the quaternionic case $Sp(p+q)/Sp(p) \times Sp(q)$ ([6]). The symmetric space SO(2n)/U(n) was characterized by A. J. Ledger and A. M. Shahin in [7], and in the sequel B. J. Papantoniou characterized the symmetric space SD(n)/U(n) in [11]. The cases left to be characterized are the symmetric spaces Sp(n)/U(n), SU(2n)/Sp(n), and the ones determined by various exceptional Lie groups.

The aim of this work is firstly, to give a characterization of the symmetric space Sp(n)/U(n), and secondly to highlight a few key points which can be generalized for any symmetric space.

All the characterizations mentioned before used a property of geodesic spheres in Riemannian locally symmetric spaces. More specifically, let M be a Riemannian manifold of dimension at least three, S_r be a geodesic sphere with center a

²⁰⁰⁰ Mathematics Subject Classification: Primary 53C35, 53C17, 53C40; Secondary 53C30 Key words and phrases: Symmetric spaces, homogeneous spaces, geodesic spheres

The first author was supported in part by the C. Carathéodory Grant #2461/2000, University of Patras.

point $p \in M$ and radius r contained in a normal neighborhood U of p, and let N be a unit vector field on $U \setminus \{p\}$ tangent to a geodesic γ from p. Then for any vector field X on $U \setminus \{p\}$, we have that on γ the shape operator A_N of the geodesic sphere S_r and the curvature tensor R of M are related by

$$R(N,X)N = A_N^2 X - (\nabla_N A_N)X.$$

The left-hand side in the above equation is known as the curvature endomorphism $R_N: T_pM \to T_pM$ given by $R_N(X) = R(N, X)N$. This is a self-adjoint map and its restriction to the hyperplane orthogonal to N is referred to as tidal force operator (cf. [8, p. 219]) with special significance in general relativity. Now, a fundamental consequence of the previous relation is that if M is a Riemannian locally symmetric space the following well known result holds (e.g. [12], [6]):

PROPOSITION 1. Let p be a point in a Riemannian locally symmetric space M of dimension at least 3. Then p has a normal neighborhood U such that for each unit vector $N \in T_pM$ and corresponding geodesic γ through p, the parallel translation of an eigenspace of the linear map R_N along γ is contained in an eigenspace of the shape operator A_N , for each geodesic sphere in U about p.

Furthermore, these characterizations used certain properties of a parallel tensor field T of type (1,3), and additionally in some cases of another parallel tensor field S of type (1,2), defined as an appropriate portion of the curvature tensor Rof M. The tensor field T plays a significant role in the geometry of Grassmann manifolds, somewhat analogous to the underlying almost complex structure on a Kähler manifold (cf. Proposition 2 (P3)).

We will begin by presenting various properties of the symmetric space M = Sp(n)/U(n), and then we will express the curvature tensor of M in terms of the (1,3) tensor field T satisfying various properties. Then we will select vectors N as in Proposition 1 that satisfy an extra geometrical condition, to give an expression of the shape operator A_N of geodesic spheres in M. It turns out that these properties characterize the symmetric space M = Sp(n)/U(n).

The authors would like to express their thanks to the referee for useful comments and suggestions.

2. Properties of the symmetric space Sp(n)/U(n)

Le M = G/K be the symmetric space Sp(n)/U(n). The imbedding of U(n)into Sp(n) is given by $A + iB \mapsto \begin{pmatrix} A & B \\ -B & A \end{pmatrix}$, where A, B are $n \times n$ real matrices. Let $\mathfrak{g} = \mathfrak{sp}(n)$ and $\mathfrak{k} = \mathfrak{u}(n)$ be the Lie algebras of Sp(n) and U(n) respectively, and let g be the G-invariant metric on M determined by the $\mathrm{Ad}^{G/K}$ -invariant

82

inner product on \mathfrak{g} given by

$$\langle X, Y \rangle = -\frac{1}{4} \operatorname{tr} XY \quad (X, Y \in \mathfrak{g}).$$
 (1)

Here $\operatorname{Ad}^{G/K}$ denotes the isotropy representation of K in the tangent space T_pM $(p \in M)$. Since M is an isotropy irreducible space, g is an Einstein metric, that is, the Ricci curvature of M is a multiple of g. Consider the reductive decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{m}'$, with respect to this inner product. Then \mathfrak{m}' consists of all matrices of the form

$$\{iegin{pmatrix} X_1 & X_2 \ X_2 & -X_1 \end{pmatrix}: X_1, X_2 ext{ real } n imes n ext{ symmetric matrices} \},$$

which from now on it will be identified with the set

$$\mathfrak{m} = \{X = \begin{pmatrix} X_1 & X_2 \\ X_2 & -X_1 \end{pmatrix} : X_1, X_2 \text{ real } n \times n \text{ symmetric matrices} \}.$$

The tangent space at a fixed point o = eK can be identified with m, and its dimension is n(n+1). A *G*-invariant complex structure is determined by the $\operatorname{Ad}^{G/K}$ -invariant operator J on m given by $JX = \begin{pmatrix} -X_2 & X_1 \\ X_1 & X_2 \end{pmatrix}$. Also, since $\langle JX, JY \rangle = \langle X, Y \rangle$, the metric g is Hermitian with respect to J, and furthermore it is a *G*-invariant Kähler metric on M. The curvature tensor at $o \in M$ is given by

$$R(X,Y)Z = -[[X,Y],Z] = (YXZ + ZXY) - (XYZ + ZYX).$$

We note that for the non-compact dual the curvature tensor is the negative of the above expression. Let T be the (1,3) tensor at o defined by

$$T(X,Y,Z) = XYZ + ZYX$$
 $(X,Y,Z \in \mathfrak{m}).$

This is an $\operatorname{Ad}^{G/K}$ -invariant tensor on a symmetric space, hence it is a parallel tensor field on M (cf. [8, p. 326]). Consequently, R can be expressed in terms of T as

$$R(X,Y)Z = -T(X,Y,Z) + T(Y,X,Z).$$

For each $X, Y, Z \in \mathfrak{m}$ we define the following endomorphisms on \mathfrak{m} :

$$T_{XY}: \mathfrak{m} \to \mathfrak{m}, \quad T_{XY}(Z) = T(X, Y, Z)$$

 $T_Y^X: \mathfrak{m} \to \mathfrak{m}, \quad T_Y^X(Z) = T(X, Z, Y).$

83

PROPOSITION 2. The tensor T defined above satisfies the following properties:

$$T(X, Y, Z) = T(Z, Y, X)$$
(P1)

$$JT(X,Y,Z) = T(JX,Y,Z) = -T(X,JY,Z)$$
(P2)

i)
$$JT_{XX}g = 0$$
, (*ii*) $JT_{XX}T = 0$ (P3)

(i)
$$\operatorname{tr} T_{XX} = 4(n+1)g(X,X)$$
 (P4)

(*ii*)
$$\operatorname{tr}(T_X^X)^2 = 4g(T_X^XX,X) + 16(g(X,X))^2$$
.

Proof. Properties (P1) and (P2) can be easily verified. Concerning properties (P3), the (1,1) tensor JT_{XX} ($X \in \mathfrak{m}$) is defined by $JT_{XX}Y = J(T_{XX}Y)$, and is viewed as a derivation on the tensor algebra at o. Conditions (i) and (ii) are understood as generalizations of the properties $\nabla_X g = 0$ on a Riemannian manifold, and $\nabla_X J = 0$ on a Kähler manifold. Next we prove properties (P4).

We introduce an orthonormal basis for m. Let E_{ij} be the $n \times n$ matrix with 1 in the (i, j)-position and zeros elsewhere, and let $e_{ij}^* = E_{ij} + E_{ji}$ $(1 \le i < j \le n)$. Define matrices

$$e_{ij} = \begin{pmatrix} e^*_{ij} & 0\\ 0 & -e^*_{ij} \end{pmatrix} \quad (1 \le i < j \le n)$$

 and

$$f_{ii} = egin{pmatrix} E_{ii} & 0 \ 0 & -E_{ii} \end{pmatrix} \ \ (1 \leq i \leq n).$$

Then the set $\{e_{ij}, Je_{ij}, \sqrt{2}f_{ii}, \sqrt{2}Jf_{ii}\}$ constitutes an orthonormal basis of m with respect to the inner product $\langle X, Y \rangle = \frac{1}{4} \operatorname{tr} XY$. We use property (P2) and the relation $T_{XX}Z = T(X, X, Z) = X^2Z + ZX^2$, to compute:

$$\begin{split} \operatorname{tr} T_{XX} &= \sum_{i < j} \{ \langle T_{XX} e_{ij}, e_{ij} \rangle + \langle T_{XX} J e_{ij}, J e_{ij} \rangle \} \\ &+ 2 \sum_{i} \{ \langle T_{XX} f_{ii}, f_{ii} \rangle + \langle T_{XX} J f_{ii}, J f_{ii} \rangle \} \\ &= 2 \sum_{i < j} \langle T_{XX} e_{ij}, e_{ij} \rangle + 4 \sum_{i} \langle T_{XX} f_{ii}, f_{ii} \rangle \\ &= \frac{1}{2} \sum_{i < j} \operatorname{tr} (X^2 e_{ij} + e_{ij} X^2) e_{ij} + \sum_{i} \operatorname{tr} (X^2 f_{ii} + f_{ii} X^2) f_{ii} \\ &= \sum_{i < j} \operatorname{tr} X^2 e_{ij}^2 + 2 \sum_{i} \operatorname{tr} X^2 f_{ii}^2 \\ &= \operatorname{tr} (X^2 \sum_{i < j} e_{ij}^2) + 2 \operatorname{tr} (X^2 \sum_{i} f_{ii}^2). \end{split}$$

Since $e_{ij}^2 = \begin{pmatrix} (e_{ij}^*)^2 & 0\\ 0 & (e_{ij}^*)^2 \end{pmatrix}$ and $(e_{ij}^*)^2 = (E_{ij} + E_{ji})^2 = E_{ii} + E_{jj}$, we obtain that

$$\sum_{i < j} e_{ij}^2 = \sum_{i < j} \begin{pmatrix} E_{ii} + E_{jj} & 0\\ 0 & E_{ii} + E_{jj} \end{pmatrix} = (n-1)I_{2n}$$

and

$$\sum_i f_{ii}^2 = \sum_i egin{pmatrix} E_{ii}^2 & 0 \ 0 & E_{ii}^2 \end{pmatrix} = \sum_i egin{pmatrix} E_{ii} & 0 \ 0 & E_{ii} \end{pmatrix} = I_{2n}.$$

Thus

tr
$$T_{XX} = (n-1)$$
 tr $X^2 + 2$ tr $X^2 = (n+1)$ tr $X^2 = 4(n+1)g(X,X)$,

and property (P4) (i) has been proven. For (P4) (ii), we use (P2) and the relation $T_X^X Z = T(X, Z, X) = 2XZX$ to compute:

$$\begin{split} \operatorname{tr}(T_X^X)^2 &= \sum_{i < j} \{ \langle (T_X^X)^2 e_{ij}, e_{ij} \rangle + \langle (T_X^X)^2 J e_{ij}, J e_{ij} \rangle \} \\ &+ 2 \sum_i \{ \langle (T_X^X)^2 f_{ii}, f_{ii} \rangle + \langle (T_X^X)^2 J f_{ii}, J f_{ii} \rangle \} \\ &= 2 \sum_{i < j} \langle (T_X^X)^2 e_{ij}, e_{ij} \rangle + 4 \sum_i \langle (T_X^X)^2 f_{ii}, f_{ii} \rangle \\ &= 2 \sum_{i < j} \operatorname{tr}(X^2 e_{ij})^2 + 4 \sum_i \operatorname{tr}(X^2 f_{ii})^2. \end{split}$$

Now if $X = \begin{pmatrix} X_1 & X_2 \\ X_2 & -X_1 \end{pmatrix} \in \mathfrak{m}$, then

$$X^2 = egin{pmatrix} X_1^2 + X_2^2 & X_1 X_2 - X_2 X_1 \ X_2 X_1 - X_1 X_2 & X_2^2 + X_1^2 \end{pmatrix} = egin{pmatrix} A & B \ -B & A \end{pmatrix},$$

where $A = (a_{ij})$ is a symmetric $(a_{ij} = a_{ji})$ matrix, and $B = (b_{ij})$ is a skewsymmetric $(b_{ii} = 0, b_{ij} = -b_{ji})$ matrix. Then $X^2 e_{ij} = \begin{pmatrix} C & D \\ D & -C \end{pmatrix}$, where C is the $n \times n$ matrix with i and j columns the vectors $(a_{1j}, \ldots, a_{nj})^t$ and $(a_{1i}, \ldots, a_{ni})^t$ respectively, and zeros elsewhere. The matrix D has i and j columns the vectors $(-b_{1j}, \ldots, -b_{nj})^t$ and $(-b_{1i}, \ldots, -b_{ni})^t$ respectively, and zeros elsewhere. We also find that $X^2 f_{ii} = \begin{pmatrix} E & F \\ F & -E \end{pmatrix}$, where E is the $n \times n$ matrix with i-column $(a_{1i}, \ldots, a_{ni})^t$ and zeros elsewhere, and F is the $n \times n$ matrix with *i* column $(-b_{1i}, \ldots, -b_{ni})^t$ and zeros elsewhere. Thus, we obtain that

$$\operatorname{tr}(X^2 e_{ij})^2 = 4(a_{ij}^2 + a_{ii}a_{jj} + b_{ij}^2)$$
 and
 $\operatorname{tr}(X^2 f_{ii})^2 = 2(a_{ii}^2 + b_{ii}^2) = 2a_{ii}^2.$

We also find that the following relations hold:

$$\operatorname{tr} X^{2} = 2 \operatorname{tr} A = 2 \sum_{i} a_{ii}$$
$$(\operatorname{tr} A)^{2} = (\sum_{i} a_{ii})^{2} = \sum_{i} a_{ii}^{2} + \sum_{i < j} (2a_{ii}a_{jj})$$
$$\operatorname{tr} A^{2} = \sum_{i} a_{ii}^{2} + \sum_{i < j} 2a_{ij}^{2}, \quad \operatorname{tr} B^{2} = -2 \sum_{i < j} b_{ij}^{2}$$
$$\operatorname{tr} X^{4} = \operatorname{tr} X^{2} X^{2} = 2 \operatorname{tr} (A^{2} - B^{2}).$$

Consequently,

$$\begin{split} \sum_{i < j} \operatorname{tr}(X^2 e_{ij})^2 &= 2 \sum_{i < j} (2a_{ij}^2 + 2a_{ii}a_{jj} + 2b_{ij}^2) + \sum_i (a_{ii}^2 - a_{ii}^2 + a_{ii}^2 - a_{ii}^2) \\ &= 2(\operatorname{tr} A^2 - \operatorname{tr} B^2 + (\operatorname{tr} A)^2 - 2 \sum_i a_{ii}^2) \\ &= 2\operatorname{tr}(A^2 - B^2) + 2(\operatorname{tr} A)^2 - 4 \sum_i a_{ii}^2 \\ &= \operatorname{tr} X^4 + \frac{1}{2}(\operatorname{tr} X^2)^2 - 2 \sum_i \operatorname{tr}(X^2 f_{ii})^2 \end{split}$$

and finally,

$$\operatorname{tr}(T_X^X)^2 = 2\operatorname{tr} X^4 + (\operatorname{tr} X^2)^2 = 4g(T_X^X X, X) + 16(g(X, X))^2. \quad \Box$$

Next, we identify $\mathfrak{m} \cong \mathfrak{m}'$ with the vector space $\operatorname{Sym}_n \mathbb{C}$ of all $n \times n$ complex symmetric matrices by means of the identification

$$\mathfrak{m} \ni X = \begin{pmatrix} X_1 & X_2 \\ X_2 & -X_1 \end{pmatrix} \mapsto \tilde{X} = X_1 + iX_2 \in \operatorname{Sym}_n \mathbb{C}.$$

Under these correspondences the inner product $\langle X, Y \rangle = \frac{1}{4} \operatorname{tr} XY$ corresponds to the inner product $\langle \tilde{X}, \tilde{Y} \rangle' = \frac{1}{2} \operatorname{Re} \operatorname{tr} \tilde{X} \overline{\tilde{Y}}$ on $\operatorname{Sym}_n \mathbb{C}$, and the tensor T corresponds to the tensor \tilde{T} defined by

$$ilde{T}(ilde{X}, ilde{Y}, ilde{Z}) = ilde{X}\overline{ ilde{Y}} ilde{Z} + ilde{Z}\overline{ ilde{Y}} ilde{X}$$

also denoted by T. The complex structure J corresponds to $\tilde{J}\tilde{X} = i\tilde{X} = -X_2 + iX_1$ also denoted by J. Then the curvature tensor is expressed on $\operatorname{Sym}_n \mathbb{C}$ by

$$\begin{split} R(\tilde{X},\tilde{Y})\tilde{Z} &= -(\tilde{X}\overline{\tilde{Y}}\tilde{Z} + \tilde{Z}\overline{\tilde{Y}}\tilde{X}) + (\tilde{Y}\overline{\tilde{X}}\tilde{Z} + \tilde{Z}\overline{\tilde{X}}\tilde{Y}) \\ &= -T(\tilde{X},\tilde{Y},\tilde{Z}) + T(\tilde{Y},\tilde{X},\tilde{Z}). \end{split}$$

We will now make use of unit vectors N in \mathfrak{m} that satisfy a relation of the form T(X, X, X) = kX (k > 0). Geometrically, these vectors are realized as critical points of the function $|T(X, X, X)|^2$ (cf. [10]). Their existence is guaranteed by the following proposition.

PROPOSITION 3. Let N be a unit vector in $\mathfrak{m} \cong \operatorname{Sym}_n \mathbb{C}$. Then T(N, N, N) = 4N if and only if the rank of N is 1.

Proof. Let T(N, N, N) = 4N. Then $2N\overline{N}N = 4N$, thus $N\overline{N}N = 2N$. We set $N\overline{N} = A$. Then $A^2 = N\overline{N}N\overline{N} = 2N\overline{N} = 2A$, and since N is symmetric,

$$\overline{A}^t = (\overline{N}N)^t = N^t \overline{N}^t = N\overline{N} = A,$$

i.e. A is a Hermitian matrix. Hence there exists an $n \times n$ unitary matrix P such that $PA\overline{P}^t = D$, where $D = \text{diag}(d_1, d_2, \ldots, d_n)$ is real diagonal with $D^2 = PA\overline{P}^t PA\overline{P}^t = PA^2\overline{P}^t = 2PA\overline{P}^t = 2D$, and $\text{tr} D = \text{tr} A = \text{tr} N\overline{N} = \text{Re} \text{tr} N\overline{N} = 2$. Since $\text{diag}(d_1^2, d_2^2, \cdots, d_n^2) = \text{diag}(2d_1, 2d_2, \cdots, 2d_n)$, each of the d_i 's must be 0 or 2, and as tr D = 2 we finally obtain that $D = \text{diag}(2, 0, \ldots, 0)$. We now set B = PN. Then

$$DB = PA\overline{P}^{\iota}PN = PAN = PN\overline{N}N = 2PN = 2B,$$

therefore the matrix B has all entries zeros except the first row, so its rank is 1. Therefore, $1 = \operatorname{rk} B = \operatorname{rk} PN = \operatorname{rk} N$ (as $P\overline{P}^t = I$).

For the converse, assume that $\operatorname{rk} N = 1$. Then there exists an $n \times n$ unitary matrix Q such that

$$QNQ^t = \operatorname{diag}(a, 0, \dots, 0) \qquad (a \in \mathbb{C})$$
 (2)

(cf. [3]). Since N is a unit matrix we have that $|a|^2 = 2$. We finally obtain that

$$T(N, N, N) = 2N\overline{N}N = 2Q^{-1}\operatorname{diag}(a, 0, \dots, 0)\operatorname{diag}(\bar{a}, 0, \dots, 0)\operatorname{diag}(a, 0, \dots, 0)(Q^t)^{-1} = 2Q^{-1}\operatorname{diag}(a|a|^2, 0, \dots, 0)(Q^t)^{-1} = 4Q^{-1}\operatorname{diag}(a, 0, \dots, 0)(Q^t)^{-1} = 4N.$$

-	1	

87

We now choose such an $N \in \mathfrak{m}$ and recall the self-adjoint linear map R_N : $\mathfrak{m} \to \mathfrak{m}$ given by $R_N(X) = R(N, X)N$. Then

$$\begin{split} R(N,JN)N &= -T(N,JN,N) + T(JN,N,N) \\ &= JT(N,N,N) + JT(N,N,N) \\ &= 2JT(N,N,N) = 8JN, \end{split}$$

so we conclude that if $N \in \mathfrak{m}$ is such that T(N, N, N) = 4N, then JN is an eigenvector of R_N . Applying now Proposition 1 we obtain the following:

PROPOSITION 4. Let $p \in Sp(n)/U(n)$ and choose a normal neighborhood U of p as in Proposition 1. Then for each geodesic sphere S in U with center at p, and each unit normal vector N to S such that T(N, N, N) = 4N, the shape operator A_N of S satisfies the property

$$A_N J N = f(N) J N \tag{P5}$$

for some $f(N) \in \mathbb{R}$.

3. A characterization of the symmetric space Sp(n)/U(n)

We can now state the main theorem:

THEOREM 5. Let (M,g) be a non-flat, complete, simply connected Kähler manifold of dimension n(n+1). Let T be a parallel tensor field of type (1,3) on M satisfying properties (P1)-(P4). Suppose that each point $p \in M$ has a normal neighborhood U such that for each geodesic sphere S in U centered at p, and for each unit normal vector N to S with T(N, N, N) = 4N, the shape operator of S satisfies (P5). Then M is homothetic to the Riemannian symmetric space Sp(n)/U(n) or its non-compact dual.

For the proof of this theorem we need the following proposition whose proof is based on a series of linear algebra arguments, and is similar to the one given in [7] and [11]. However, it is useful to summarize its central points modified to our problem.

PROPOSITION 6. Let V be a real vector space of dimension n(n + 1) with complex structure J and Hermitian inner product \langle , \rangle . Let T be a tensor of type (1,3) on V satisfying (P1)-(P4) with \langle , \rangle in place of g. Then there exists a linear isomorphism ϕ of V onto the real vector space $\operatorname{Sym}_n \mathbb{C}$ of all complex symmetric $n \times n$ matrices, which preserves inner products as well as the complex structures J and i on V and $\operatorname{Sym}_n \mathbb{C}$ respectively. Furthermore, under this identification, $JX = iX, T(X, Y, Z) = X\overline{Y}Z + Z\overline{Y}X, \text{ and } \langle X, X \rangle = \frac{1}{2} \operatorname{tr} X\overline{X}.$

Proof. (Sketch) The aim is to exhibit a vector space isomorphism

$$\phi: V \to \operatorname{Sym}_n \mathbb{C} \tag{3}$$

by determining this between corresponding orthonormal bases in these spaces. It can been shown that there exists an orthonormal basis $\mathcal{A} = A \cup JA$ on V, such that $A = \{e_{jk} \ (1 \leq j < k \leq n), f_{ii} \ (1 \leq i \leq n)\}$ is an orthonormal subset of A, and $JA = \{Je_{jk}, Jf_{ii} : e_{jk}, e_{ii} \in A\}$. The elements of the set A are gradually defined so that the action of the tensor T on these satisfies various orthogonality relations (cf. [7, p. 17]). Next we choose an orthonormal basis \mathcal{B} for $\operatorname{Sym}_n \mathbb{C}$ with respect to the inner product $\langle X, X \rangle' = \frac{1}{2} \operatorname{tr} X\overline{X}$, consisting of the matrices $\mathcal{B} = \{e'_{jk} = E_{jk} + E_{kj}, ie'_{jk}(1 \leq j < k \leq n), f'_{ii} = E_{ii}, if'_{ii} \ (1 \leq i \leq n)\}$, and define the isomorphism ϕ by

$$\phi(e_{jk})=e'_{jk}, \; \phi(Je_{jk})=ie'_{jk}, \; \phi(f_{ii})=f'_{ii}, \; \phi(Jf_{ii})=if'_{ii}.$$

This isomorphism preserves inner products, as well as the complex structutes J and i on V and $\operatorname{Sym}_n \mathbb{C}$ respectively. Also, if we define a tensor T' of type (1,3) on $\operatorname{Sym}_n \mathbb{C}$ by $T'(X,Y,Z) = X\overline{Y}Z + Z\overline{Y}X$, then with respect to the basis \mathcal{B} , T' satisfies properies (P1)-(P4) as well as the orthogonality relations satisfied by T. Furthermore, $\phi(T(X,Y,Z)) = T'(\phi(X),\phi(Y),\phi(Z))$ for all $X,Y,Z \in \mathcal{A}$, and this completes the proof. \Box

The following lemmas are also needed for the proof of Theorem 5. Let $D = \{X \in V : T(X, X, X) = 4\langle X, X \rangle X\}.$

LEMMA 7. Let S be any tensor of type (1,3) on V which satisfies the symmetry properties of the Riemannian curvature tensor including the first Bianchi identity. Suppose that S satisfies the relation

$$\langle S(JX, JY)Z, W \rangle = \langle S(X, Y)Z, W \rangle$$
 for all $X, Y, Z, W \in V$, (4)

and that for each $X \in D$ and $Y \in V$ which is orthogonal to X, the relation $\langle S(X,JX)X,JY \rangle = 0$ holds. Then the "holomorphic sectional curvature" determined by S (i.e. $K(X) = \langle S(X,JX)X,JX \rangle$) is constant on D.

Proof. We will show that K(X) is constant for all unit vectors $X \in D$, by considering four cases.

<u>Case 1</u> Let $Y \in D$ be a unit vector orthogonal to X such that $X + Y \in D$. Such vectors do exist, as by Proposition 3 we can write X = diag(x+iy, 0, ..., 0) $(x^2 + y^2 = 2)$, and then take $Y = JX = \text{diag}(-y + ix, 0, \dots, 0)$. Then it is clear that $X - Y \in D$ and is orthogonal to X + Y, so by hypothesis we get

$$\langle S(X+Y,J(X+Y))(X+Y),J(X-Y)\rangle = 0.$$
 (5)

By using condition (4) on S together with the symmetry properties we obtain that

$$\langle S(X,Y)JZ,W\rangle = -\langle S(Z,JW)X,Y\rangle = \langle JS(X,Y)Z,W\rangle,$$

which implies that

$$\begin{split} \langle S(X,JX)Y,JX\rangle &= \langle S(X,JX)JY,X\rangle = \langle S(X,JX)X,JY\rangle = 0 \\ \langle S(X,JY)X,JX\rangle &= \langle S(X,JX)X,JY\rangle = 0 \\ \langle S(Y,JX)X,JX\rangle &= \langle S(X,JX)X,JY\rangle = 0 \\ \langle S(X,JY)Y,JY\rangle &= \langle S(Y,JY)Y,JX\rangle = 0 \\ \langle S(X,JY)Y,JX\rangle &= \langle S(Y,JX)X,JY\rangle \\ \langle S(Y,JX)Y,JX\rangle &= \langle S(JY,X)JY,X\rangle \\ \langle S(Y,JY)X,JX\rangle &= \langle S(X,JX)Y,JY\rangle. \end{split}$$

By expanding (5) and using the above identities we obtain that K(X) = K(Y), i.e. K is constant for such Y's.

<u>Case 2</u> Let $Y \in D$ be any unit vector with $X + Y \in D$. Choose a unit vector $Z \in D$ orthogonal to X and Y so that $X + Z \in D$ and $Y + Z \in D$. Then from Case 1 we obtain that K(X) = K(Z) = K(Y). For example, for X as before, take $Y = \text{diag}(\alpha + i\beta, 0, ..., 0)$ (appropriately normalized), and a Z = diag(r + is, 0, ..., 0) is found by solving the system $xr + ys = 2 = \alpha r + \beta s$ for r, s.

<u>Case 3</u> Let $Y \in D$ be any unit vector orthogonal to X. For example, for X as in case 1, we may write $Y = \text{diag}(\alpha + i\beta, 0, ..., 0)$ with $x\alpha + y\beta = 0$. Choose a $Z = \text{diag}(r + is, 0, ..., 0) \in D$ with -yr + sx = 0. Then $X + Z \in D$, and by Case 2 we get that K(X) = K(Z). On the other hand, Z is orthogonal to Y and $Y + Z \in D$, so by Case 1 K(Y) = K(Z).

<u>Case 4</u> Let Y be any unit vector in D. By choosing a $Z \in D$ orthogonal to X and Y, then from Case 3 it follows that K(X) = K(Y). \Box

LEMMA 8. Let S be a tensor of type (1,3) on V which satisfies the symmetry properties of the Riemannian curvature tensor including the first Bianchi identity, as well as relation (4). Suppose that S(X, JX)X = 0 for all $X \in D$, and S(X, Y)T = 0 for all $X, Y \in V$. Then S = 0 on V.

The proof of this lemma is presented in several of the references cited (e.g. [7], [6]). Finally we also need the following:

91

LEMMA 9 ([4, pp. 261–262]). Let M_1, M_2 be Riemannian symmetric spaces, and p_1, p_2 be points in M_1 and M_2 respectively. If there is a linear isometry $\phi: T_{p_1}M_1 \to T_{p_2}M_2$ that preserves curvatures, i.e. $\phi \circ R_p^1 = R_{\phi(p)}^2 \circ \phi$ for all $p \in T_{p_1}M_1$, then M_1 and M_2 are locally isometric.

Proof of Theorem 5. Let $v \in T_p M$ be a unit vector satisfying T(v, v, v) = 4v and let N be the unit tangent vector field to a geodesic γ through p with initial vector v. Since T is parallel then T(N, N, N) = 4N along γ , and from property (P5) $A_N JN = f JN$ along $\gamma \setminus \{p\}$. Now, if Y is a parallel vector field along γ normal to N, then g(R(N, JN)N, JY) = 0 on $\gamma \setminus \{p\}$, and hence at p by continuity. Indeed, we use property (P5), the relation $R(N, X)N = A_N^2 X - (\nabla_N A_N)X$, and the Kähler condition for M, to compute:

$$\begin{split} R(N,JN)N &= A_N^2 JN - (\nabla_N A_N) JN = A_N (fJN) - (\nabla_N (A_N JN) - A_N \nabla_N JN) \\ &= f^2 JN - (\nabla_N fJN - A_N J \nabla_N N) = f^2 JN - f' JN - f \nabla_N JN \\ &= (f^2 - f') JN. \end{split}$$

Therefore,

$$g(R(N,JN)N,JY) = g((f^2 - f')JN,JY) = (f^2 - f')g(JN,JY)$$

= $(f^2 - f')g(N,Y) = 0.$

Next, we view the tangent space T_pM as the vector space V in Proposition 6. Then the tensor T satisfies (P1)-(P4) at p, and as shown before $\langle R(X, JX)X, JY \rangle = 0$ for all $X \in D$ and Y orthogonal to X. Since property (4) in Lemma 7 is satisfied for JX = iX, we conclude that the holomorphic sectional curvature is constant at p for each unit vector $X \in D$, i.e. R(X, JX)X = cJX. Next we define the (1,3)-tensor

$$S(X,Y)Z = R(X,Y)Z - \frac{c}{4}(-T(X,Y,Z) + T(Y,X,Z)),$$

where R'(X,Y)Z = -T(X,Y,Z) + T(Y,X,Z) is viewed by Proposition 6 as the curvature tensor of Sp(n)/U(n). We check that S satisfies the conditions of Lemma 8. Condition (4) is obviously satisfied. Also, for each $X \in D$

$$\begin{split} S(X,JX)X &= R(X,JX)X - \frac{c}{4}(-T(X,JX,X) + T(JX,X,X)) \\ &= cJX - \frac{c}{4}(2JT(X,X,X)) = cJX - cJX = 0, \end{split}$$

and

$$S(X,Y)T = R(X,Y)T - \frac{c}{4}R'(X,Y)T = 0$$

Both terms above are zero; the first because T is parallel on M, and the second by using the algebraic properties of T on Sp(n)/U(n). Hence we conclude that

$$R(X,Y)Z = rac{c}{4}R'(X,Y)Z$$
 on T_pM .

Note that the left-hand side above is the curvature tensor of M, and the righthand side is the curvature tensor of Sp(n)/U(n). Since p is an arbitray point in M we obtain that

$$R = FR' \qquad \text{on} \quad M \tag{6}$$

for some function F.

Since Sp(n)/U(n) is an Einstein manifold (6) implies that the Ricci curvature Ric of M is given by Ric = fg for some function f. Hence M is also an Einstein manifold (cf. [8, p. 96]). Therefore we obtain that

$$R=\frac{c}{4}R' \qquad \text{on} \ M,$$

and $\nabla R = \frac{c}{4} \nabla R' = 0$, so (M, g) is a Riemannian locally symmetric space.

Since M is non-flat we assume that c > 0. By Proposition 6 there exists a linear isomorphism between the tangent spaces at any two points of M and Sp(n)/U(n) that preserves inner products and curvature tensors. Hence, by Lemma 9 M and Sp(n)/U(n) are locally isometric. Since M is complete and simply connected, M is globally isometric to Sp(n)/U(n). If c < 0 we have the corresponding result for the non-compact dual of Sp(n)/U(n).

It remains to obtain the equation R(X,Y)Z = -T(X,Y,Z) + T(Y,X,Z) for a metric \overline{g} homothetic to g. Define $\overline{g} = |\frac{c}{4}|g$ and $\overline{T}(X,Y,Z) = |\frac{c}{4}|T(X,Y,Z)$ on M. Then (P1)-(P5) are satisfied by \overline{g} and \overline{T} , so the conditions of Theorem 5 are satisfied by these. Since the curvature tensor of \overline{g} is unchanged by homotheties, we have that $R(X,Y)Z = \frac{c}{|c|}(-\overline{T}(X,Y,Z) + \overline{T}(X,Y,Z))$ for all vector fields X, Y, Z on M, and the proof has been completed. \Box

4. Remarks about the shape operator of geodesic spheres in a symmetric space

As shown in Proposition 4 an important role in the characterization described before was played by the shape operator of geodesic spheres in the symmetric space Sp(n)/U(n). This operator has been used in more general studies (cf. [13], [14]). We will first describe the eigenspaces of the map R_N . Let M = G/K be a symmetric space with symmetry θ . For simplicity we assume that M is of noncompact type. Considering the eigenspaces of θ with respect to the eigenvalues 1 and -1 we obtain the direct sum $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{m}$, where \mathfrak{k} is the Lie algebra of the subgroup K, and \mathfrak{m} , as usual, is identified with the tangent space of M at a fixed point $o \in M$. We fix a maximal Abelian subspace \mathfrak{h} in \mathfrak{m} , and let α be a linear form on \mathfrak{h} . Define

$$\mathfrak{g}_{\alpha} = \{X \in \mathfrak{g} : [H, X] = \alpha(H)X \text{ for all } H \in \mathfrak{h}\}.$$

A vector $\alpha \neq 0$ in the dual space \mathfrak{h}^* is called a restricted root with respect to \mathfrak{h} if $\mathfrak{g}_{\alpha} \neq 0$. Let R be the set of all restricted roots. It is known that

$$\mathfrak{g}=\mathfrak{g}_0\oplus\sum_{lpha\in R}\mathfrak{g}_lpha$$

is a decomposition of the real semisimple Lie algebra \mathfrak{g} , where $\mathfrak{g}_0 = \mathfrak{k}_0 \oplus \mathfrak{h}$, and $\mathfrak{k}_0 = \mathfrak{g}_0 \cap \mathfrak{k}$. Concerning the decomposition above, for any $\alpha, \beta \in R \cup \{0\}$ we have that $\theta(\mathfrak{g}_{\alpha}) = \mathfrak{g}_{-\alpha}$ and $[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}] \subset \mathfrak{g}_{\alpha+\beta}$. We fix an element $\alpha \in R$ and let dim $\mathfrak{g}_{\alpha} = m_{\alpha}$. Take a basis $\{X_1^{\alpha}, \ldots, X_{m_{\alpha}}^{\alpha}\}$ in \mathfrak{g}_{α} , and consider the subspaces

$$\mathfrak{k}_{\alpha} = \sum_{i=1}^{m_{\alpha}} \mathbb{R}(X_{i}^{\alpha} + \theta(X_{i}^{\alpha})), \quad \mathfrak{m}_{\alpha} = \sum_{i=1}^{m_{\alpha}} \mathbb{R}(X_{i}^{\alpha} - \theta(X_{i}^{\alpha})).$$

Obviously $\mathfrak{k}_{\alpha} = \mathfrak{k}_{-\alpha}$ and $\mathfrak{m}_{\alpha} = \mathfrak{m}_{-\alpha}$. Let R^+ be the set of positive roots with respect to an arbitrary lexicographic ordering in \mathfrak{h} . Using the above relations we obtain the following decompositions of \mathfrak{k} and \mathfrak{m} with respect to the Killing form of \mathfrak{g} :

$$\mathfrak{k} = \mathfrak{h} \oplus \sum_{lpha \in R^+} \mathfrak{k}_{lpha}, \quad \mathfrak{m} = \mathfrak{h} \oplus \sum_{lpha \in R^+} \mathfrak{m}_{lpha}.$$

Now take a unit vector N in \mathfrak{h} such that $\alpha(N)^2$ are different for each $\alpha \in \mathbb{R}^+ \cup \{0\}$. We have the following:

PROPOSITION 10. The eigenspaces of the self-adjoint map $R_N : \mathfrak{m} \to \mathfrak{m}$ given by $R_N(X) = R(N, X)N$ are \mathfrak{m}_{α} , with corresponding eigenvalues $\alpha(N)^2$ ($\alpha \in \mathbb{R}^+ \cup \{0\}$).

Proof. Without loss of generality let $X = X^{\alpha} - \theta(X^{\alpha}) \in \mathfrak{m}_{\alpha}$. We compute:

$$\begin{aligned} R_N(X) &= -[[N, X], N] = -[[N, X^{\alpha} - \theta(X^{\alpha})], N] \\ &= -[[N, X^{\alpha}], N] + [[N, \theta(X^{\alpha})], N] \\ &= -[\alpha(N)X^{\alpha}, N] + [\alpha(N)\theta(X^{\alpha}), N] \\ &= \alpha(N)^2 X^{\alpha} - \alpha(N)^2 \theta(X^{\alpha}) \\ &= \alpha(N)^2 (X^{\alpha} - \theta(X^{\alpha})) = \alpha(N)^2 X. \end{aligned}$$

As a consequence of this proposition we obtain the following result which is a generalization of Proposition 4 to any symmetric space of non-compact type.

PROPOSITION 11. Let M = G/K be a symmetric space of non-compact type and let U be a normal neighborhood of a point $o \in M$ as in Proposition 1. Then for each geodesic sphere S in U with center at o, and each unit vector N in \mathfrak{h} such that $\alpha(N)^2$ are different for each $\alpha \in \mathbb{R}^+ \cup \{0\}$, the shape operator A_N of S satisfies the property

$$A_N(\mathfrak{m}_\alpha) = f(N)\mathfrak{m}_\alpha$$

for some $f(N) \in \mathbb{R}$.

It is unclear at this point, and worth of further investigation, what would be an analogue of the condition T(N, N, N) = kN (k > 0), and the effect of this on the eigenspaces of the shape operator A_N .

References

- D. Blair and A. J. Ledger, A characterization of oriented Grassmann manifolds, Rocky Mountain J. Math., 14 (3) (1984), 573-584.
- [2] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New York, 1978.
- [3] L-K Hua, On the theory of automorphic functions of a matrix variable I Geometrical basis, Amer. J. Math., 66 (3) (1944), 470-488.
- [4] S. Kobayashi, K. Nomizu: Foundation of Differential Geometry Vol. I, Wiley (Interscience), New York, 1969.
- [5] A. J. Ledger, A characterization of complex Grassmann manifolds, Indian J. Pure Appl. Math., 15 (1) (1984), 99-1984.
- [6] A. J. Ledger, Geodesic spheres on Grassmann manifolds, Yokohama Math. J., 34 (1986), 59-71.
- [7] A. J. Ledger and A. M. Shahin, The symmetric space SO(2n)/U(n), Yokohama Math. J., **37** (1989), 5-23.
- [8] B. O'Neil, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1983.
- [9] B. J. Papantoniou, Jacobi fields geodesic spheres and second fundamental form of the rank two symmetric space $M = SO(P+2)/SO(P) \times SO(2)$, Tensor, N. S., **41** (1984), 27-34.
- [10] B. J. Papantoniou, An investigation of a tensor field on the Grassmannian $SO(p + 2)/SO(p) \times SO(2)$, Indian J. Pure Appl. Math., 16 (10) (1985), 1104-1116.
- [11] P. J. Papantoniou, A characterization of the symmetric space SU(n)/SO(n) by geodesic spheres, Linear Alg. and its Appl., 136 (1990), 133-164.
- [12] L. Vanhecke and T. J. Wilmore, Jacobi fields and geodesic spheres, Proc. Roy. Soc. Edinburgh, 82A (1979), 233-240.
- [13] L. Verhóczki, Special isoparametric orbits in Riemannian symmetric spaces, Geom. Dedic., 55 (1995), 305-317.
- [14] L. Verhóczki, Shape operators of orbits of isotropy subgroups in Riemannian symmetric spaces of the compact type, Beiträge zur Algebra und Geometrie, 36 (2) (1995), 155-170.

CHARACTERIZATION OF THE SYMMETRIC SPACE Sp(n)/U(n)

Department of Mathematics, University of Patras, GR-26500 Rion, Greece E-mail address: arvanito@math.upatras.gr bipapant@math.upatras.gr