A CHARACTERIZATION OF THE RIEMANNIAN SYMMETRIC SPACE $\boldsymbol{S p}(n) / \boldsymbol{U}(n)$

By
Andreas Arvanitoyeorgos and Basil J. Papantoniou

(Received May 29, 2003; Revised June 28, 2005)

Abstract

We characterize the symmetric space $M=S p(n) / U(n)$ by using the shape operator of small geodesic spheres in M, and a certain tensor field that satisfies various algebraic properties. We also give a partial generalization to any isotropy irreducible symmetric space.

1. Introduction

This work is a contribution to the problem of characterizing the isotropy irreducible symmetric spaces of classical type and their non-compact duals by small geodesic spheres. Historically, the problem was motivated by L. Vanhecke and T. J. Wilmore in [12] who characterized spaces of constant curvature and spaces of constant holomorphic curvature. The real oriented Grassmann manifolds $S O(p+q) / S O(p) \times S O(q)$ were considered later on by D. E. Blair and A. J. Ledger in [1], and B. J. Papantoniou in [9]. The complex Grassmann manifolds $S U(p+q) / S(U(p) \times U(q))$ were studied by A. J. Ledger in [5], who later on gave a unified treatment of all Grassmann manifolds including the quaternionic case $S p(p+q) / S p(p) \times S p(q)([6])$. The symmetric space $S O(2 n) / U(n)$ was characterized by A. J. Ledger and A. M. Shahin in [7]], and in the sequel B. J. Papantoniou characterized the symmetric space $S U(n) / S O(n)$ in [11]. The cases left to be characterized are the symmetric spaces $S p(n) / U(n), S U(2 n) / S p(n)$, and the ones determined by various exceptional Lie groups.

The aim of this work is firstly, to give a characterization of the symmetric space $S p(n) / U(n)$, and secondly to highlight a few key points which can be generalized for any symmetric space.

All the characterizations mentioned before used a property of geodesic spheres in Riemannian locally symmetric spaces. More specifically, let M be a Riemannian manifold of dimension at least three, S_{r} be a geodesic sphere with center a

[^0]point $p \in M$ and radius r contained in a normal neighborhood U of p, and let N be a unit vector field on $U \backslash\{p\}$ tangent to a geodesic γ from p. Then for any vector field X on $U \backslash\{p\}$, we have that on γ the shape operator A_{N} of the geodesic sphere S_{r} and the curvature tensor R of M are related by
$$
R(N, X) N=A_{N}^{2} X-\left(\nabla_{N} A_{N}\right) X
$$

The left-hand side in the above equation is known as the curvature endomorphism $R_{N}: T_{p} M \rightarrow T_{p} M$ given by $R_{N}(X)=R(N, X) N$. This is a self-adjoint map and its restriction to the hyperplane orthogonal to N is referred to as tidal force operator (cf. [8, p. 219]) with special significance in general relativity. Now, a fundamental consequence of the previous relation is that if M is a Riemannian locally symmetric space the following well known result holds (e.g. [12], [6]):

Proposition 1. Let p be a point in a Riemannian locally symmetric space M of dimension at least 3. Then p has a normal neighborhood U such that for each unit vector $N \in T_{p} M$ and corresponding geodesic γ through p, the parallel translation of an eigenspace of the linear map R_{N} along γ is contained in an eigenspace of the shape operator A_{N}, for each geodesic sphere in U about p.

Furthermore, these characterizations used certain properties of a parallel tensor field T of type (1,3), and additionally in some cases of another parallel tensor field S of type (1,2), defined as an appropriate portion of the curvature tensor R of M. The tensor field T plays a significant role in the geometry of Grassmann manifolds, somewhat analogous to the underlying almost complex structure on a Kähler manifold (cf. Proposition 2 (P3)).

We will begin by presenting various properties of the symmetric space $M=$ $S p(n) / U(n)$, and then we will express the curvature tensor of M in terms of the $(1,3)$ tensor field T satisfying various properties. Then we will select vectors N as in Proposition 1 that satisfy an extra geometrical condition, to give an expression of the shape operator A_{N} of geodesic spheres in M. It turns out that these properties characterize the symmetric space $M=S p(n) / U(n)$.

The authors would like to express their thanks to the referee for useful comments and suggestions.

2. Properties of the symmetric space $S p(n) / U(n)$

Le $M=G / K$ be the symmetric space $S p(n) / U(n)$. The imbedding of $U(n)$ into $S p(n)$ is given by $A+i B \mapsto\left(\begin{array}{cc}A & B \\ -B & A\end{array}\right)$, where A, B are $n \times n$ real matrices. Let $\mathfrak{g}=\mathfrak{s p}(n)$ and $\mathfrak{k}=\mathfrak{u}(n)$ be the Lie algebras of $S p(n)$ and $U(n)$ respectively, and let g be the G-invariant metric on M determined by the $\operatorname{Ad}^{G / K}$-invariant
inner product on \mathfrak{g} given by

$$
\begin{equation*}
\langle X, Y\rangle=-\frac{1}{4} \operatorname{tr} X Y \quad(X, Y \in \mathfrak{g}) \tag{1}
\end{equation*}
$$

Here $\mathrm{Ad}^{G / K}$ denotes the isotropy representation of K in the tangent space $T_{p} M$ $(p \in M)$. Since M is an isotropy irreducible space, g is an Einstein metric, that is, the Ricci curvature of M is a multiple of g. Consider the reductive decomposition $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{m}^{\prime}$, with respect to this inner product. Then \mathfrak{m}^{\prime} consists of all matrices of the form

$$
\left\{i\left(\begin{array}{cc}
X_{1} & X_{2} \\
X_{2} & -X_{1}
\end{array}\right): \quad X_{1}, X_{2} \text { real } n \times n \text { symmetric matrices }\right\}
$$

which from now on it will be identified with the set

$$
\mathfrak{m}=\left\{X=\left(\begin{array}{cc}
X_{1} & X_{2} \\
X_{2} & -X_{1}
\end{array}\right): \quad X_{1}, X_{2} \text { real } n \times n \text { symmetric matrices }\right\}
$$

The tangent space at a fixed point $o=e K$ can be identified with \mathfrak{m}, and its dimension is $n(n+1)$. A G-invariant complex structure is determined by the $\mathrm{Ad}^{G / K}$-invariant operator J on \mathfrak{m} given by $J X=\left(\begin{array}{cc}-X_{2} & X_{1} \\ X_{1} & X_{2}\end{array}\right)$. Also, since $\langle J X, J Y\rangle=\langle X, Y\rangle$, the metric g is Hermitian with respect to J, and furthermore it is a G-invariant Kähler metric on M. The curvature tensor at $o \in M$ is given by

$$
R(X, Y) Z=-[[X, Y], Z]=(Y X Z+Z X Y)-(X Y Z+Z Y X)
$$

We note that for the non-compact dual the curvature tensor is the negative of the above expression. Let T be the $(1,3)$ tensor at o defined by

$$
T(X, Y, Z)=X Y Z+Z Y X \quad(X, Y, Z \in \mathfrak{m})
$$

This is an $\mathrm{Ad}^{G / K}$-invariant tensor on a symmetric space, hence it is a parallel tensor field on M (cf. [8, p. 326]). Consequently, R can be expressed in terms of T as

$$
R(X, Y) Z=-T(X, Y, Z)+T(Y, X, Z)
$$

For each $X, Y, Z \in \mathfrak{m}$ we define the following endomorphisms on \mathfrak{m} :

$$
\begin{aligned}
& T_{X Y}: \mathfrak{m} \rightarrow \mathfrak{m}, \quad T_{X Y}(Z)=T(X, Y, Z) \\
& T_{Y}^{X}: \mathfrak{m} \rightarrow \mathfrak{m}, \quad T_{Y}^{X}(Z)=T(X, Z, Y)
\end{aligned}
$$

Proposition 2. The tensor T defined above satisfies the following properties:

$$
\begin{gather*}
T(X, Y, Z)=T(Z, Y, X) \tag{P1}\\
J T(X, Y, Z)=T(J X, Y, Z)=-T(X, J Y, Z) \tag{P2}\\
(i) J T_{X X} g=0, \quad(i i) J T_{X X} T=0 \tag{P3}
\end{gather*}
$$

(i) $\operatorname{tr} T_{X X}=4(n+1) g(X, X)$
(ii) $\operatorname{tr}\left(T_{X}^{X}\right)^{2}=4 g\left(T_{X}^{X} X, X\right)+16(g(X, X))^{2}$.

Proof. Properties (P1) and (P2) can be easily verified. Concerning properties (P3), the (1,1) tensor $J T_{X X}(X \in \mathfrak{m})$ is defined by $J T_{X X} Y=J\left(T_{X X} Y\right)$, and is viewed as a derivation on the tensor algebra at o. Conditions (i) and (ii) are understood as generalizations of the properties $\nabla_{X} g=0$ on a Riemannian manifold, and $\nabla_{X} J=0$ on a Kähler manifold. Next we prove properties (P4).

We introduce an orthonormal basis for \mathfrak{m}. Let $E_{i j}$ be the $n \times n$ matrix with 1 in the (i, j)-position and zeros elsewhere, and let $e_{i j}^{*}=E_{i j}+E_{j i}(1 \leq i<j \leq n)$. Define matrices

$$
e_{i j}=\left(\begin{array}{cc}
e_{i j}^{*} & 0 \\
0 & -e_{i j}^{*}
\end{array}\right) \quad(1 \leq i<j \leq n)
$$

and

$$
f_{i i}=\left(\begin{array}{cc}
E_{i i} & 0 \\
0 & -E_{i i}
\end{array}\right) \quad(1 \leq i \leq n)
$$

Then the set $\left\{e_{i j}, J e_{i j}, \sqrt{2} f_{i i}, \sqrt{2} J f_{i i}\right\}$ constitutes an orthonormal basis of \mathfrak{m} with respect to the inner product $\langle X, Y\rangle=\frac{1}{4} \operatorname{tr} X Y$. We use property (P2) and the relation $T_{X X} Z=T(X, X, Z)=X^{2} Z+Z X^{2}$, to compute:

$$
\begin{aligned}
\operatorname{tr} T_{X X}= & \sum_{i<j}\left\{\left\langle T_{X X} e_{i j}, e_{i j}\right\rangle+\left\langle T_{X X} J e_{i j}, J e_{i j}\right\rangle\right\} \\
& +2 \sum_{i}\left\{\left\langle T_{X X} f_{i i}, f_{i i}\right\rangle+\left\langle T_{X X} J f_{i i}, J f_{i i}\right\rangle\right\} \\
= & 2 \sum_{i<j}\left\langle T_{X X} e_{i j}, e_{i j}\right\rangle+4 \sum_{i}\left\langle T_{X X} f_{i i}, f_{i i}\right\rangle \\
= & \frac{1}{2} \sum_{i<j} \operatorname{tr}\left(X^{2} e_{i j}+e_{i j} X^{2}\right) e_{i j}+\sum_{i} \operatorname{tr}\left(X^{2} f_{i i}+f_{i i} X^{2}\right) f_{i i} \\
= & \sum_{i<j} \operatorname{tr} X^{2} e_{i j}^{2}+2 \sum_{i} \operatorname{tr} X^{2} f_{i i}^{2} \\
= & \operatorname{tr}\left(X^{2} \sum_{i<j} e_{i j}^{2}\right)+2 \operatorname{tr}\left(X^{2} \sum_{i} f_{i i}^{2}\right) .
\end{aligned}
$$

Since $e_{i j}^{2}=\left(\begin{array}{cc}\left(e_{i j}^{*}\right)^{2} & 0 \\ 0 & \left(e_{i j}^{*}\right)^{2}\end{array}\right)$ and $\left(e_{i j}^{*}\right)^{2}=\left(E_{i j}+E_{j i}\right)^{2}=E_{i i}+E_{j j}$, we obtain that

$$
\sum_{i<j} e_{i j}^{2}=\sum_{i<j}\left(\begin{array}{cc}
E_{i i}+E_{j j} & 0 \\
0 & E_{i i}+E_{j j}
\end{array}\right)=(n-1) I_{2 n}
$$

and

$$
\sum_{i} f_{i i}^{2}=\sum_{i}\left(\begin{array}{cc}
E_{i i}^{2} & 0 \\
0 & E_{i i}^{2}
\end{array}\right)=\sum_{i}\left(\begin{array}{cc}
E_{i i} & 0 \\
0 & E_{i i}
\end{array}\right)=I_{2 n}
$$

Thus

$$
\operatorname{tr} T_{X X}=(n-1) \operatorname{tr} X^{2}+2 \operatorname{tr} X^{2}=(n+1) \operatorname{tr} X^{2}=4(n+1) g(X, X)
$$

and property (P4) (i) has been proven. For (P4) (ii), we use (P2) and the relation $T_{X}^{X} Z=T(X, Z, X)=2 X Z X$ to compute:

$$
\begin{aligned}
\operatorname{tr}\left(T_{X}^{X}\right)^{2}= & \sum_{i<j}\left\{\left\langle\left(T_{X}^{X}\right)^{2} e_{i j}, e_{i j}\right\rangle+\left\langle\left(T_{X}^{X}\right)^{2} J e_{i j}, J e_{i j}\right\rangle\right\} \\
& +2 \sum_{i}\left\{\left\langle\left(T_{X}^{X}\right)^{2} f_{i i}, f_{i i}\right\rangle+\left\langle\left(T_{X}^{X}\right)^{2} J f_{i i}, J f_{i i}\right\rangle\right\} \\
= & 2 \sum_{i<j}\left\langle\left(T_{X}^{X}\right)^{2} e_{i j}, e_{i j}\right\rangle+4 \sum_{i}\left\langle\left(T_{X}^{X}\right)^{2} f_{i i}, f_{i i}\right\rangle \\
= & 2 \sum_{i<j} \operatorname{tr}\left(X^{2} e_{i j}\right)^{2}+4 \sum_{i} \operatorname{tr}\left(X^{2} f_{i i}\right)^{2} .
\end{aligned}
$$

Now if $X=\left(\begin{array}{cc}X_{1} & X_{2} \\ X_{2} & -X_{1}\end{array}\right) \in \mathfrak{m}$, then

$$
X^{2}=\left(\begin{array}{cc}
X_{1}^{2}+X_{2}^{2} & X_{1} X_{2}-X_{2} X_{1} \\
X_{2} X_{1}-X_{1} X_{2} & X_{2}^{2}+X_{1}^{2}
\end{array}\right)=\left(\begin{array}{cc}
A & B \\
-B & A
\end{array}\right)
$$

where $A=\left(a_{i j}\right)$ is a symmetric $\left(a_{i j}=a_{j i}\right)$ matrix, and $B=\left(b_{i j}\right)$ is a skewsymmetric $\left(b_{i i}=0, b_{i j}=-b_{j i}\right)$ matrix. Then $X^{2} e_{i j}=\left(\begin{array}{cc}C & D \\ D & -C\end{array}\right)$, where C is the $n \times n$ matrix with i and j columns the vectors $\left(a_{1 j}, \ldots, a_{n j}\right)^{t}$ and $\left(a_{1 i}, \ldots, a_{n i}\right)^{t}$ respectively, and zeros elsewhere. The matrix D has i and j columns the vectors $\left(-b_{1 j}, \ldots,-b_{n j}\right)^{t}$ and $\left(-b_{1 i}, \ldots,-b_{n i}\right)^{t}$ respectively, and zeros elsewhere. We also find that $X^{2} f_{i i}=\left(\begin{array}{cc}E & F \\ F & -E\end{array}\right)$, where E is the $n \times n$ matrix with i-column $\left(a_{1 i}, \ldots, a_{n i}\right)^{t}$ and zeros elsewhere, and F is the $n \times n$
matrix with i column $\left(-b_{1 i}, \ldots,-b_{n i}\right)^{t}$ and zeros elsewhere. Thus, we obtain that

$$
\begin{aligned}
& \operatorname{tr}\left(X^{2} e_{i j}\right)^{2}=4\left(a_{i j}^{2}+a_{i i} a_{j j}+b_{i j}^{2}\right) \text { and } \\
& \operatorname{tr}\left(X^{2} f_{i i}\right)^{2}=2\left(a_{i i}^{2}+b_{i i}^{2}\right)=2 a_{i i}^{2} .
\end{aligned}
$$

We also find that the following relations hold:

$$
\begin{gathered}
\operatorname{tr} X^{2}=2 \operatorname{tr} A=2 \sum_{i} a_{i i} \\
(\operatorname{tr} A)^{2}=\left(\sum_{i} a_{i i}\right)^{2}=\sum_{i} a_{i i}^{2}+\sum_{i<j}\left(2 a_{i i} a_{j j}\right) \\
\operatorname{tr} A^{2}=\sum_{i} a_{i i}^{2}+\sum_{i<j} 2 a_{i j}^{2}, \quad \operatorname{tr} B^{2}=-2 \sum_{i<j} b_{i j}^{2} \\
\operatorname{tr} X^{4}=\operatorname{tr} X^{2} X^{2}=2 \operatorname{tr}\left(A^{2}-B^{2}\right) .
\end{gathered}
$$

Consequently,

$$
\begin{aligned}
\sum_{i<j} \operatorname{tr}\left(X^{2} e_{i j}\right)^{2} & =2 \sum_{i<j}\left(2 a_{i j}^{2}+2 a_{i i} a_{j j}+2 b_{i j}^{2}\right)+\sum_{i}\left(a_{i i}^{2}-a_{i i}^{2}+a_{i i}^{2}-a_{i i}^{2}\right) \\
& =2\left(\operatorname{tr} A^{2}-\operatorname{tr} B^{2}+(\operatorname{tr} A)^{2}-2 \sum_{i} a_{i i}^{2}\right) \\
& =2 \operatorname{tr}\left(A^{2}-B^{2}\right)+2(\operatorname{tr} A)^{2}-4 \sum_{i} a_{i i}^{2} \\
& =\operatorname{tr} X^{4}+\frac{1}{2}\left(\operatorname{tr} X^{2}\right)^{2}-2 \sum_{i} \operatorname{tr}\left(X^{2} f_{i i}\right)^{2}
\end{aligned}
$$

and finally,

$$
\operatorname{tr}\left(T_{X}^{X}\right)^{2}=2 \operatorname{tr} X^{4}+\left(\operatorname{tr} X^{2}\right)^{2}=4 g\left(T_{X}^{X} X, X\right)+16(g(X, X))^{2} .
$$

Next, we identify $\mathfrak{m} \cong \mathfrak{m}^{\prime}$ with the vector space $\operatorname{Sym}_{n} \mathbb{C}$ of all $n \times n$ complex symmetric matrices by means of the identification

$$
\mathfrak{m} \ni X=\left(\begin{array}{cc}
X_{1} & X_{2} \\
X_{2} & -X_{1}
\end{array}\right) \mapsto \tilde{X}=X_{1}+i X_{2} \in \operatorname{Sym}_{n} \mathbb{C} .
$$

Under these correspondences the inner product $\langle X, Y\rangle=\frac{1}{4} \operatorname{tr} X Y$ corresponds to the inner product $\langle\tilde{X}, \tilde{Y}\rangle^{\prime}=\frac{1}{2} \operatorname{Retr} \tilde{X} \overline{\tilde{Y}}$ on $\operatorname{Sym}_{n} \mathbb{C}$, and the tensor T corresponds to the tensor \tilde{T} defined by

$$
\tilde{T}(\tilde{X}, \tilde{Y}, \tilde{Z})=\tilde{X} \tilde{\tilde{Y}} \tilde{Z}+\tilde{Z} \tilde{Y} \tilde{X}
$$

also denoted by T. The complex structure J corresponds to $\tilde{J} \tilde{X}=i \tilde{X}=-X_{2}+$ $i X_{1}$ also denoted by J. Then the curvature tensor is expressed on $\operatorname{Sym}_{n} \mathbb{C}$ by

$$
\begin{aligned}
R(\tilde{X}, \tilde{Y}) \tilde{Z} & =-(\tilde{X} \tilde{\tilde{Y}} \tilde{Z}+\tilde{Z} \overline{\tilde{Y}} \tilde{X})+(\tilde{Y} \tilde{\tilde{X}} \tilde{Z}+\tilde{Z} \tilde{X} \tilde{Y}) \\
& =-T(\tilde{X}, \tilde{Y}, \tilde{Z})+T(\tilde{Y}, \tilde{X}, \tilde{Z})
\end{aligned}
$$

We will now make use of unit vectors N in \mathfrak{m} that satisfy a relation of the form $T(X, X, X)=k X(k>0)$. Geometrically, these vectors are realized as critical points of the function $|T(X, X, X)|^{2}$ (cf. [10]). Their existence is guaranteed by the following proposition.

Proposition 3. Let N be a unit vector in $\mathfrak{m} \cong \operatorname{Sym}_{n} \mathbb{C}$. Then $T(N, N, N)=$ $4 N$ if and only if the rank of N is 1.

Proof. Let $T(N, N, N)=4 N$. Then $2 N \bar{N} N=4 N$, thus $N \bar{N} N=2 N$. We set $N \bar{N}=A$. Then $A^{2}=N \bar{N} N \bar{N}=2 N \bar{N}=2 A$, and since N is symmetric,

$$
\bar{A}^{t}=(\bar{N} N)^{t}=N^{t} \bar{N}^{t}=N \bar{N}=A
$$

i.e. A is a Hermitian matrix. Hence there exists an $n \times n$ unitary matrix P such that $P A \bar{P}^{t}=D$, where $D=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is real diagonal with $D^{2}=P A \bar{P}^{t} P A \bar{P}^{t}=P A^{2} \bar{P}^{t}=2 P A \bar{P}^{t}=2 D$, and $\operatorname{tr} D=\operatorname{tr} A=\operatorname{tr} N \bar{N}=$ $\operatorname{Re} \operatorname{tr} N \bar{N}=2$. Since $\operatorname{diag}\left(d_{1}^{2}, d_{2}^{2}, \cdots, d_{n}^{2}\right)=\operatorname{diag}\left(2 d_{1}, 2 d_{2}, \cdots, 2 d_{n}\right)$, each of the d_{i} 's must be 0 or 2 , and as $\operatorname{tr} D=2$ we finally obtain that $D=\operatorname{diag}(2,0, \ldots, 0)$. We now set $B=P N$. Then

$$
D B=P A \bar{P}^{t} P N=P A N=P N \bar{N} N=2 P N=2 B
$$

therefore the matrix B has all entries zeros except the first row, so its rank is 1. Therefore, $1=\operatorname{rk} B=\operatorname{rk} P N=\operatorname{rk} N\left(\operatorname{as} P \bar{P}^{t}=I\right)$.

For the converse, assume that $\operatorname{rk} N=1$. Then there exists an $n \times n$ unitary matrix Q such that

$$
\begin{equation*}
Q N Q^{t}=\operatorname{diag}(a, 0, \ldots, 0) \quad(a \in \mathbb{C}) \tag{2}
\end{equation*}
$$

(cf. [3]). Since N is a unit matrix we have that $|a|^{2}=2$.
We finally obtain that

$$
\begin{aligned}
& T(N, N, N) \\
& =2 N \bar{N} N=2 Q^{-1} \operatorname{diag}(a, 0, \cdots, 0) \operatorname{diag}(\bar{a}, 0, \cdots, 0) \operatorname{diag}(a, 0, \cdots, 0)\left(Q^{t}\right)^{-1} \\
& =2 Q^{-1} \operatorname{diag}\left(a|a|^{2}, 0, \cdots, 0\right)\left(Q^{t}\right)^{-1}=4 Q^{-1} \operatorname{diag}(a, 0, \cdots, 0)\left(Q^{t}\right)^{-1}=4 N
\end{aligned}
$$

We now choose such an $N \in \mathfrak{m}$ and recall the self-adjoint linear map R_{N} : $\mathfrak{m} \rightarrow \mathfrak{m}$ given by $R_{N}(X)=R(N, X) N$. Then

$$
\begin{aligned}
R(N, J N) N & =-T(N, J N, N)+T(J N, N, N) \\
& =J T(N, N, N)+J T(N, N, N) \\
& =2 J T(N, N, N)=8 J N
\end{aligned}
$$

so we conclude that if $N \in \mathfrak{m}$ is such that $T(N, N, N)=4 N$, then $J N$ is an eigenvector of R_{N}. Applying now Proposition 1 we obtain the following:

Proposition 4. Let $p \in S p(n) / U(n)$ and choose a normal neighborhood U of p as in Proposition 1. Then for each geodesic sphere S in U with center at p, and each unit normal vector N to S such that $T(N, N, N)=4 N$, the shape operator A_{N} of S satisfies the property

$$
\begin{equation*}
A_{N} J N=f(N) J N \tag{P5}
\end{equation*}
$$

for some $f(N) \in \mathbb{R}$.

3. A characterization of the symmetric space $S p(n) / U(n)$

We can now state the main theorem:
Theorem 5. Let (M, g) be a non-flat, complete, simply connected Kähler manifold of dimension $n(n+1)$. Let T be a parallel tensor field of type $(1,3)$ on M satisfying properties (P1)-(P4). Suppose that each point $p \in M$ has a normal neighborhood U such that for each geodesic sphere S in U centered at p, and for each unit normal vector N to S with $T(N, N, N)=4 N$, the shape operator of S satisfies (P5). Then M is homothetic to the Riemannian symmetric space $S p(n) / U(n)$ or its non-compact dual.

For the proof of this theorem we need the following proposition whose proof is based on a series of linear algebra arguments, and is similar to the one given in [7] and [11]. However, it is useful to summarize its central points modified to our problem.

Proposition 6. Let V be a real vector space of dimension $n(n+1)$ with complex structure J and Hermitian inner product \langle,$\rangle . Let T$ be a tensor of type $(1,3)$ on V satisfying (P1)-(P4) with \langle,$\rangle in place of g$. Then there exists a linear isomorphism ϕ of V onto the real vector space $\mathrm{Sym}_{n} \mathbb{C}$ of all complex symmetric $n \times n$ matrices, which preserves inner products as well as the complex structures
J and i on V and $\operatorname{Sym}_{n} \mathbb{C}$ respectively. Furthermore, under this identification, $J X=i X, T(X, Y, Z)=X \bar{Y} Z+Z \bar{Y} X$, and $\langle X, X\rangle=\frac{1}{2} \operatorname{tr} X \bar{X}$.

Proof. (Sketch) The aim is to exhibit a vector space isomorphism

$$
\begin{equation*}
\phi: V \rightarrow \operatorname{Sym}_{n} \mathbb{C} \tag{3}
\end{equation*}
$$

by determining this between corresponding orthonormal bases in these spaces. It can been shown that there exists an orthonormal basis $\mathcal{A}=A \cup J A$ on V, such that $A=\left\{e_{j k}(1 \leq j<k \leq n), f_{i i}(1 \leq i \leq n)\right\}$ is an orthonormal subset of A, and $J A=\left\{J e_{j k}, J f_{i i}: e_{j k}, e_{i i} \in A\right\}$. The elements of the set A are gradually defined so that the action of the tensor T on these satisfies various orthogonality relations (cf. [7, p. 17]). Next we choose an orthonormal basis \mathcal{B} for $\operatorname{Sym}_{n} \mathbb{C}$ with respect to the inner product $\langle X, X\rangle^{\prime}=\frac{1}{2} \operatorname{tr} X \bar{X}$, consisting of the matrices $\mathcal{B}=\left\{e_{j k}^{\prime}=E_{j k}+E_{k j}, i e_{j k}^{\prime}(1 \leq j<k \leq n), f_{i i}^{\prime}=E_{i i}, i f_{i i}^{\prime}(1 \leq i \leq n)\right\}$, and define the isomorphism ϕ by

$$
\phi\left(e_{j k}\right)=e_{j k}^{\prime}, \phi\left(J e_{j k}\right)=i e_{j k}^{\prime}, \phi\left(f_{i i}\right)=f_{i i}^{\prime}, \phi\left(J f_{i i}\right)=i f_{i i}^{\prime}
$$

This isomorphism preserves inner products, as well as the complex structutes J and i on V and $\operatorname{Sym}_{n} \mathbb{C}$ respectively. Also, if we define a tensor T^{\prime} of type (1,3) on $\operatorname{Sym}_{n} \mathbb{C}$ by $T^{\prime}(X, Y, Z)=X \bar{Y} Z+Z \bar{Y} X$, then with respect to the basis \mathcal{B}, T^{\prime} satisfies properies (P1)-(P4) as well as the orthogonality relations satisfied by T. Furthermore, $\phi(T(X, Y, Z))=T^{\prime}(\phi(X), \phi(Y), \phi(Z))$ for all $X, Y, Z \in \mathcal{A}$, and this completes the proof.

The following lemmas are also needed for the proof of Theorem 5.
Let $D=\{X \in V: T(X, X, X)=4\langle X, X\rangle X\}$.
LEMMA 7. Let S be any tensor of type $(1,3)$ on V which satisfies the symmetry properties of the Riemannian curvature tensor including the first Bianchi identity. Suppose that S satisfies the relation

$$
\begin{equation*}
\langle S(J X, J Y) Z, W\rangle=\langle S(X, Y) Z, W\rangle \quad \text { for all } X, Y, Z, W \in V \tag{4}
\end{equation*}
$$

and that for each $X \in D$ and $Y \in V$ which is orthogonal to X, the relation $\langle S(X, J X) X, J Y\rangle=0$ holds. Then the "holomorhic sectional curvature" determined by S (i.e. $K(X)=\langle S(X, J X) X, J X\rangle)$ is constant on D.

Proof. We will show that $K(X)$ is constant for all unit vectors $X \in D$, by considering four cases.

Case 1 Let $Y \in D$ be a unit vector orthogonal to X such that $X+Y \in D$. Such vectors do exist, as by Proposition 3 we can write $X=\operatorname{diag}(x+i y, 0, \ldots, 0)$
$\left(x^{2}+y^{2}=2\right)$, and then take $Y=J X=\operatorname{diag}(-y+i x, 0, \ldots, 0)$. Then it is clear that $X-Y \in D$ and is orthogonal to $X+Y$, so by hypothesis we get

$$
\begin{equation*}
\langle S(X+Y, J(X+Y))(X+Y), J(X-Y)\rangle=0 \tag{5}
\end{equation*}
$$

By using condition (4) on S together with the symmetry properties we obtain that

$$
\langle S(X, Y) J Z, W\rangle=-\langle S(Z, J W) X, Y\rangle=\langle J S(X, Y) Z, W\rangle
$$

which implies that

$$
\begin{gathered}
\langle S(X, J X) Y, J X\rangle=\langle S(X, J X) J Y, X\rangle=\langle S(X, J X) X, J Y\rangle=0 \\
\langle S(X, J Y) X, J X\rangle=\langle S(X, J X) X, J Y\rangle=0 \\
\langle S(Y, J X) X, J X\rangle=\langle S(X, J X) X, J Y\rangle=0 \\
\langle S(X, J Y) Y, J Y\rangle=\langle S(Y, J Y) Y, J X\rangle=0 \\
\langle S(X, J Y) Y, J X\rangle=\langle S(Y, J X) X, J Y\rangle \\
\langle S(Y, J X) Y, J X\rangle=\langle S(J Y, X) J Y, X\rangle \\
\langle S(Y, J Y) X, J X\rangle=\langle S(X, J X) Y, J Y\rangle
\end{gathered}
$$

By expanding (5) and using the above identities we obtain that $K(X)=K(Y)$, i.e. K is constant for such Y 's.

Case 2 Let $Y \in D$ be any unit vector with $X+Y \in D$. Choose a unit vector $Z \in D$ orthogonal to X and Y so that $X+Z \in D$ and $Y+Z \in D$. Then from Case 1 we obtain that $K(X)=K(Z)=K(Y)$. For example, for X as before, take $Y=\operatorname{diag}(\alpha+i \beta, 0, \ldots, 0)$ (appropriatelly normalized), and a $Z=\operatorname{diag}(r+i s, 0, \ldots, 0)$ is found by solving the system $x r+y s=2=\alpha r+\beta s$ for r, s.

Case 3 Let $Y \in D$ be any unit vector orthogonal to X. For example, for X as in case 1 , we may write $Y=\operatorname{diag}(\alpha+i \beta, 0, \ldots, 0)$ with $x \alpha+y \beta=0$. Choose a $Z=\operatorname{diag}(r+i s, 0, \ldots, 0) \in D$ with $-y r+s x=0$. Then $X+Z \in D$, and by Case 2 we get that $K(X)=K(Z)$. On the other hand, Z is orthogonal to Y and $Y+Z \in D$, so by Case $1 K(Y)=K(Z)$.

Case 4 Let Y be any unit vector in D. By choosing a $Z \in D$ orthogonal to X and Y, then from Case 3 it follows that $K(X)=K(Y)$.

Lemma 8. Let S be a tensor of type $(1,3)$ on V which satisfies the symmetry properties of the Riemannian curvature tensor including the first Bianchi identity, as well as relation (4). Suppose that $S(X, J X) X=0$ for all $X \in D$, and $S(X, Y) T=0$ for all $X, Y \in V$. Then $S=0$ on V.

The proof of this lemma is presented in several of the references cited (e.g. [7], [6]). Finally we also need the following:

Lemma 9 ([4, pp. 261-262]). Let M_{1}, M_{2} be Riemannian symmetric spaces, and p_{1}, p_{2} be points in M_{1} and M_{2} respectively. If there is a linear isometry $\phi: T_{p_{1}} M_{1} \rightarrow T_{p_{2}} M_{2}$ that preserves curvatures, i.e. $\phi \circ R_{p}^{1}=R_{\phi(p)}^{2} \circ \phi$ for all $p \in T_{p_{1}} M_{1}$, then M_{1} and M_{2} are locally isometric.

Proof of Theorem 5. Let $v \in T_{p} M$ be a unit vector satisfying $T(v, v, v)=4 v$ and let N be the unit tangent vector field to a geodesic γ through p with initial vector v. Since T is parallel then $T(N, N, N)=4 N$ along γ, and from property (P5) $A_{N} J N=f J N$ along $\gamma \backslash\{p\}$. Now, if Y is a parallel vector field along γ normal to N, then $g(R(N, J N) N, J Y)=0$ on $\gamma \backslash\{p\}$, and hence at p by continuity. Indeed, we use property (P5), the relation $R(N, X) N=A_{N}^{2} X-\left(\nabla_{N} A_{N}\right) X$, and the Kähler condition for M, to compute:

$$
\begin{aligned}
& R(N, J N) N \\
& =A_{N}^{2} J N-\left(\nabla_{N} A_{N}\right) J N=A_{N}(f J N)-\left(\nabla_{N}\left(A_{N} J N\right)-A_{N} \nabla_{N} J N\right) \\
& =f^{2} J N-\left(\nabla_{N} f J N-A_{N} J \nabla_{N} N\right)=f^{2} J N-f^{\prime} J N-f \nabla_{N} J N \\
& =\left(f^{2}-f^{\prime}\right) J N .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
g(R(N, J N) N, J Y) & =g\left(\left(f^{2}-f^{\prime}\right) J N, J Y\right)=\left(f^{2}-f^{\prime}\right) g(J N, J Y) \\
& =\left(f^{2}-f^{\prime}\right) g(N, Y)=0
\end{aligned}
$$

Next, we view the tangent space $T_{p} M$ as the vector space V in Proposition 6. Then the tensor T satisfies (P 1)-(P 4) at p, and as shown before $\langle R(X, J X) X, J Y\rangle$ $=0$ for all $X \in D$ and Y orthogonal to X. Since property (4) in Lemma 7 is satisfied for $J X=i X$, we conclude that the holomorphic sectional curvature is constant at p for each unit vector $X \in D$, i.e. $R(X, J X) X=c J X$. Next we define the (1,3)-tensor

$$
S(X, Y) Z=R(X, Y) Z-\frac{c}{4}(-T(X, Y, Z)+T(Y, X, Z))
$$

where $R^{\prime}(X, Y) Z=-T(X, Y, Z)+T(Y, X, Z)$ is viewed by Proposition 6 as the curvature tensor of $S p(n) / U(n)$. We check that S satisfies the conditions of Lemma 8. Condition (4) is obviously satisfied. Also, for each $X \in D$

$$
\begin{aligned}
S(X, J X) X & =R(X, J X) X-\frac{c}{4}(-T(X, J X, X)+T(J X, X, X)) \\
& =c J X-\frac{c}{4}(2 J T(X, X, X))=c J X-c J X=0
\end{aligned}
$$

and

$$
S(X, Y) T=R(X, Y) T-\frac{c}{4} R^{\prime}(X, Y) T=0
$$

Both terms above are zero; the first because T is parallel on M, and the second by using the algebraic properties of T on $S p(n) / U(n)$. Hence we conclude that

$$
R(X, Y) Z=\frac{c}{4} R^{\prime}(X, Y) Z \quad \text { on } \quad T_{p} M
$$

Note that the left-hand side above is the curvature tensor of M, and the righthand side is the curvature tensor of $S p(n) / U(n)$. Since p is an arbitray point in M we obtain that

$$
\begin{equation*}
R=F R^{\prime} \quad \text { on } M \tag{6}
\end{equation*}
$$

for some function F.
Since $S p(n) / U(n)$ is an Einstein manifold (6) implies that the Ricci curvature Ric of M is given by Ric $=f g$ for some function f. Hence M is also an Einstein manifold (cf. [8, p. 96]). Therefore we obtain that

$$
R=\frac{c}{4} R^{\prime} \quad \text { on } M
$$

and $\nabla R=\frac{c}{4} \nabla R^{\prime}=0$, so (M, g) is a Riemannian locally symmetric space.
Since M is non-flat we assume that $c>0$. By Proposition 6 there exists a linear isomorphism between the tangent spaces at any two points of M and $S p(n) / U(n)$ that preserves inner products and curvature tensors. Hence, by Lemma $9 M$ and $S p(n) / U(n)$ are locally isometric. Since M is complete and simply connected, M is globally isometric to $S p(n) / U(n)$. If $c<0$ we have the corresponding result for the non-compact dual of $S p(n) / U(n)$.

It remains to obtain the equation $R(X, Y) Z=-T(X, Y, Z)+T(Y, X, Z)$ for a metric \bar{g} homothetic to g. Define $\bar{g}=\left|\frac{c}{4}\right| g$ and $\bar{T}(X, Y, Z)=\left|\frac{c}{4}\right| T(X, Y, Z)$ on M. Then (P1)-(P5) are satisfied by \bar{g} and \bar{T}, so the conditions of Theorem 5 are satisfied by these. Since the curvature tensor of \bar{g} is unchanged by homotheties, we have that $R(X, Y) Z=\frac{c}{|c|}(-\bar{T}(X, Y, Z)+\bar{T}(X, Y, Z))$ for all vector fields X, Y, Z on M, and the proof has been completed.

4. Remarks about the shape operator of geodesic spheres in a symmetric space

As shown in Proposition 4 an important role in the characterization described before was played by the shape operator of geodesic spheres in the symmetric space $S p(n) / U(n)$. This operator has been used in more general studies (cf. [13], [14]). We will first describe the eigenspaces of the map R_{N}. Let $M=G / K$ be a symmetric space with symmetry θ. For simplicity we assume that M is of noncompact type. Considering the eigenspaces of θ with respect to the eigenvalues

1 and -1 we obtain the direct sum $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{m}$, where \mathfrak{k} is the Lie algebra of the subgroup K, and \mathfrak{m}, as usual, is identified with the tangent space of M at a fixed point $o \in M$. We fix a maximal Abelian subspace \mathfrak{h} in \mathfrak{m}, and let α be a linear form on \mathfrak{h}. Define

$$
\mathfrak{g}_{\alpha}=\{X \in \mathfrak{g}:[H, X]=\alpha(H) X \text { for all } H \in \mathfrak{h}\}
$$

A vector $\alpha \neq 0$ in the dual space \mathfrak{h}^{*} is called a restricted root with respect to \mathfrak{h} if $\mathfrak{g}_{\alpha} \neq 0$. Let R be the set of all restricted roots. It is known that

$$
\mathfrak{g}=\mathfrak{g}_{0} \oplus \sum_{\alpha \in R} \mathfrak{g}_{\alpha}
$$

is a decomposition of the real semisimple Lie algebra \mathfrak{g}, where $\mathfrak{g}_{0}=\mathfrak{k}_{0} \oplus \mathfrak{h}$, and $\mathfrak{k}_{0}=\mathfrak{g}_{0} \cap \mathfrak{k}$. Concerning the decomposition above, for any $\alpha, \beta \in R \cup\{0\}$ we have that $\theta\left(\mathfrak{g}_{\alpha}\right)=\mathfrak{g}_{-\alpha}$ and $\left[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}\right] \subset \mathfrak{g}_{\alpha+\beta}$. We fix an element $\alpha \in R$ and let $\operatorname{dim} \mathfrak{g}_{\alpha}=m_{\alpha}$. Take a basis $\left\{X_{1}^{\alpha}, \ldots, X_{m_{\alpha}}^{\alpha}\right\}$ in \mathfrak{g}_{α}, and consider the subspaces

$$
\mathfrak{k}_{\alpha}=\sum_{i=1}^{m_{\alpha}} \mathbb{R}\left(X_{i}^{\alpha}+\theta\left(X_{i}^{\alpha}\right)\right), \quad \mathfrak{m}_{\alpha}=\sum_{i=1}^{m_{\alpha}} \mathbb{R}\left(X_{i}^{\alpha}-\theta\left(X_{i}^{\alpha}\right)\right) .
$$

Obviously $\mathfrak{k}_{\alpha}=\mathfrak{k}_{-\alpha}$ and $\mathfrak{m}_{\alpha}=\mathfrak{m}_{-\alpha}$. Let R^{+}be the set of positive roots with respect to an arbitrary lexicographic ordering in \mathfrak{h}. Using the above relations we obtain the following decompositions of \mathfrak{k} and \mathfrak{m} with respect to the Killing form of \mathfrak{g} :

$$
\mathfrak{k}=\mathfrak{h} \oplus \sum_{\alpha \in R^{+}} \mathfrak{k}_{\alpha}, \quad \mathfrak{m}=\mathfrak{h} \oplus \sum_{\alpha \in R^{+}} \mathfrak{m}_{\alpha} .
$$

Now take a unit vector N in \mathfrak{h} such that $\alpha(N)^{2}$ are different for each $\alpha \in R^{+} \cup\{0\}$. We have the following:

Proposition 10. The eigenspaces of the self-adjoint map $R_{N}: \mathfrak{m} \rightarrow \mathfrak{m}$ given by $R_{N}(X)=R(N, X) N$ are \mathfrak{m}_{α}, with corresponding eigenvalues $\alpha(N)^{2}(\alpha \in$ $\left.R^{+} \cup\{0\}\right)$.

Proof. Without loss of generality let $X=X^{\alpha}-\theta\left(X^{\alpha}\right) \in \mathfrak{m}_{\alpha}$. We compute:

$$
\begin{aligned}
R_{N}(X) & =-[[N, X], N]=-\left[\left[N, X^{\alpha}-\theta\left(X^{\alpha}\right)\right], N\right] \\
& =-\left[\left[N, X^{\alpha}\right], N\right]+\left[\left[N, \theta\left(X^{\alpha}\right)\right], N\right] \\
& =-\left[\alpha(N) X^{\alpha}, N\right]+\left[\alpha(N) \theta\left(X^{\alpha}\right), N\right] \\
& =\alpha(N)^{2} X^{\alpha}-\alpha(N)^{2} \theta\left(X^{\alpha}\right) \\
& =\alpha(N)^{2}\left(X^{\alpha}-\theta\left(X^{\alpha}\right)\right)=\alpha(N)^{2} X .
\end{aligned}
$$

As a consequence of this proposition we obtain the following result which is a generalization of Proposition 4 to any symmetric space of non-compact type.

Proposition 11. Let $M=G / K$ be a symmetric space of non-compact type and let U be a normal neighborhood of a point $o \in M$ as in Proposition 1. Then for each geodesic sphere S in U with center at o, and each unit vector N in \mathfrak{h} such that $\alpha(N)^{2}$ are different for each $\alpha \in R^{+} \cup\{0\}$, the shape operator A_{N} of S satisfies the property

$$
A_{N}\left(\mathfrak{m}_{\alpha}\right)=f(N) \mathfrak{m}_{\alpha}
$$

for some $f(N) \in \mathbb{R}$.
It is unclear at this point, and worth of further investigation, what would be an analogue of the condition $T(N, N, N)=k N(k>0)$, and the effect of this on the eigenspaces of the shape operator A_{N}.

References

[1] D. Blair and A. J. Ledger, A characterization of oriented Grassmann manifolds, Rocky Mountain J. Math., 14 (3) (1984), 573-584.
[2] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New York, 1978.
[3] L-K Hua, On the theory of automorphic functions of a matrix variable I - Geometrical basis, Amer. J. Math., 66 (3) (1944), 470-488.
[4] S. Kobayashi, K. Nomizu: Foundation of Differential Geometry - Vol. I, Wiley (Interscience), New York, 1969.
[5] A. J. Ledger, A characterization of complex Grassmann manifolds, Indian J. Pure Appl. Math., 15 (1) (1984), 99-1984.
[6] A. J. Ledger, Geodesic spheres on Grassmann manifolds, Yokohama Math. J., 34 (1986), 59-71.
[7] A. J. Ledger and A. M. Shahin, The symmetric space $S O(2 n) / U(n)$, Yokohama Math. J., 37 (1989), 5-23.
[8] B. O'Neil, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1983.
[9] B. J. Papantoniou, Jacobi fields geodesic spheres and second fundamental form of the rank two symmetric space $M=S O(P+2) / S O(P) \times S O(2)$, Tensor, N. S., 41 (1984), 27-34.
[10] B. J. Papantoniou, An investigation of a tensor field on the Grassmannian $S O(p+$ 2) $/ S O(p) \times S O(2)$, Indian J. Pure Appl. Math., 16 (10) (1985), 1104-1116.
[11] P. J. Papantoniou, A characterization of the symmetric space $S U(n) / S O(n)$ by geodesic spheres, Linear Alg. and its Appl., 136 (1990), 133-164.
[12] L. Vanhecke and T. J. Wilmore, Jacobi fields and geodesic spheres, Proc. Roy. Soc. Edinburgh, 82A (1979), 233-240.
[13] L. Verhóczki, Special isoparametric orbits in Riemannian symmetric spaces, Geom. Dedic., 55 (1995), 305-317.
[14] L. Verhóczki, Shape operators of orbits of isotropy subgroups in Riemannian symmetric spaces of the compact type, Beiträge zur Algebra und Geometrie, 36 (2) (1995), 155-170.

Department of Mathematics, University of Patras, GR-26500 Rion,
Greece
E-mail address: arvanito@math.upatras.gr
bipapant@math.upatras.gr

[^0]: 2000 Mathematics Subject Classification: Primary 53C35, 53C17, 53C40; Secondary 53C30
 Key words and phrases: Symmetric spaces, homogeneous spaces, geodesic spheres
 The first author was supported in part by the C. Carathéodory Grant \#2461/2000, University of Patras.

