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Abstract. We characterize the symmetric space M = Sp(n)/U(n) by using the
shape operator of small geodesic spheres in M, and a certain tensor field that
satisfies various algebraic properties. We also give a partial generalization to any
isotropy irreducible symmetric space.

1. Introduction

This work is a contribution to the problem of characterizing the isotropy
irreducible symmetric spaces of classical type and their non-compact duals by
small geodesic spheres. Historically, the problem was motivated by L. Vanhecke
and T. J. Wilmore in who characterized spaces of constant curvature and
spaces of constant holomorphic curvature. The real oriented Grassmann mani-
folds SO(p+q)/SO(p) x SO(q) were considered later on by D. E. Blair and A. J.
Ledger in 1], and B. J. Papantoniou in [9]. The complex Grassmann manifolds
SU(p + q)/S(U(p) x U(q)) were studied by A. J. Ledger in [5], who later on
gave a unified treatment of all Grassmann manifolds including the quaternionic
case Sp(p + q)/Sp(p) x Sp(q) ([6]). The symmetric space S0O(2n)/U(n) was
characterized by A. J. Ledger and A. M. Shahin in [7], and in the sequel B. J.
Papantoniou characterized the symmetric space SU(n)/SO(n) in [11]. The cases
left to be characterized are the symmetric spaces Sp(n)/U(n), SU(2n)/Sp(n),
and the ones determined by various exceptional Lie groups.

The aim of this work is firstly, to give a characterization of the symmetric
space Sp(n)/U(n), and secondly to highlight a few key points which can be
generalized for any symmetric space.

All the characterizations mentioned before used a property of geodesic spheres
in Riemannian locally symmetric spaces. More specifically, let M be a Rieman-
nian manifold of dimension at least three, S, be a geodesic sphere with center a
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point p € M and radius r contained in a normal neighborhood U of p, and let
N be a unit vector field on U \ {p} tangent to a geodesic v from p. Then for
any vector field X on U \ {p}, we have that on v the shape operator Ay of the
geodesic sphere S, and the curvature tensor R of M are related by

R(N,X)N = A3 X — (VNAN)X.

The left-hand side in the above equation is known as the curvature endomorphism
Ry : T,M — T,M given by Ry(X) = R(N,X)N. This is a self-adjoint map
and its restriction to the hyperplane orthogonal to N is referred to as tidal force
operator (cf. [8, p. 219]) with special significance in general relativity. Now, a
fundamental consequence of the previous relation is that if M is a Riemannian
locally symmetric space the following well known result holds (e.g. [12], [6]):

PROPOSITION 1. Let p be a point in a Riemannian locally symmetric space
M of dimension at least 3. Then p has a normal neighborhood U such that for
each unit vector N € T,M and corresponding geodesic v through p, the parallel
translation of an eigenspace of the linear map Ry along v is contained in an
eigenspace of the shape operator Ay, for each geodesic sphere in U about p.

Furthermore, these characterizations used certain properties of a parallel ten-
sor field T of type (1,3), and additionally in some cases of another parallel tensor
field S of type (1,2), defined as an appropriate portion of the curvature tensor R
of M. The tensor field T plays a significant role in the geometry of Grassmann
manifolds, somewhat analogous to the underlying almost complex structure on
a Kahler manifold (cf. (P3)).

We will begin by presenting various properties of the symmetric space M =
Sp(n)/U(n), and then we will express the curvature tensor of M in terms of the
(1,3) tensor field T satisfying various properties. Then we will select vectors
N as in Proposition 1 that satisfy an extra geometrical condition, to give an
expression of the shape operator Ay of geodesic spheres in M. It turns out that
these properties characterize the symmetric space M = Sp(n)/U(n).

The authors would like to express their thanks to the referee for useful com-
ments and suggestions.

2. Properties of the symmetric space Sp(n)/U(n)

Le M = G/K be the symmetric space Sp(n)/U(n). The imbedding of U(n)
into Sp(n) is given by A+iB — (——AB
Let g = sp(n) and & = u(n) be the Lie algebras of Sp(n) and U(n) respectively,
and let g be the G-invariant metric on M determined by the Ad®/E jnvariant

B .
A) , where A, B are n X n real matrices.
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inner product on g given by

(X,Y) = —;I XY (X,Y €g). (1)

Here Ad®/¥ denotes the isotropy representation of K in the tangent space T, M
(p € M). Since M is an isotropy irreducible space, g is an Einstein metric,
that is, the Ricci curvature of M is a multiple of g. Consider the reductive
decomposition g = ¥ ® m’, with respect to this inner product. Then m’ consists
of all matrices of the form

(i (X1 X

: X;3,Xs real n X n symmetric matrices
X2 _ Xl) 1 2 Yy } 3

which from now on it will be identified with the set

m={X = X X : X1, X3 real n X n symmetric matrices}.
X —Xjy,

The tangent space at a fixed point 0 = eK can be identified with m, and its
dimension is n(n + 1). A G-invariant complex structure is determined by the
})52 ;;) Also, since
(JX,JY) = (X,Y), the metric g is Hermitian with respect to J, and furthermore
it is a G-invariant Kahler metric on M. The curvature tensor at o € M is given
by ‘

Ad®/¥_invariant operator J on m given by JX = (

R(X,Y)Z =~[[X,Y], 2] = (YXZ + ZXY) — (XY Z + ZY X).

We note that for the non-compact dual the curvature tensor is the negative of
the above expression. Let T be the (1, 3) tensor at o defined by

T(X,Y,Z)=XYZ+2YX (X,Y,Zecm).

This is an Ad®/%_invariant tensor on a symmetric space, hence it is a parallel
tensor field on M (cf. [8, p. 326]). Consequently, R can be expressed in terms
of T as

R(X,Y)Z =-T(X,Y,2)+T(Y, X, 2).
For each X,Y,Z € m we define the following endomorphisms on m:

Txy :m—-m, Txy(Z)=T(X,Y,Z)
T¥ :m—-m, T¥(Z)=T(X, 2Y).
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PROPOSITION 2. The tensor T defined above satisfies the following properties:

T(X,Y,Z) =T(Z,Y,X) (P1)
JT(X,Y,Z) =T(JX,Y,Z) = ~T(X, JY, Z) (P2)
(3) JTxxg=0, (i) JTxxT =0 (P3)

(5) tTxxx = 4(n+ 1)g(X, X) (P4)

(i6) tr(T%)® = 49(T¥ X, X) + 16(g(X, X))2.

Proof. Properties (P1) and (P2) can be easily verified. Concerning properties
(P3), the (1,1) tensor JTxx (X € m) is defined by JTxxY = J(TxxY), and
is viewed as a derivation on the tensor algebra at o. Conditions (i) and (ii)
are understood as generalizations of the properties Vxg = 0 on a Riemannian
manifold, and VxJ = 0 on a Kéhler manifold. Next we prove properties (P4).

We introduce an orthonormal basis for m. Let E;; be the n x n matrix with 1
in the (7, j)-position and zeros elsewhere, and let e;; = Eij+Ej; 1<i<j<n).
Define matrices

e;; 0 .
eij=(6'7 __e,;J) (1<i<j<n)

and
E;; 0 : .
T < < 3
f‘l‘l (0 "E1,1,> (1—2—”“)

Then the set {e;j, Jeij, V2fii, V2J fis} constitutes an orthonormal basis of m
with respect to the inner product (X,Y) = 1 tr XY. We use property (P2) and
the relation TxxZ = T(X, X, Z) = X?Z + ZX2 to compute:

trTxx = ) {(Txxeij,ei5) + (Txx Jeij, Jeis)}

1<

+ZZ{ (Tx x fis, fis) + (Txx J fiiy J fis)}
= ZZ TXXe,J,eU +4Z<TXszufw>

z<J

2 Ztr(X €;j + ezJX )6',,_7 + Ztr(Xzfzz + qu2)fu

i<j

= ZtrX2e +2ZtrX2fu

i<j

=tr(X2 " ed;) + 2tx( X2Z

1<j
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* \2
Since €Z; = ((eij) 0 ) and (e};)® = (Ei; + Ej)? = E;; + E;;, we obtain

0 (‘%)2
that
Eii + Ej; 0
2 72 73 _
Se =3 ig,) ==
i<y i<j 0 Eii + Bj;
and
EZ 0 E; 0
Y- (5 m)=-2(5 5) =
i i ? i
Thus

trTxx = (n—1)tr X%+ 2tr X% = (n 4 1) tr X2 = 4(n + 1)g(X, X),

and property (P4) (i) has been proven. For (P4) (ii), we use and the relation
Tx Z=T(X,Z,X) =2XZX to compute:

tr(T%)? = Z{<(T§)2%’ eij) + ((TX )2 Jes;, Jeiz)}

+ 2 (T2 fui, fu) + (TE)2T fus, T i)}
= 22((T§)2e,~j, eij) + 4Z<(T§)2fii, fii)

i<j i
=2 tr(X2e;)? + 4 (X% f)2.
i<j g
v _ (X1 X2
Now if X = (X2 -X1) € m, then

xto( XP+X3 XX - XXy) _ [ A B)
T\ XeXi - XX, X2+ X2 ~B A)°

where A = (a;;) is a symmetric (a;; = a;;) matrix, and B = (bs;) is a skew-
¢ D ) where
D -C)’

C is the n x n matrix with ¢ and j columns the vectors (@1jy-..,an;) and
(@14, ., an;)" respectively, and zeros elsewhere. The matrix D has i and J
columns the vectors (—byj,...,—b,;)* and (=b14y. .., —bn;)? respectively, and
g _I;;’)’ where E is the n x n

matrix with i-column (ay;,...,a,;)? and zeros elsewhere, and F is the n x n

Symmetric (bii = O’bij - — ji) matrix. Then Xzeij = (

zeros elsewhere. We also find that X2 fi = (
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matrix with ¢ column (—by;,...,—bpi)" and zeros elsewhere. Thus, we obtain
that

tl‘(X261;j)2 = 4((13J + aiiaj; + bfj) and
tr(X2fu)2 = 2(au + b i) = 2an
We also find that the following relations hold:

trX2=2trA= ZZaii

(tr A)? Z aii)? = Z aj; + Z (2ai:a;;)

1<

tr A2 = Zan+z2au, tr B® = 2Zb,~J

i<j i<j
trX4 =tr X2X? = 2tr(A% - B?).

Consequently,
D otr(X%ei;)? =2 (2a; + 2aua55 + 207;) + Z af; — af; + af; — afy)
i<j i<j
= 2(tr A2 — tr B2 + (tr A)% — 22 ai;
=2tr(A% — B?) +2(tr A)* —4 ) _a};
i
1
=tr X* + 5 (tr X?%)? -2 Z tr(X2fi;)?
and finally,

tr(T%)? = 2tr X* + (tr X2)2 = 49(T¥ X, X) + 16(9(X, X))®.. O

Next, we identify m = m’ with the vector space Sym,, C of all n X n complex
symmetric matrices by means of the identification

X1 X5

m3X=<X2 _X,

) — X = X; +iX, € Sym,, C.
Under these correspondences the inner product (X,Y) = %tr XY corresponds

to the inner product (X' , 17)' = -;-Re tr XY on Sym,, C, and the tensor T corre-
sponds to the tensor T defined by

"<j|
\N/l
Il

Sy
=
N
+

T(X,
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also denoted by 7. The complex structure J corresponds to JX = iX = — X, +
1X1 also denoted by J. Then the curvature tensor is expressed on Sym,, C by

RX,YV)Z =—(XVZ+2YX)+ (YXZ + ZXV)
-T(X,Y,2)+T(Y,X, Z).

We will now make use of unit vectors N in m that satisfy a relation of the form
T(X,X,X) = kX (k> 0). Geometrically, these vectors are realized as critical
points of the function |T'(X, X, X)|? (cf. [10]). Their existence is guaranteed by
the following proposition.

PROPOSITION 3. Let N be a unit vector in m & Sym,, C. Then T(N, N N)=
4N if and only if the rank of N is 1.

Proof. Let T(N,N,N) = 4N. Then 2NNN = 4N, thus NNN = 2N. We set
NN = A. Then A2 = NNNN = 2NN = 24, and since N is symmetric,

A = (NN)'=N'N' = NN = 4,

ie. Aisa Hermltlan matrix. Hence there exists an n X n unitary matrix P
such that PAP = D, where D = dlag(dl,dg, ,dn) is real diagonal with
D? = PAP'PAP' = pA?P - 2PAP' = 2D, and trD = trA = tr NN =
Retr NN = 2. Since diag(d?,d3,--- ,d2) = diag(2dy,2ds, - - - , 2d,, ), each of the
di’s must be 0 or 2, and as tr D = 2 we finally obtain that D = diag(2,0,...,0).
We now set B = PN. Then

DB = PAP'PN = PAN = PNNN = 2PN = 2B,

therefore the matrix B has all entries zeros except the first row, so its rank is 1
Therefore, 1 =tk B =1k PN =1k N (as PP’ = I).

For the converse, assume that rk N = 1. Then there exists an n X n unitary
matrix @ such that

QNQ* = diag(a,0,...,0) (aeC) (2)

(cf. [3] .) Since N 1s a unit matrix we have that |a|?2 = 2.
We finally obtain that
T(N,N,N)
=2NNN =2Q7" diag(a,0, - - ,0) diag(a,0, - - , 0) diag(a, 0, - - - ,0)(@%) 71
= 2Q7" diag(alal®,0,---,0)(Q") ™! = 4Q diag(a,0, - ,0)(Q*)~" = 4N.
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We now choose such an N € m and recall the self-adjoint linear map Ry :
m — m given by Ry(X) = R(N,X)N. Then

R(N,JN)N = —T(N,JN,N) + T(JN, N, N)
= JT(N,N,N) + JT(N, N, N)
=2JT(N,N,N) = 8JN,

so we conclude that if N € m is such that T(N,N,N) = 4N, then JN is an
eigenvector of Ry. Applying now Proposition 1 we obtain the following:

PROPOSITION 4. Let p € Sp(n)/U(n) and choose a normal neighborhood U
of p as in Proposition 1. Then for each geodesic sphere S in U with center at
D, and each unit normal vector N to S such that T(N,N,N) = 4N, the shape
operator An of S satisfies the property

AnJN = f(N)JN (P5)

for some f(N) € R.

3. A characterization of the symmetric space Sp(n)/U(n)
We can now state the main theorem:

THEOREM 5. Let (M,g) be a non-flat, complete, simply connected Kdihler
manifold of dimension n(n+1). Let T be a parallel tensor field of type (1,3) on
M satisfying properties (P1)-(P4). Suppose that each point p € M has a normal
neighborhood U such that for each geodesic sphere S in U centered at p, and
for each unit normal vector N to S with T(N,N,N) = 4N, the shape operator
of S satisfies (P5). Then M is homothetic to the Riemannian symmetric space
Sp(n)/U(n) or its non-compact dual.

For the proof of this theorem we need the following proposition whose proof
is based on a series of linear algebra arguments, and is similar to the one given
in [7] and [11]. However, it is useful to summarize its central points modified to
our problem. '

PROPOSITION 6. Let V be a real vector space of dimension n(n + 1) with
complez structure J and Hermitian inner product ( , ). Let T be a tensor of type
(1,3) on V satisfying (P1)-(P4) with , ) in place of g. Then there exists a linear
isomorphism ¢ of V' onto the real vector space Sym,, C of all complex symmetric
n X n matrices, which preserves inner products as well as the complez structures
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J and i on V and Sym,, C respectively. Furthermore, under this identification,
JX =iX, T(X,Y,2)=XYZ+ ZY X, and (X, X) = Jtr X X.

Proof. (Sketch) The aim is to exhibit a vector space isomorphism
¢:V — Sym, C (3)

by determining this between corresponding orthonormal bases in these spaces.
It can been shown that there exists an orthonormal basis A = AU JA on V,
such that A = {e;x (1 < j <k <n), fi; (1 <i < n)}is an orthonormal subset of
A, and JA = {Jej, J fii : €jk, eii € A}. The elements of the set A are gradually
defined so that the action of the tensor T" on these satisfies various orthogonality
relations (cf. [7, p. 17]). Next we choose an orthonormal basis B for Sym,, C
with respect to the inner product (X, X)' = %tr XX, consisting of the matrices
B = {e;-k = Fjk +Ekj,i€;k(1 <j<k<n)fl.=E;if, (1 <i< n)}, and
define the isomorphism ¢ by

d(ejk) = €, d(Jejn) = i€y, &(fi) = fis, S(Jfii) =ifs;.

This isomorphism preserves inner products, as well as the complex structutes J
and ¢ on V and Sym,, C respectively. Also, if we define a tensor 7" of type (1, 3)
on Sym,, C by T(X,Y,Z) = XY Z + ZY X, then with respect to the basis B,
T’ satisfies properies (P1)-(P4) as well as the orthogonality relations satisfied by
T. Furthermore, ¢(T(X,Y,Z)) = T"(¢(X), d(Y), #(Z)) for all X,Y,Z € A, and
this completes the proof. O |

The following lemmas are also needed for the proof of Theorem 5.
Let D= {X € V: T(X, X, X) = 4(X, X) X}.

LEMMA 7. Let S be any tensor of type (1,3) on V which satisfies the sym-
metry properties of the Riemannian curvature tensor including the first Bianchi
identity. Suppose that S satisfies the relation

(S(UX,IY)Z,W) = (S(X,Y)Z,W) foral X,Y,ZW eV,  (4)

and that for each X € D and Y € V which is orthogonal to X, the relation
(S(X,JX)X,JY) =0 holds. Then the “holomorhic sectional curvature” deter-
mined by S (i.e. K(X) = (S(X,JX)X,JX)) is constant on D.

Proof. We will show that K(X) is constant for all unit vectors X € D, by

considering four cases.

Case 1 Let Y € D be a unit vector orthogonal to X such that X +Y € D.
Such vectors do exist, as by Proposition 3 we can write X = diag(z+1iy,0,...,0)
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(2% + y? = 2), and then take Y = JX = diag(—y +4z,0,...,0). Then it is clear
that X —Y € D and is orthogonal to X + Y, so by hypothesis we get

(S(X+Y,J(X +Y))(X +Y),J(X —Y)) =0. (5)

By using condition (4) on S together with the symmetry properties we obtain
that

which implies that

(S(X,JX)Y,JX) = (S(X, JX)JY, X) = (S(X,JX)X,JY) =0
(S(X,JY)X,JX) = (S(X,JX)X,JY) =0
(S(Y, JX)X,JX) = (S(X,JX)X,JY) =0
(S(X,JY)Y,JY) = (S(Y,JY)Y,JX) =0
(S(X,JY)Y, JX) = (S(Y,JX)X,JY)
(S(Y, JX)Y, JX) = (S(JY, X)JY, X)
(S(Y,JY)X, JX) = (S(X, JX)Y,JY).

By expanding (5) and using the above identities we obtain that K(X) = K(Y),
i.e. K is constant for such Y'’s.

Case 2 Let Y € D be any unit vector with X +Y € D. Choose a unit
vector Z € D orthogonal to X and Y sothat X +Z € Dand Y + Z € D.
Then from Case 1 we obtain that K(X) = K(Z) = K(Y). For example, for
X as before, take Y = diag(a + i3,0,...,0) (appropriatelly normalized), and a
Z = diag(r +1s,0,...,0) is found by solving the system zr + ys =2 = ar + 3s
for r, s.

Case 3 Let Y € D be any unit vector orthogonal to X. For example, for X
as in case 1, we may write Y = diag(a +13,0,...,0) with za + y3 = 0. Choose
a Z = diag(r +is,0,...,0) € D with —yr + sz = 0. Then X + Z € D, and by
Case 2 we get that K(X) = K(Z). On the other hand, Z is orthogonal to Y
and Y +Z € D, so by Case 1 K(Y) = K(Z).

Case 4 Let Y be any unit vector in D. By choosing a Z € D orthogonal to
X and Y, then from Case 3 it follows that K(X) = K(Y). O

LEMMA 8. Let S be a tensor of type (1,3) on V which satisfies the symmetry
properties of the Riemannian curvature tensor including the first Bianchi iden-
tity, as well as relation (4). Suppose that S(X,JX)X =0 for all X € D, and
S(X,Y)T=0forall X,Y €V. Then S=0o0nV.

The proof of this lemma is presented in several of the references cited (e.g.
[7], [6]). Finally we also need the following:
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LEMMA 9 ([4, pp. 261-262]). Let M;, My be Riemannian symmetric spaces,
and py1,p2 be points in My and My respectively. If there is a linear isometry
¢ : Tp, My — T,, M, that preserves curvatures, i.e. ¢ o R}, = Ri(p) o ¢ for all
p € Ty, My, then My and Ms are locally isometric.

Proof of Theorem 5. Let v € T,M be a unit vector satisfying T'(v,v,v) = 4v and
let N be the unit tangent vector field to a geodesic y through p with initial vector
v. Since T is parallel then T(N, N, N) = 4N along v, and from property (P5)
ANJN = fJN along v\ {p}. Now, if Y is a parallel vector field along ~ normal
to N, then g(R(N,JN)N,JY) = 0 on v\ {p}, and hence at p by continuity.
Indeed, we use property (P5), the relation R(N, X)N = A% X — (VyApN)X, and
the Kahler condition for M, to compute:

R(N,JN)N

= AN JN — (VNAN)IN = AN(fJN) = (Vn(ANJIN) — ANVNJIN)

= f2JN — (VnfJN — ANJVNN) = f2JN — f'JN — fVYNJIN

= (f~ f)JN.
Therefore,

g(R(N, JN)N,JY) = g((f* — £)IN, JY) = (f* — f)g(JN, JY)
= (2~ )9V, Y) =o0.

Next, we view the tangent space T, M as the vector space V in Proposition 6.
Then the tensor T satisfies (P1)-(P4) at p, and as shown before (R(X, JX)X, JY)
= 0 for all X € D and Y orthogonal to X. Since property (4) in Lemma 7 is
satisfied for JX = iX, we conclude that the holomorphic sectional curvature is
constant at p for each unit vector X € D, i.e. R(X,JX)X = cJX. Next we
define the (1, 3)-tensor

S(X,Y)Z = R(X,Y)Z - £(-T(X,Y,2) + T(Y, X, 2)),

where R'(X,Y)Z = -T(X,Y,2) +T(Y, X, Z) is viewed by Proposition 6 as the
curvature tensor of Sp(n)/U(n). We check that S satisfies the conditions of
Lemma 8. Condition (4) is obviously satisfied. Also, for each X € D

S(X,JX)X = R(X,JX)X — 2(—T(X, JX, X) +T(JX, X, X))
=cJX - §(2JT(X, X, X)) =cJX —cJX =0,

and

S(X,Y)T = R(X,Y)T — ER’(X, Y)T =0
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Both terms above are zero; the first because T is parallel on M, and the second
by using the algebraic properties of T on Sp(n)/U(n). Hence we conclude that

R(X,Y)Z = ER’(X, Y)Z  on T,M.

Note that the left-hand side above is the curvature tensor of M, and the right-
hand side is the curvature tensor of Sp(n)/U(n). Since p is an arbitray point in
M we obtain that

R=FR' on M (6)

for some function F.

Since Sp(n)/U(n) is an Einstein manifold (6) implies that the Ricci curvature
Ric of M is given by Ric = fg for some function f. Hence M is also an Einstein
manifold (cf. [8, p. 96]). Therefore we obtain that

R= ER’» on M,

and VR = £VR' =0, so (M, g) is a Riemannian locally symmetric space.

Since M is non-flat we assume that ¢ > 0. By [Proposition 6| there exists
a linear isomorphism between the tangent spaces at any two points of M and
Sp(n)/U(n) that preserves inner products and curvature tensors. Hence, by
M and Sp(n)/U(n) are locally isometric. Since M is complete and
simply connected, M is globally isometric to Sp(n)/U(n). If ¢ < 0 we have the
corresponding result for the non-compact dual of Sp(n)/U(n). o

It remains to obtain the equation R(X,Y)Z = —-T(X,Y,Z) +T(Y, X, Z) for
a metric g homothetic to g. Define g = |§|g and T(X,Y, Z) = |£|T(X,Y, Z) on
M. Then (P1)-(P5) are satisfied by g and T, so the conditions of are
satisfied by these. Since the curvature tensor of g is unchanged by homotheties,
we have that R(X,Y)Z = 5(-T(X,Y,Z2) + T(X,Y, Z)) for all vector fields
X,Y,Z on M, and the proof has been completed. [

4. Remarks about the shape operator of geodesic spheres in a sym-
metric space ' '

As shown in [Proposition 4 an important role in the characterization described
before was played by the shape operator of geodesic spheres in the symmetric
space Sp(n)/U(n). This operator has been used in more general studies (cf. [13],
[14]). We will first describe the eigenspaces of the map Ry. Let M = G /K be a
symmetric space with symmetry 6. For simplicity we assume that M is of non-
compact type. Considering the eigenspaces of § with respect to the eigenvalues
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1 and —1 we obtain the direct sum g = & ® m, where ¢ is the Lie algebra of the
subgroup K, and m, as usual, is identified with the tangent space of M at a fixed
point 0 € M. We fix a maximal Abelian subspace b in m, and let a be a linear
form on b. Define

8o ={X €g:[H X]=a(H)X for all H € p}.

A vector a # 0 in the dual space h* is called a restricted root with respect to b
if go # 0. Let R be the set of all restricted roots. It is known that

8=009 ) fa

is a decomposition of the real semisimple Lie algebra g, where go = € @ b, and
8 = go N &. Concerning the decomposition above, for any a,3 € R U {0} we
have that 6(g,) = g_q and [ga,gs] C ga+8. We fix an element o € R and let
dim g, = m,. Take a basis {X¢,... , X5 _}in go, and consider the subspaces

b = %R(Xf‘ +0(X7)), ma= %R(X? - 0(X7)).
i=1

i=1

Obviously ¢, = &_, and mq = m_,. Let R be the set of positive roots with
respect to an arbitrary lexicographic ordering in h. Using the above relations we
obtain the following decompositions of £ and m with respect to the Killing form

of g:
E=h® )k, m=bo Y m,.

acR* acR+

Now take a unit vector N in b such that (V)2 are different for each a € R*TuU{0}.
We have the following:

PROPOSITION 10. The eigenspaces of the self-adjoint map Ry : m — m given
by RN(X) = R(N,X)N are m,, with corresponding eigenvalues a(N)? (a €
Rt uU{0}).

Proof. Without loss of generality let X = X* — 0(X*) € m,. We compute:
RN(X) = _[[N’X]aN] = _[[N,Xa —O(Xa)],N]
= —[[N, X%, N] + [N, 6(X*)], N]
= —[a(N)X*, N] + [a(N)8(X*), N]
= a(N)?’X* — o(N)?6(X*)
= a(N)*(X* - 9(X*)) =a(N)2X. O

As a consequence of this proposition we obtain the following result which is a
generalization of [Proposition 4 to any symmetric space of non-compact type.
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PROPOSITION 11. Let M = G/K be a symmetric space of non-compact type
and let U be a normal neighborhood of a point o € M as in Proposition 1. Then
for each geodesic sphere S in U with center at o, and each unit vector N in b
such that a(N)? are different for each o € Rt U {0}, the shape operator Ax of
S satisfies the property

An(ma) = f(N)mg,
for some f(N) € R.

It is unclear at this point, and worth of further investigation, what would be
an analogue of the condition T'(N, N, N) = kN (k > 0), and the effect of this on
the eigenspaces of the shape operator Ay.
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