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Abstract. We characterize the symmetric space $M=Sp(n)/U(n)$ by using the
shape operator of small geodesic spheres in $M$ , and a certain tensor field that
satisfies various algebraic properties. We also give a partial generalization to any
isotropy irreducible symmetric space.

1. Introduction

This work is a contribution to the problem of characterizing the isotropy
irreducible symmetric spaces of classical type and their non-compact duals by
small geodesic spheres. Historically, the problem was motivated by L. Vanhecke
and T. J. Wilmore in [12] who characterized spaces of constant curvature and
spaces of constant holomorphic curvature. The real oriented Grassmann mani-
folds $SO(p+q)/SO(p)\times SO(q)$ were considered later on by D. E. Blair and A. J.
Ledger in [1], and B. J. Papantoniou in [9]. The complex Grassmann manifolds
$SU(p+q)/S(U(p)\times U(q))$ were studied by A. J. Ledger in [5], who later on
gave a unified treatment of all Grassmann manifolds including the quaternionic
case $Sp(p+q)/Sp(p)\times Sp(q)$ ([6]). The symmetric space $SO(2n)/U(n)$ was
characterized by A. J. Ledger and A. M. Shahin in [7], and in the sequel B. J.
Papantoniou characterized the symmetric space $SU(n)/SO(n)$ in [11]. The cases
left to be characterized are the symmetric spaces $Sp(n)/U(n),$ $SU(2n)/Sp(n)$ ,
and the ones determined by various exceptional Lie groups.

The aim of this work is firstly, to give a characterization of the symmetric
space $Sp(n)/U(n)$ , and secondly to highlight a few key points which can be
generalized for any symmetric space.

All the characterizations mentioned before used a property of geodesic spheres
in Riemannian locally symmetric spaces. More specifically, let $M$ be a Rieman-
nian manifold of dimension at least three, $S_{r}$ be a geodesic sphere with center a
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point $p\in M$ and radius $r$ contained in a normal neighborhood $U$ of $p$ , and let
$N$ be a unit vector field on $U\backslash \{p\}$ tangent to a geodesic $\gamma$ from $p$ . Then for
any vector field $X$ on $U\backslash \{p\}$ , we have that on $\gamma$ the shape operator $A_{N}$ of the
geodesic sphere $S_{r}$ and the curvature tensor $R$ of $M$ are related by

$R(N, X)N=A_{N}^{2}X-(\nabla_{N}A_{N})X$ .

The left-hand side in the above equation is known as the curvature endomorphism
$R_{N}$ : $T_{p}M\rightarrow T_{p}M$ given by $R_{N}(X)=R(N, X)N$ . This is a self-adjoint map
and its restriction to the hyperplane orthogonal to $N$ is referred to as tidal force
operator (cf. [8, p. 219]) with special significance in general relativity. Now, a
fundamental consequence of the previous relation is that if $M$ is a Riemannian
locally symmetric space the following well known result holds (e.g. [12], [6]):

PROPOSITION 1. Let $p$ be a point in a Riemannian locally symmetnc space
$M$ of dimension at least 3. Then $p$ has a normal neighborhood $U$ such that for
each unit vector $N\in T_{p}M$ and corresponding geodesic $\gamma$ through $p$ , the parallel
translation of an eigenspace of the linear map $R_{N}$ along 7 is contained in an
eigenspace of the shape operator $A_{N}$ , for each geodesic sphere in $U$ about $p$ .

Furthermore, these characterizations used certain properties of a parallel ten-
sor field $T$ of type $(1, 3)$ , and additionally in some cases of another parallel tensor
field $S$ of type $(1, 2)$ , defined as an appropriate portion of the curvature tensor $R$

of $M$ . The tensor field $T$ plays a significant role in the geometry of Grassmann
manifolds, somewhat analogous to the underlying almost complex structure on
a K\"ahler manifold (cf. Proposition 2 (P3)).

We will begin by presenting various properties of the symmetric space $M=$

$Sp(n)/U(n)$ , and then we will express the curvature tensor of $M$ in terms of the
$(1, 3)$ tensor field $T$ satisfying various properties. Then we will select vectors
$N$ as in Proposition 1 that satisfy an extra geometrical $ndition$ , to give an
expression of the shape operator $A_{N}$ of geodesic spheres in $M$ . It turns out that
these properties characterize the symmetric space $M=Sp(n)/U(n)$ .

The authors would like to express their thanks to the referee for useful com-
ments and suggestions.

2. Properties of the symmetric space $Sp(n)/U(n)$

Le $M=G/K$ be the symmetric space $Sp(n)/U(n)$ . The imbedding of $U(n)$

into $Sp(n)$ is given by $A+iB\leftrightarrow\left(\begin{array}{ll}A & B\\-B & A\end{array}\right)$ , where $A,$ $B$ are $n\times n$ real matrices.

Let $\mathfrak{g}=5\mathfrak{p}(n)$ and $P=u(n)$ be the Lie algebras of $Sp(n)$ and $U(n)$ respectively,
and let $g$ be the G-invariant metric on $M$ determined by the $Ad^{G/K}$-invariant
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inner product on $\mathfrak{g}$ given by

\langle X, $ Y\rangle$ $=-\frac{1}{4}$ tr $XY$ (X, $Y\in \mathfrak{g}$ ). (1)

Here $Ad^{G/K}$ denotes the isotropy representation of $K$ in the tangent space $T_{p}M$

$(p\in M)$ . Since $M$ is an isotropy irreducible space, $g$ is an Einstein metric,
that is, the Ricci curvature of $M$ is a multiple of $g$ . Consider the reductive
decomposition $\mathfrak{g}=f$ $ $m^{\prime}$ , with respect to this inner product. Then $m^{\prime}$ consists
of all matrices of the form

{ $i\left(\begin{array}{ll}X_{1} & X_{2}\\X_{2} & -X_{1}\end{array}\right)$ : $X_{1},$ $X_{2}$ real $n\times n$ symmetric matrices},

which from now on it will be identified with the set

$m=$ {$X=\left(\begin{array}{ll}X_{l} & X_{2}\\X_{2} & -X_{l}\end{array}\right)$ : $X_{1},$ $X_{2}$ real $n\times n$ symmetric matrices}.

The tangent space at a fixed point $0=eK$ can be identified with $m$ , and its
dimension is $n(n+1)$ . A G-invariant complex structure is determined by the
$Ad^{G/K}$-invariant operator $J$ on $\mathfrak{m}$ given by $JX=\left(\begin{array}{ll}-X_{2} & X_{1}\\X_{1} & X_{2}\end{array}\right)$ . Also, since
$\langle JX, JY\rangle=\langle X, Y\rangle$ , the metric $g$ is Hermitian with respect to $J$ , and furthermore
it is a G-invariant K\"ahler metric on $M$ . The curvature tensor at $0\in M$ is given
by

$R(X, Y)Z=-[[X, Y],$ $Z$] $=(YXZ+ZXY)-(XYZ+ZYX)$ .
We note that for the non-compact dual the curvature tensor is the negative of
the above expression. Let $T$ be the $(1, 3)$ tensor at $0$ defined by

$T(X, Y, Z)=XYZ+ZYX$ (X, $Y,$ $Z\in m$).

This is an $Ad^{G/K}$-invariant tensor on a symmetric space, hence it is a parallel
tensor field on $M$ (cf. [8, p. 326]). Consequently, $R$ can be expressed in terms
of $T$ as

$R(X, Y)Z=-T(X, Y, Z)+T(Y, X, Z)$ .
For each $X,$ $Y,$ $Z\in \mathfrak{m}$ we define the following endomorphisms on $m$ :

$T_{XY}$ : $\mathfrak{m}\rightarrow m$ , $T_{XY}(Z)=T(X, Y, Z)$

$T_{Y}^{X}$ : $m\rightarrow \mathfrak{m}$ , $T_{Y}^{X}(Z)=T(X, Z, Y)$ .
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PROPOSITION 2. The tensor $T$ defined above satisfies the following properties:

$T(X, Y, Z)=T(Z, Y, X)$ (P1)
$JT(X, Y, Z)=T(JX, Y, Z)=-T(X, JY, Z)$ (P2)

(i) $JT_{XX}g=0$ , (ii) $JT_{XX}T=0$ (P3)
(i) tr $T_{XX}=4(n+1)g(X, X)$ (P4)

(ii) $tr(T_{X}^{X})^{2}=4g(T_{X}^{X}X, X)+16(g(X, X))^{2}$ .

Proof. Properties (P1) and (P2) can be easily verified. Concerning properties
(P3), the $(1, 1)$ tensor $JT_{XX}(X\in \mathfrak{m})$ is defined by $JT_{XX}Y=J(T_{XX}Y)$ , and
is viewed as a derivation on the tensor algebra at $0$ . Conditions (i) and (ii)
are understood as generalizations of the properties $\nabla_{X}g=0$ on a Riemannian
manifold, and $\nabla_{X}J=0$ on a K\"ahler manifold. Next we prove properties (P4).

We introduce an orthonormal basis for $m$ . Let $E_{ij}$ be the $n\times n$ matrix with 1
in the $(i,j)$-position and zeros elsewhere, and let $e_{ij}^{*}=E_{ij}+E_{ji}(1\leq i<j\leq n)$ .
Define matrices

$e_{ij}=\left(\begin{array}{ll}e_{ij}^{*} & 0\\0 & -e_{ij}^{*}\end{array}\right)$ $(1\leq i<j\leq n)$

and

$f_{ii}=\left(\begin{array}{ll}E_{ii} & 0\\0 & -E_{ii}\end{array}\right)$ $(1 \leq i\leq n)$ .

Then the set $\{e_{ij}, Je_{ij}, \sqrt{2}f_{ii}, \sqrt{2}Jf_{ii}\}$ constitutes an orthonormal basis of $m$

with respect to the inner product \langle X, $Y\rangle$ $=\frac{1}{4}$ tr $XY$ . We use property (P2) and
the relation $T_{XX}Z=T(X, X, Z)=X^{2}Z+ZX^{2}$ , to compute:

$trT_{XX}=\sum_{i<j}\{\langle T_{XX}e_{ij}, e_{ij}\rangle+\langle T_{XX}Je_{ij}, Je_{ij}\rangle\}$

$+2\sum_{i}\{\langle Txxf_{ii}, f_{ii})+\langle TxxJf_{ii}, Jf_{ii}\rangle\}$

$=2\sum_{i<j}\langle T_{XX}e_{ij}, e_{ij}\rangle+4\sum_{i}\langle Txxf_{ii}, f_{ii}\rangle$

$=\frac{1}{2}\sum_{i<j}tr(X^{2}e_{ij}+e_{ij}X^{2})e_{ij}+\sum_{i}tr(X^{2}f_{ii}+f_{ii}X^{2})f_{ii}$

$=\sum_{i<j}$
tr

$X^{2}e_{ij}^{2}+2\sum_{i}$ tr $X^{2}f_{ii}^{2}$

$=tr(X^{2}\sum_{i<j}e_{ij}^{2})+2tr(X^{2}\sum_{i}f_{ii}^{2})$ .
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Since $e_{ij}^{2}=\left(\begin{array}{ll}(e_{ij}^{*})^{2} & 0\\0 & (e_{ij}^{*})^{2}\end{array}\right)$ and $(e_{ij}^{*})^{2}=(E_{ij}+E_{ji})^{2}=E_{ii}+E_{jj}$ , we obtain
that

$\sum_{i<j}e_{ij}^{2}=\sum_{i<j}(^{E_{ii}+E_{jj}}0$

and

$E_{ii}+E_{jj}0)=(n-1)I_{2n}$

$\sum_{i}f_{ii}^{2}=\sum_{i}\left(\begin{array}{ll}E_{ii}^{2} & 0\\0 & E_{ii}^{2}\end{array}\right)=\sum_{i}\left(\begin{array}{ll}E_{ii} & 0\\0 & E_{ii}\end{array}\right)=I_{2n}$ .

Thus

$trT_{XX}=(n-1)$ tr $X^{2}+2$ tr $X^{2}=(n+1)$ tr $X^{2}=4(n+1)g(X, X)$ ,

and property (P4) (i) has been proven. For (P4) (ii), we use (P2) and the relation
$T_{X}^{X}Z=T(X, Z, X)=2XZX$ to compute:

$tr(T_{X}^{X})^{2}=\sum_{i<j}\{\langle(T_{X}^{X})^{2}e_{ij}, e_{ij}\rangle+\langle(T_{X}^{X})^{2}Je_{ij}, Je_{ij}\rangle\}$

$+2\sum_{i}\{\langle(T_{X}^{X})^{2}f_{ii}, f_{ii}\rangle+\langle(T_{X}^{X})^{2}Jf_{ii}, Jf_{ii}\rangle\}$

$=2\sum_{i<j}\langle(T_{X}^{X})^{2}e_{ij}, e_{ij}\rangle+4\sum_{i}\langle(T_{X}^{X})^{2}f_{ii}, f_{ii}\rangle$

$=2\sum_{i<j}tr(X^{2}e_{ij})^{2}+4\sum_{i}tr(X^{2}f_{ii})^{2}$ .

Now if $X=\left(\begin{array}{ll}X_{1} & X_{2}\\X_{2} & -X_{l}\end{array}\right)\in \mathfrak{m}$ , then

$X^{2}=\left(\begin{array}{ll}X_{1}^{2}+X_{2}^{2} & X_{1}X_{2}-X_{2}X_{1}\\X_{2}X_{l}-X_{l}X_{2} & X_{2}^{2}+X_{1}^{2}\end{array}\right)=\left(\begin{array}{ll}A & B\\-B & A\end{array}\right)$

where $A=(a_{ij})$ is a symmetric $(a_{ij}=a_{ji})$ matrix, and $B=(b_{ij})$ is a skew-
symmetric $(b_{ii}=0, b_{ij}=-b_{ji})$ matrix. Then $X^{2}e_{ij}=\left(\begin{array}{ll}C & D\\D & -C\end{array}\right)$ , where
$C$ is the $n\times n$ matrix with $i$ and $j$ columns the vectors $(a_{1j}, \ldots, a_{nj})^{t}$ and
$(a_{1i}, \ldots, a_{ni})^{t}$ respectively, and zeros elsewhere. The matrix $D$ has $i$ and $j$

columns the vectors $(-b_{1j}, \ldots, -b_{nj})^{t}$ and $(-b_{1i}, \ldots, -b_{ni})^{t}$ respectively, and
zeros elsewhere. We also find that $X^{2}f_{ii}=\left(\begin{array}{ll}E & F\\F & -E\end{array}\right)$ , where $E$ is the $n\times n$

matrix with i-column $(a_{1i}, \ldots, a_{ni})^{t}$ and zeros elsewhere, and $F$ is the $n\times n$
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matrix with $i$ column $(-b_{1i}, \ldots, -b_{ni})^{t}$ and zeros elsewhere. Thus, we obtain
that

$tr(X^{2}e_{ij})^{2}=4(a_{ij}^{2}+a_{ii}a_{jj}+b_{ij}^{2})$ and
$tr(X^{2}f_{ii})^{2}=2(a_{ii}^{2}+b_{ii}^{2})=2a_{ii}^{2}$ .

We also find that the following relations hold:

tr $X^{2}=2trA=2\sum_{i}a_{ii}$

$($tr $A)^{2}=(\sum_{:}a_{ii})^{2}=\sum_{i}a_{ii}^{2}+\sum_{i<j}(2a_{ii}a_{jj})$

tr
$A^{2}=\sum_{i}a_{ii}^{2}+\sum_{i<j}2a_{ij}^{2}$

, tr
$B^{2}=-2\sum_{i<j}b_{ij}^{2}$

tr $X^{4}=trX^{2}X^{2}=2tr(A^{2}-B^{2})$ .

Consequently,

$\sum_{i<j}tr(X^{2}e_{ij})^{2}=2\sum_{i<j}(2a_{j}^{2}+2a_{ii}a_{jj}+2b_{ij}^{2})+\sum_{i}(a_{ii}^{2}-a_{ii}^{2}+a_{ii}^{2}-a_{ii}^{2})$

$=2(trA^{2}-trB^{2}+(trA)^{2}-2\sum_{i}a_{ii}^{2})$

$=2tr(A^{2}-B^{2})+2(trA)^{2}-4\sum_{i}a_{ii}^{2}$

$=trX^{4}+\frac{1}{2}$ $($tr $X^{2})^{2}-2\sum_{i}tr(X^{2}f_{ii})^{2}$

and finally,

$tr(T_{X}^{X})^{2}=2trX^{4}+(trX^{2})^{2}=4g(T_{X}^{X}X, X)+16(g(X, X))^{2}$ . $\square $

Next, we $identi\infty m\cong \mathfrak{m}^{\prime}$ with the vector space $Sym_{n}\mathbb{C}$ of all $n\times n$ complex
symmetric matrices by means of the identification

$\mathfrak{m}\ni X=\left(\begin{array}{ll}X_{l} & X_{2}\\X_{2} & -X_{l}\end{array}\right)\leftrightarrow\overline{X}=X_{1}+iX_{2}\in Sym_{n}\mathbb{C}$ .

Under these correspondences the inner product \langle X, $Y\rangle$ $=\frac{1}{4}$ tr $XY$ corresponds
to the inner product $\langle\tilde{X},\overline{Y}\rangle^{\prime}=\frac{1}{2}{\rm Re}$ tr $\tilde{X}\overline{Y}-$ on $Sym_{n}\mathbb{C}$ , and the tensor $T$ corre-
sponds to the tensor $\tilde{T}$ defined by

$\tilde{T}(\tilde{X},\tilde{Y},\overline{Z})=\tilde{X}\overline{\tilde{Y}}\tilde{Z}+\tilde{Z}\overline{Y}\overline{X}-$
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also denoted by $T$ . The complex structure $J$ corresponds to $\tilde{J}\tilde{X}=i\tilde{X}=-X_{2}+$

$iX_{1}$ also denoted by $J$ . Then the curvature tensor is expressed on $Sym_{n}\mathbb{C}$ by

$R(\tilde{X},\tilde{Y})\tilde{Z}=-(\overline{X}\tilde{Y}\tilde{Z}-+\tilde{Z}\tilde{Y}\tilde{X})-+(\tilde{Y}\overline{\tilde{X}}\tilde{Z}+\tilde{Z}\tilde{X}\tilde{Y})-$

$=-T(\tilde{X},\tilde{Y},\tilde{Z})+T(\tilde{Y},\tilde{X},\tilde{Z})$ .

We will now make use of unit vectors $N$ in $m$ that satisfy a relation of the form
$T(X, X, X)=kX(k>0)$ . Geometrically, these vectors are realized as critical
points of the function $|T(X, X, X)|^{2}$ (cf. [10]). Their existence is guaranteed by
the following proposition.

PROPOSITION 3. Let $N$ be a unit vector in $m\cong Sym_{n}\mathbb{C}$ . Then $T(N, N, N)=$
$4N$ if and only if the rank of $N$ is 1.

Proof. Let $T(N, N, N)=4N$ . Then $2N\overline{N}N=4N$ , thus $N\overline{N}N=2N$ . We set
$N\overline{N}=A$ . Then $A^{2}=N\overline{N}N\overline{N}=2N\overline{N}=2A$ , and since $N$ is symmetric,

$\overline{A}^{t}=(\overline{N}N)^{t}=N^{t}\overline{N}^{t}=N\overline{N}=A$ ,

i.e. $A$ is a Hermitian matrix. Hence there exists an $n\times n$ unitary matrix $P$

such that $PA\overline{P}^{t}=D$ , where $D=$ diag $(d_{1}, d_{2}, \ldots , d_{n})$ is real diagonal with
$D^{2}=PA\overline{P}^{t}PA\overline{P}^{t}=PA^{2}\overline{P}^{t}=2PA\overline{P}^{t}=2D$ , and tr $D=$ tr $A=$ tr $N\overline{N}=$

${\rm Re}$ tr $N\overline{N}=2$ . Since diag $(d_{1}^{2}, d_{2}^{2}, \cdots d_{n}^{2})=diag(2d_{1},2d_{2}, \cdots 2d_{n})$ , each of the
$d_{i}’ s$ must be $0$ or 2, and as tr $D=2$ we finally obtain that $D=diag(2, 0, \ldots , 0)$ .
We now set $B=PN$ . Then

$DB=PA\overline{P}^{t}PN=PAN=PN\overline{N}N=2PN=2B$ ,

therefore the matrix $B$ has all entries zeros except the first row, so its rank is 1.
Therefore, $1=rkB=rkPN=rkN$ (as $P\overline{P}^{t}=I$).

For the converse, assume that rk $N=1$ . Then there exists an $n\times n$ unitary
matrix $Q$ such that

$QNQ^{t}=diag(a, 0, \ldots, 0)$ $(a\in \mathbb{C})$ (2)

(cf. [3]). Since $N$ is a unit matrix we have that $|a|^{2}=2$ .
We finally obtain that

$T(N, N, N)$

$=2N\overline{N}N=2Q^{-1}diag(a, 0, \cdots 0)diag(\overline{a}, 0, \cdots 0)diag(a, 0, \cdots 0)(Q^{t})^{-1}$

$=2Q^{-1}diag(a|a|^{2},0, \cdots 0)(Q^{t})^{-1}=4Q^{-1}diag(a, 0, \cdots 0)(Q^{t})^{-1}=4N$ .
$\square $
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We now choose such an $N\in m$ and recall the self-adjoint linear map $R_{N}$ :
$\mathfrak{m}\rightarrow m$ given by $R_{N}(X)=R(N, X)N$ . Then

$R(N, JN)N=-T(N, JN, N)+T(JN, N, N)$

$=JT(N, N, N)+JT(N, N, N)$

$=2JT(N, N, N)=8JN$ ,

so we conclude that if $N\in m$ is such that $T(N, N, N)=4N$ , then $JN$ is an
eigenvector of $R_{N}$ . Applying now Proposition 1 we obtain the following:

PROPOSITION 4. Let $p\in Sp(n)/U(n)$ and choose a normal neighborhood $U$

of $p$ as in Proposition 1. Then for each geodesic sphere $S$ in $U$ with center at
$p$ , and each unit normal vector $N$ to $S$ such that $T(N, N, N)=4N$ , the shape
operator $A_{N}$ of $S$ satisfies the property

$A_{N}JN=f(N)JN$ (P5)

for some $f(N)\in \mathbb{R}$ .

3. A characterization of the symmetric space $Sp(n)/U(n)$

We can now state the main theorem:

THEOREM 5. Let $(M, g)$ be a non-flat, complete, simply connected Kahler
manifold of dimension $n(n+1)$ . Let $T$ be a parallel tensor field of type $(1, 3)$ on
$M$ satisfying properties $(Pl)-(P4)$ . Suppose that each point $p\in M$ has a normal
neighborhood $U$ such that for each geodesic sphere $S$ in $U$ centered at $p$ , and
for each unit normal vector $N$ to $S$ with $T(N, N, N)=4N$ , the shape operator
of $S$ satisfies $(P5)$ . Then $M$ is homothetic to the $Riemannian\backslash $ symmetric space
$Sp(n)/U(n)$ or its non-compact dual.

For the proof of this theorem we need the following proposition whose proof
is based on a series of linear algebra arguments, and is similar to the one given
in [7] and [11]. However, it is useful to summarize its central points modified to
our problem.

PROPOSITION 6. Let $V$ be a real vector space of dimension $n(n+1)$ with
complex structure $J$ and Hermitian inner product $\langle$ , $\rangle$ . Let $T$ be a tensor of type
$(1, 3)$ on $V$ satisfying $(Pl)-(P4)$ with $\langle, \rangle$ in place of $g$ . Then there exists a linear
isomorphism $\phi$ of $V$ onto the real vector space $Sym_{n}\mathbb{C}$ of all complex symmetric
$n\times n$ matrices, which preserves inner products as well as the complex structures
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$J$ and $i$ on $V$ and $Sym_{n}\mathbb{C}$ oespectively. Furthermore, under this identification,
$JX=iX,$ $T(X, Y, Z)=X\overline{Y}Z+Z\overline{Y}X$ , and \langle X, $ X\rangle$ $=\frac{1}{2}$ tr $X\overline{X}$ .

Proof. (Sketch) The aim is to exhibit a vector space isomorphism

$\phi:V\rightarrow Sym_{n}\mathbb{C}$ (3)

by determining this between corresponding orthonormal bases in these spaces.
It can been shown that there exists an orthonormal basis $\mathcal{A}=A\cup JA$ on $V$ ,
such that $A=\{e_{jk}(1\leq j<k\leq n), f_{ii}(1\leq i\leq n)\}$ is an orthonormal subset of
$A$ , and $JA=\{Je_{jk}, Jf_{ii} : e_{jk}, e_{ii}\in A\}$ . The elements of the set $A$ are gradually
defined so that the action of the tensor $T$ on these satisfies various orthogonality
relations (cf. [7, p. 17]). Next we choose an orthonormal basis $\mathcal{B}$ for $Sym_{n}\mathbb{C}$

with respect to the inner product $\langle X, X\rangle^{\prime}=\frac{1}{2}$ tr $X\overline{X}$, consisting of the matrices
$\mathcal{B}=\{e_{jk}^{\prime}=E_{jk}+E_{kj}, ie_{jk}^{\prime}(1\leq j<k\leq n), f_{ii}^{\prime}=E_{ii},if_{ii}^{\prime}(1\leq i\leq n)\}$ , and
define the isomorphism $\phi$ by

$\phi(e_{jk})=e_{jk}^{\prime},$ $\phi(Je_{jk})=ie_{jk}^{\prime},$ $\phi(f_{ii})=f_{ii}^{\prime},$ $\phi(Jf_{ii})=if_{ii}^{\prime}$ .

This isomorphism preserves inner products, as well as the complex structutes $J$

and $i$ on $V$ and $Sym_{n}\mathbb{C}$ respectively. Also, if we define a tensor $T^{\prime}$ of type $(1, 3)$

on $Sym_{n}\mathbb{C}$ by $T^{\prime}(X, Y, Z)=X\overline{Y}Z+Z\overline{Y}X$ , then with respect to the basis $\mathcal{B}$ ,
$T^{\prime}$ satisfies properies $(P1)-(P4)$ as well as the orthogonality relations satisfied by
$T$ . Furthermore, $\phi(T(X, Y, Z))=T^{\prime}(\phi(X), \phi(Y),$ $\phi(Z))$ for all $X,$ $Y,$ $Z\in \mathcal{A}$ , and
this $mpletes$ the proof. $\square $

The following lemmas are also needed for the proof of Theorem 5.
Let $D=\{X\in V : T(X, X,X)=4\langle X, X\rangle X\}$ .

LEMMA 7. Let $S$ be any tensor of type $(1, 3)$ on $V$ which satisfies the sym-
metry properties of the Riemannian curvature tensor including the first Bianchi
identity. Suppose that $S$ satisfies the relation

$\langle S(JX, JY)Z, W\rangle=\langle S(X, Y)Z, W\rangle$ for all $X,$ $Y,$ $Z,$ $W\in V$, (4)

and that for $eachX\in D$ and $Y\in V$ which is orthogonal to $X$ , the relation
$\langle S(X, JX)X, JY\rangle=0$ holds. Then the ‘holomorhic sectional curvature” deter-
mined by $S(i.e. K(X)=\langle S(X, JX)X, JX\rangle)$ is constant on $D$ .

Proof. We will show that $K(X)$ is constant for all unit vectors $X\in D$ , by
considering four cases.

Case 1 Let $Y\in D$ be a unit vector orthogonal to $X$ such that $X+Y\in D$ .
Such vectors do exist, as by Proposition 3 we can write $X=diag(x+iy, 0, \ldots, 0)$
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$(x^{2}+y^{2}=2)$ , and then take $Y=JX=diag(-y+ix, 0, \ldots, 0)$ . Then it is clear
that $X-Y\in D$ and is orthogonal to $X+Y$ , so by hypothesis we get

$(S(X+Y, J(X+Y))(X+Y),$ $ J(X-Y)\rangle$ $=0$ . (5)

By using $ndition(4)$ on $S$ together with the symmetry properties we obtain
that

$\langle S(X, Y)JZ, W\rangle=-\langle S(Z, JW)X, Y\rangle=\langle JS(X, Y)Z, W\rangle$ ,

which implies that

$\langle S(X, JX)Y, JX\rangle=(S(X, JX)JY,$ $ X\rangle$ $=\langle S(X, JX)X, JY\rangle=0$

$\langle S(X, JY)X, JX\rangle=\langle S(X, JX)X, JY\rangle=0$

$\langle S(Y, JX)X, JX\rangle=\langle S(X, JX)X, JY\rangle=0$

$\langle S(X, JY)Y, JY\rangle=(S(Y, JY)Y,$ $ JX\rangle$ $=0$

$\langle S(X, JY)Y, JX\rangle=\langle S(Y, JX)X, JY\rangle$

$\langle S(Y, JX)Y, JX\rangle=\langle S(JY, X)JY, X\rangle$

$\langle S(Y, JY)X, JX\rangle=\langle S(X, JX)Y, JY\rangle$ .

By expanding (5) and using the above identities we obtain that $K(X)=K(Y)$ ,
i.e. $K$ is constant for such $Y’ s$ .

Case 2 Let $Y\in D$ be any unit vector with $X+Y\in D$ . Choose a unit
vector $Z\in D$ orthogonal to $X$ and $Y$ so that $X+Z\in D$ and $Y+Z\in D$ .
Then from Case 1 we obtain that $K(X)=K(Z)=K(Y)$ . For example, for
$X$ as before, take $Y=diag(\alpha+i\beta, 0, \ldots,0)$ (appropriatelly normalized), and a
$Z=diag(r+is, 0, \ldots , 0)$ is found by solving the system $xr+ys=2=\alpha r+\beta s$

for $r,$ $s$ .
Case 3 Let $Y\in D$ be any unit vector orthogonal to $X$ . For example, for $X$

as in case 1, we may write $Y=diag(\alpha+i\beta, 0, \ldots, 0)$ with $x\alpha+y\beta=0$ . Choose
a $Z.=diag(r+is, 0, \ldots, 0)\in Dwith-yr+sx=0$ . Then $X+Z\in D$ , and by
Case 2 we get that $K(X)=K(Z)$ . On the other hand, $Z$ is orthogonal to $Y$

and $Y+Z\in D$ , so by Case 1 $K(Y)=K(Z)$ .
Case 4 Let $Y$ be any unit vector in $D$ . By choosing a $Z\in D$ orthogonal to

$X$ and $Y$ , then from Case 3 it follows that $K(X)=K(Y)$ . $\square $

LEMMA 8. Let $S$ be a tensor of type $(1, 3)$ on $V$ which satisfies the symmetry
properties of the Riemannian curvature tensor including the first Bianchi iden-
tity, as well as relation (4). Suppose that $S(X, JX)X=0$ for all $X\in D$ , and
$S(X, Y)T=0$ for all $X,$ $Y\in V$ . Then $S=0$ on $V$ .

The proof of this lemma is presented in several of the references cited (e.g.
[7], [6]). Finally we also need the following:
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LEMMA 9 ([4, pp. 261-262]). Let $M_{1},$ $M_{2}$ be Riemannian symmetric spaces,
and $p_{1},p_{2}$ be points in $M_{1}$ and $M_{2}$ respectively. If there is a linear isometry
$\phi$ : $T_{p_{1}}M_{1}\rightarrow T_{p_{2}}M_{2}$ that preserves curvatures, $i.e$ . $\phi\circ R_{p}^{1}=R_{\phi(p)}^{2}\circ\phi$ for all
$p\in T_{p_{1}}M_{1}$ , then $M_{1}$ and $M_{2}$ are locally isometric.

$ProofofTheorem5$ . $Letv\in T_{p}MbeaunitvectorsatisfyingT(v, v, v)=4vand$

let $N$ be the unit tangent vector field to a geodesic $\gamma$ through $p$ with initial vector
$v$ . Since $T$ is parallel then $T(N, N, N)=4N$ along $\gamma$ , and from property (P5)
$A_{N}JN=fJN$ along $\gamma\backslash \{p\}$ . Now, if $Y$ is a parallel vector field along $\gamma$ normal
to $N$ , then $g(R(N, JN)N,$ $JY$) $=0$ on $\gamma\backslash \{p\}$ , and hence at $p$ by continuity.
Indeed, we use property (P5), the relation $R(N, X)N=A_{N}^{2}X-(\nabla_{N}A_{N})X$ , and
the K\"ahler condition for $M$ , to compute:

$R(N, JN)N$

$=A_{N}^{2}JN-(\nabla_{N}A_{N})JN=A_{N}(fJN)-(\nabla_{N}(A_{N}JN)-A_{N}\nabla_{N}JN)$

$=f^{2}JN-(\nabla_{N}fJN-A_{N}J\nabla_{N}N)=f^{2}JN-f^{\prime}JN-f\nabla_{N}JN$

$=(f^{2}-f^{\prime})JN$.

Therefore,

$g(R(N, JN)N,$ $JY$) $=g((f^{2}-f^{\prime})JN, JY)=(f^{2}-f^{\prime})g(JN, JY)$

$=(f^{2}-f^{\prime})g(N, Y)=0$ .

Next, we view the tangent space $T_{p}M$ as the vector space $V$ in Proposition 6.
Then the tensor $T$ satisfies $(P1)-(P4)$ at $p$ , and as shown $before\langle R(X, JX)X, JY\rangle$

$=0$ for all $X\in D$ and $Y$ orthogonal to $X$ . Since property (4) in Lemma 7 is
satisfied for $JX=iX$ , we conclude that the holomorphic sectional curvature is
constant at $p$ for each unit vector $X\in D$ , i.e. $R(X, JX)X=cJX$ . Next we
define the $(1, 3)$-tensor

$S(X, Y)Z=R(X, Y)Z-\frac{c}{4}(-T(X, Y, Z)+T(Y, X, Z))$ ,

where $R^{\prime}(X, Y)Z=-T(X, Y, Z)+T(Y, X, Z)$ is viewed by Proposition 6 as the
curvature tensor of $Sp(n)/U(n)$ . We check that $S$ satisfies the conditions of
Lemma 8. Condition (4) is obviously satisfied. Also, for each $X\in D$

$S(X, JX)X=R(X, JX)X-\frac{c}{4}(-T(X, JX, X)+T(JX, X, X))$

$=cJX-\frac{c}{4}(2JT(X, X, X))=cJX-cJX=0$ ,

and

$S(X, Y)T=R(X, Y)T-\frac{c}{4}R^{\prime}(X, Y)T=0$
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Both terms above are zero; the first because $T$ is parallel on $M$ , and the second
by using the algebraic properties of $T$ on $Sp(n)/U(n)$ . Hence we conclude that

$R(X, Y)Z=\frac{c}{4}R^{\prime}(X, Y)Z$ on $T_{p}M$.

Note that the left-hand side above is the curvature tensor of $M$ , and the right-
hand side is the curvature tensor of $Sp(n)/U(n)$ . Since $p$ is an arbitray point in
$M$ we obtain that

$R=FR^{\prime}$ on $M$ (6)

for some function $F$ .
Since $Sp(n)/U(n)$ is an Einstein manifold (6) implies that the Ricci curvature

Ric of $M$ is given by Ric $=fg$ for some function $f$ . Hence $M$ is also an Einstein
manifold (cf. [8, p. 96]). Therefore we obtain that

$R=\frac{c}{4}R^{\prime}$ on $M$ ,

and $\nabla R=\frac{c}{4}\nabla R^{\prime}=0$ , so $(M, g)$ is a Riemannian locally symmetric space.
Since $M$ is non-flat we assume that $c>0$ . By Proposition 6 there exists

a linear isomorphism between the tangent spaces at any two points of $M$ and
$Sp(n)/U(n)$ that preserves inner products and curvature tensors. Hence, by
Lemma 9 $M$ and $Sp(n)/U(n)$ are locally isometric. Since $M$ is complete and
simply connected, $M$ is globally isometric to $Sp(n)/U(n)$ . If $c<0$ we have the
corresponding result for the non-compact dual of $Sp(n)/U(n)$ .

It remains to obtain the equation $R(X, Y)Z=-T(X, Y, Z)+T(Y, X, Z)$ for
a metric $\overline{g}$ homothetic to $g$ . Define $\overline{g}=|\frac{c}{4}|g$ and $\overline{T}(X, Y, Z)=|\frac{c}{4}|T(X, Y, Z)$ on
$M$ . Then $(P1)-(P5)$ are satisfied by $\overline{g}$ and $\overline{T}$ , so the conditions of Theorem 5 are
satisfied by these. Since the curvature tensor of $\overline{g}$ is unchanged by homotheties,
we have that $R(X, Y)Z=\Pi^{c}c(-\overline{T}(X, Y, Z)+\overline{T}(X, Y, Z))$ for all vector fields
$X,$ $Y,$ $Z$ on $M$ , and the proof has been completed. $\square $

4. Remarks about the shape operator of geodesic spheres in a sym-
metric space

As shown in Proposition 4 an important role in the characterization described
before was played by the shape operator of geodesic spheres in the symmetric
space $Sp(n)/U(n)$ . This operator has been used in more general studies (cf. [13],
[14]). We will first describe the eigenspaces of the map $R_{N}$ . Let $M=G/K$ be a
symmetric space with symmetry $\theta$ . For simplicity we assume that $M$ is of non-
compact type. Considering the eigenspaces of $\theta$ with respect to the eigenvalues
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1 and $-1$ we obtain the direct sum $\mathfrak{g}=f\oplus \mathfrak{m}$ , where $t$ is the Lie algebra of the
subgroup $K$ , and $\mathfrak{m}$ , as usual, is identified with the tangent space of $M$ at a fixed
point $0\in M$ . We fix a maximal Abelian subspace $\mathfrak{h}$ in $\mathfrak{m}$ , and let $\alpha$ be a linear
form on $\mathfrak{h}$ . Define

$\mathfrak{g}_{\alpha}=$ { $X\in \mathfrak{g}$ : $[H,$ $X]=\alpha(H)X$ for all $H\in \mathfrak{h}$ }.
A vector $\alpha\neq 0$ in the dual space $\mathfrak{h}^{*}$ is called a restricted root with respect to $\mathfrak{h}$

if $\mathfrak{g}_{\alpha}\neq 0$ . Let $R$ be the set of all restricted roots. It is known that

$\mathfrak{g}=\mathfrak{g}_{0}\oplus\sum_{\alpha\in R}\mathfrak{g}_{\alpha}$

is a decomposition of the real semisimple Lie algebra $\mathfrak{g}$ , where $g_{0}=e_{0}\oplus \mathfrak{h}$ , and
$P_{0}=\mathfrak{g}_{0}\cap t$ . Concerning the decomposition above, for any $\alpha,$ $\beta\in R\cup\{0\}$ we
have that $\theta(\mathfrak{g}_{\alpha})=\mathfrak{g}_{-\alpha}$ and $[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}]\subset \mathfrak{g}_{\alpha+\beta}$ . We fix an element $\alpha\in R$ and let
dim $\mathfrak{g}_{\alpha}=m_{\alpha}$ . Take a basis $\{X_{1}^{\alpha}, \ldots, X_{m_{\alpha}}^{\alpha}\}$ in $\mathfrak{g}_{\alpha}$ , and consider the subspaces

$P_{\alpha}=\sum_{i=1}^{m_{\alpha}}\mathbb{R}(X_{i}^{\alpha}+\theta(X_{i}^{\alpha}))$ , $m_{\alpha}=\sum_{i=1}^{m_{\alpha}}\mathbb{R}(X_{i}^{\alpha}-\theta(X_{i}^{\alpha}))$ .

Obviously $P_{\alpha}=g_{-\alpha}$ and $\mathfrak{m}_{\alpha}=\mathfrak{m}_{-\alpha}$ . Let $R^{+}$ be the set of positive roots with
respect to an arbitrary lexicographic ordering in $\mathfrak{h}$ . Using the above relations we
obtain the following decompositions of $t$ and $m$ with respect to the Killing form
of $\mathfrak{g}$ :

$t=\mathfrak{h}\oplus\sum_{\alpha\in R+}\mathfrak{k}_{\alpha}$
,

$\mathfrak{m}=\mathfrak{h}\oplus\sum_{\alpha\in R+}m_{\alpha}$
.

Now take a unit vector $N$ in $\mathfrak{h}$ such that $\alpha(N)^{2}$ are different for each $\alpha\in R^{+}\cup\{0\}$ .
We have the following:

PROPOSITION 10. The eigenspaces of the self-adjoin $t$ map $R_{N}$ : $m\rightarrow m$ given
by $R_{N}(X)=R(N, X)N$ are $m_{\alpha}$ , with corre sponding eigenvalues $\alpha(N)^{2}(\alpha\in$

$R^{+}\cup\{0\})$ .

Proof. Without loss of generality let $X=X^{\alpha}-\theta(X^{\alpha})\in m_{\alpha}$ . We compute:

$R_{N}(X)=-[[N, X],$ $N$] $=-[[N, X^{\alpha}-\theta(X^{\alpha})], N]$

$=-[[N, X^{\alpha}],$ $N$] $+[[N, \theta(X^{\alpha})], N]$

$=-[\alpha(N)X^{\alpha}, N]+[\alpha(N)\theta(X^{\alpha}), N]$

$=\alpha(N)^{2}X^{\alpha}-\alpha(N)^{2}\theta(X^{\alpha})$

$=\alpha(N)^{2}(X^{\alpha}-\theta(X^{\alpha}))=\alpha(N)^{2}X$ . $\square $

As a consequence of this proposition we obtain the following result which is a
generalization of Proposition 4 to any symmetric space of non-compact type.
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PROPOSITION 11. Let $M=G/K$ be a symmetric space of non-compact type
and let $U$ be a normal neighborhood of a point $0\in M$ as in Proposition 1. Then
for each geodesic sphere $S$ in $U$ with center at $0$ , and each unit vector $N$ in $\mathfrak{h}$

such that $\alpha(N)^{2}$ are different for each $\alpha\in R^{+}\cup\{0\}$ , the shape operator $A_{N}$ of
$S$ satisfies the property

$A_{N}(m_{\alpha})=f(N)m_{\alpha}$

for some $f(N)\in \mathbb{R}$ .

It is unclear at this point, and worth of further investigation, what would be
an analogue of the condition $T(N, N, N)=kN(k>0)$ , and the effect of this on
the eigenspaces of the shape operator $A_{N}$ .
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