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Abstract. In this paper we have applied a variant of Ricceri’s three critical
points theorem provided by Averna and Bonanno to establish an existence and
multiplicity result for periodic solutions of a system of differential equations in-
volving a real parameter.

1. Introduction

In this paper we consider the existence and multiplicity of periodic solutions
of the system

i — A(t)u = Ab)V'(u) t € [0,T] (P)
WT) — 4(0) = u(T) — u(0) =0

where ) is a real parameter,A € L°°(]R RNV*N) is positive definite, V : RN —

R, and b:R—->R.

Recently, Ricceri developed a critical points theorem [4| which we have used to
prove results in [7]. For the reader’s benefit, we state here the three critical
points theorem of Ricceri’s in [4]:

‘"THEOREM 1.1. Let X be a separable and reflexive real Banach space;

¢ : X = R a continuously Gateauz differentiable and sequentially weakly lower
semicontinuous functional whose Gateauz derivative admits a continuous inverse
on X*; ¢ : X — R a continuously Gateaur differentiable functional whose
Gateaux derivative is compact; I C R is an interval. Assume that

i) o le (6(z) + M(z)) = +00 forall Nel.

ii) And there ezists a continuous concave function 4
h:I— R such that '
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sup Jnf (¢(z) + (M) + Mp(2)) < inf S;él;w(l‘) +h(A) + Mp(z)).

Then there ezists an open interval J C I and a positive number p such that for
‘each \ € J the equation

¢'(z) + M'(z) =0
admits at least three distinct solutions whose norms are less than p.

The above Ricceri critical points theorem establishes a uniform upper bound
for the norms of all eigen vectors corresponding to each admissible eigen value
A for which they are solutions of problem (P). However, this theorem, though
a valuable tool, contains an inequality (ii) which is usually difficult to verify.
The theorem has since been improved upon by authors like G. Bonanno , B.
Ricceri [1], D. Averna and G. Bonanno [2]. :

We recall theorem B in [2] which we use to prove our main result:

" THEOREM 1.2. Let X be a reflexive Banach space, ¢ : X — R be contin-
uously Gateauz differentiable and sequentially weakly lower semi continuous,
whose Gateaux derivative has a continuous inverse on X*,1 : X — R be contin-
uously Gateaux differentiable with a compact Gateauz derivative.

For r € R let us define,

P(x) - ___inf
o1 = o B r¢——1§(_w°)o,r[) (1.1)
and
a(r) = f sp LB YO (1.2)

in
z€¢p=1(]—oo,r) yE€¢~1([r,+o0l) ¢(y)— (]5(33)

where ¢=1(]—oo,r[) denotes the closure of ¢=1(]—o0,r[) in the weak topology.
Assume that

i) | Ilh—rf}l- (¢(z) + AMY(z)) = 400 for all X > 0;

ii) there eristsr € R,r > i‘I)l(f o, and @1(r) < pa(r).
Then for each A e]mzl;s_, ;er—)[, the equation
¢'(z) + M'(z) =0
has at least three solutions in X.

Remark. If 1(r) = 0, § is denoted as +oo.



A THREE CRITICAL POINTS THEOREM TO DIFFERENTIAL EQUATIONS 75

It is very interesting to note that in theorem 1.2, the circumvention of in-
equality ii) in theorem 1.1 sacrifices the uniform upper estimate (apriori bound)
for norms of solutions of problem (P) for each admissible parameter A\. As we

- apply the variant theorem 1.2 here, a fascinating open problem is to prove an in-

vestigative tool which does not include inequality ii) of theorem 1.1 but preserves
the apriori bound given in theorem 1.1. The difference between results obtained
in [7] and in this paper is mainly in the apriori bounds for solutions for each ad-
missible A; however, the results in this paper are obtained under comparatively
less stringent conditions on the nonlinearity.

We shall investigate solutions of (P) in the Sobolev space W12(0,T;RN) =
H with the standard norm

1

T 3
lu|| = (/ (|u)? + |u|2)) for all w € Hf.
0

Since A is positive definite, we have an equivalent norm on H} given by

1

T 3
lull1 = </0 (Juf? + (Au, u))) for all w € Hf.

DEFINITION 1.3. We define the functions ¢ and v, respectively as follows:

12

T
() = and  W(u) = /0 b(E)V (u)dt (1.3)

2

‘ 2. Main result

THEOREM 2.1. Assume that

i) A = (as;) is a positive definite symmetric N-order matriz such that a;; €
‘ LOO(O,T),G—LJ(T) =a,-j(0),z',j =1,...,N.
ii) Ve C'(RM,R), with V(0) =0, and lim V(z) = +oo.

|z|—~+o00
iii) b€ CO(R,R) and b(t) < 0 for allt € [0,T],b# 0.
iv) There ezist a > 0,5 < 2:V(z) < a(1+ |z|*) for all z € RV
v) There exists ¥ > 0 so that for any x € RY, where |z| < v, we have V(z) <
V(0) =0. , :
Then there is an unbounded interval I such that for every A € I, problem (P)
admits at least three solutions. '

Remark. With regards to condition ii), our result also holds if there exists
0>0:V(z) >0 a.e |z|>34.
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It is obvious that the critical points of the functional
In(z) = ¢(x) + \Y(z) for each real A
correspond to solutions of (P).

LEMMA 2.2. If b € C[0,T] is as in (iii) of theorem 2.1, V € C(RY,R), and
condition iv) in Theorem 2.1 holds, then for each v > 0, there exists M, > 0
such that

Y(2) > M, forall e ¢ ([0,r]).

Proof. From the definition of 1 in Definition 1.2 above, we have

T
() = /O b(t)V ().

So, for |z| < 1, it follows from condition iv) of theorem 2.1 that the proposition
clearly holds, since then v is bounded below by a constant 2amT, where m =

tn[lgr; | b(t). So we assume that |z| > 1. Then from (iv),we have
e )

T
¥(z) > am /0 1+ 2f)
> 2amT|a|l%,
> 28 amTes [¢(c)]3,

(It is well known that there exists coo > 0: [[ufloo < Coollull1, forall we H})
and this completes the proof. O

LEMMA 2.3. Given conditions ii), i), and v) in Theorem 2.1, then there
exists 7 > 0 such that p1(r) =0 and ¢2(r) > 0.

Proof. Since A is positive definite, there exists (8 >0 such that A(t)u.u >
Blu|? forall te[0,T],ucRY. So, letting B* = min{1,3} we can choose
Coo = (—T—l%?, and then given condition v) in theorem 2.1, we choose r>0:
2c2r <42,

We shall show that there is a minimum point z¥ € ¢~1([0,7]) such that
¢(zy) # r; in other words, ¢(z}) < r:
Since

14T

lz]lo < (T—IB*)WHQHI forall z€ H},
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it follows from condition (v) and the non-positiveness of b(t) on [0,T] that for
all vector functions (constant or non-constant) z € ¢~1([0, 7]),¥(z) > ¥(0) = 0.
And so, z; = 0 is a minimum point of v. Since by definition of ¢, ¢(z) —
+oo as |z||1 = 400, we can fix z* € Hi, ||z*||; sufficiently large such that

#(0) < r < @(z¥).

The existence of such a point follows from condition (v) as well. Besides,

inf =(0) =0 > ¢Y(z*).
LB =9(0) = 0> ¥(e)
Therefore, from the definition in [1.1), ¢1(r) = 0.

Furthermore,

> 0.

w(xr) — Y(z*)
P20 2 T
Thus, @1(r) < @2(r).
This completes the proof. O

-Remark.

a) The set ¢~1([0,7]) is convex. So, if the functional v is strictly convex,
then 1 has at most one minimum point on ¢~([0, r]) ([8], Theorem 38.C). Since
we have not imposed conditions on the potential V' which could make v strictly
convex, we cannot claim unique existence of minimum point of ¥ in ¢=1([0,r]).

b) ¢=1(]0,7[) = ¢~1([0,7]); and since ¢ is continuous and convex (and so
weak sequentially continuous), the set ¢~1([0,7]) is closed (or weak sequentially
closed). Reflexivity of H1 implies that every bounded sequence in it has a weakly
convergent subsequence (, Proposition 38.2 (2)). Furthermore, 1)’ is strongly
continuous, and so v is weak sequentially continuous ([8], Corollary 41.9). It then
follows from [8] (Corollary 38.9) that there is a minimum point z, € ¢~1([0,7])
such that

i ([O oY= Y(zr).
Proof of theorem 2.1. To prove the assertion, it is sufficient to show that the
assumptions of [Theorem 1.2 are satisfied by ¢ and ¢ . Clearly, ¢ and ¢ as
defined in equation [1.3) both satisfy the smoothness conditions in Theorem 1.2.
For each real parameter A > 0,

_ le?
¢(z) + Ap(z)
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Thus,

| | “lini (¢(z) + Mp(z)) = 400 forall A>0.
| z||—+o00

#(z) >0 for all z € H};  ¢(0) = 0. Therefore, %11f¢ = 0. Hence, for all » > 0,
T

r>infé.
T :
Furthermore, we have shown in that there exists r > 0 such that
} Y(z) — ¥(y)
| r) = inf su -~ .~ = PilT
p2(r) 261 (|—o0,r) yES- 1([E+oo[) d(y) — ¢(x) 1(r)
P(z) - ___inf
. ¢~ 1(J—o0,rD) "
= inf 0.
z€d=1(]—oco0,r]) r — ¢(z)
And so

p2(r) > p1(r).

Therefore, for every A 6]7-;7, +00[, the problem (P) admits at least three solu-
tions. [J

EXAMPLE 1. Let us consider the system

N
=) ai(t)us(t)
k=1
1- cos (TH,20)))
2 (ZkN_ ud()) +1

Zuk(t

’Up,,(].) — uz(O) = u,(l) i u,(O) = 0, 1= 1,2, cee ,N. (a,-j(t))T = (a,;j(t)) is positive
definite, 4,5 = 1,... ,N for each ¢t € [0,1] and a;;(0) = a;;(1), while b(t) =
(t—1)sinmt < 0on [0,1].

Here,

[‘“ N
= A(t — 1)sinnt +2sin (Z u? (t)) log, (M (¢t))|ui(t),

k=1 .

where M(t

m!o—l

V(u) = (1 — cos |u|?) log, (—;— + |u|2> — 400 as |u| = +oo,
(V(u) =0 if |ul|® =2km ke N).
and

V(u) < 2(1 + log, (1 + 2lul?)).
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Clearly, fixing s:1<s<2, wechoose a=4 and thus have
V(u) <41+ |u|®) forall ueRM.
Furthermore,
V(u) V(0) =0 forevery u E RY, Ju| < 1/V2.

So, we choose vy = 1//2.

3. conclusion

In a 3-D representation, the function V' in the system (P) produces a proto-
type of a juicer; we refer to the real parameter A as a zooming control since it
regulates size. And from the scaling location of the zooming control, the param-
eter takes a minimum value 1/p,(r), while there is no maximum enlargement.
So, in a way, we can say that the volume of the juicer can be maximized as much
as desired while it cannot go below a certain value.

Fig. 1 below illustrates the concept.

A Prototype of a Juicer Landscape

Figure 1 Juicer Landscape
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