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Abstract. In this paper we have applied a variant of Ricceri’s three critical
points theorem provided by Averna and Bonanno to establish an existence and
multiplicity result for periodic solutions of a system of differential equations in-
volving a real parameter.

1. Introduction

In this paper we consider the existence and multiplicity of periodic solutions
of the system

$\ddot{u}-A(t)u=\lambda b(t)V^{\prime}(u)$ $t\in[0, T]$ (P)

$\dot{u}(T)-\dot{u}(0)=u(T)-u(O)=0$

where $\lambda$ is a real parameter, $A\in L^{\infty}(\mathbb{R}, \mathbb{R}^{N\times N})$ is positive definite, $V$ : $\mathbb{R}^{N}\rightarrow$

$\mathbb{R}$ , and $b:\mathbb{R}\rightarrow \mathbb{R}$ .
Recently, Ricceri developed a critical points theorem [4] which we have used to
prove results in [7]. For the reader’s benefit, we state here the three critical
points theorem of Ricceri’s in [4]:

THEOREM 1.1. Let $X$ be a separable and reflexive real Banach space;
$\phi$ : $X\rightarrow \mathbb{R}$ a continuously G\^ateaux differentiable and sequentially weakly lower
semicontinuous functional whose G\^ateaux derivative admits a continuous inverse
on $X^{*};$ $\psi$ : $X\rightarrow \mathbb{R}$ a continuously G\^ateaux differentiable functional whose
G\^ateaux derivative is compact; $I\subseteq \mathbb{R}$ is an interval. Assume that

i) $\lim_{||x||\rightarrow\infty}(\phi(x)+\lambda\psi(x))=+\infty$ for all $\lambda\in I$ .

ii) And there exists a continuous concave function
$h:I\rightarrow \mathbb{R}$ such that
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sup $inf(\phi(x)+h(\lambda)+\lambda\psi(x))<$ $inf\sup(\phi(x)+h(\lambda)+\lambda\psi(x))$ .
$\lambda\in I^{x\in X}$ $x\in X_{\lambda\in I}$

Then there exists an open interval $J\subseteq I$ and a positive number $\rho$ such that for
each $\lambda\in J$ the equation

$\phi^{\prime}(x)+\lambda\psi^{\prime}(x)=0$

admits at least three distinct solutions whose norms are less than $\rho$ .

The above Ricceri critical points theorem establishes a uniform upper bound
for the norms of all eigen vectors corresponding to each admissible eigen value
$\lambda$ for which they are solutions of problem (P). However, this theorem, though
a valuable tool, contains an inequality (ii) which is usually difficult to verify.
The theorem has since been improved upon by authors like G. Bonanno [5], B.
Ricceri [1], D. Averna and G. Bonanno [2].
We recall theorem $B$ in [2] which we use to prove our main result:

THEOREM 1.2. Let $X$ be a reflexive Banach space, $\phi$ : $X\rightarrow \mathbb{R}$ be contin-
uously G\^ateaux differentiable and sequentially weakly lower semi continuous,
whose G\^ateaux derivative has a continuous inverse on $X^{*},$ $\psi$ : $X\rightarrow \mathbb{R}$ be contin-
uously G\^ateaux differentiable with a compact G\^ateaux derivative.
For $r\in \mathbb{R}$ let us define,

$\psi(x)-\psi\frac{\inf}{\phi^{-1}(]-\infty,rU}w$

$\varphi_{1}(r)=$ $\inf$ (1.1)
$x\in\phi^{-1}(]-\infty,rD r-\phi(x)$

and

$\psi(x)-\psi(y)$
$\varphi_{2}(r)=$ inf sup (1.2)

$x\in\phi^{-1}(]-\infty,r[)y\in\phi^{-1}([r,+\infty[)\phi(y)-\phi(x)$

where $\overline{\phi^{-1}(]-\infty,r[)}$ denotes the closure of $\phi^{-1}(]-\infty, r[)$ in the weak topology.
Assume that

i) $\lim(\phi(x)+\lambda\psi(x))=+\infty$ for all $\lambda\geq 0$ ;
$||x||\rightarrow+\infty$

ii) there exists $r\in \mathbb{R},$
$ r>\inf_{X}\phi$ , and $\varphi_{1}(r)<\varphi_{2}(r)$ .

Then for each $\lambda\in$ ] $\frac{1}{\varphi_{2}(r)},$ $\frac{1}{\varphi_{1}(r)}$ [, the equation

$\phi^{\prime}(x)+\lambda\psi^{\prime}(x)=0$

has at least three solutions in $X$.

Remark. If $\varphi_{1}(r)=0,$ $\frac{1}{0}$ is denoted $as+\infty$ .
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It is very interesting to note that in theorem 1.2, the circumvention of in-
equality ii) in theorem 1.1 sacrifices the uniform upper estimate (apriori bound)
for norms of solutions of problem (P) for each admissible parameter $\lambda$ . As we
apply the variant theorem 1.2 here, a fascinating open problem is to prove an in-
vestigative tool which does not include inequality ii) of theorem 1.1 but preserves
the apriori bound given in theorem 1.1. The difference between results obtained
in [7] and in this paper is mainly in the apriori bounds for solutions for each ad-
missible $\lambda$ ; however, the results in this paper are obtained under comparatively
less stringent conditions on the nonlinearity.

We shall investigate solutions of (P) in the Sobolev space $W^{1,2}(0, T;\mathbb{R}^{N})=$

$H_{T}^{1}$ with the standard norm

$\Vert u\Vert=(\int_{0}^{T}(|\dot{u}|^{2}+|u|^{2}))$

7

for all $u\in H_{T}^{1}$ .

Since A is positive definite, we have an equivalent norm on $H_{T}^{1}$ given by

$\Vert u\Vert_{1}=(\int_{0}^{T}(|\dot{u}|^{2}+(Au, u)))$

i

for all $u\in H_{T}^{1}$ .

DEFINITION 1.3. We define the functions $\phi$ and $\psi$ , respectively as follows:

$\phi(u)=\frac{\Vert u\Vert_{1}^{2}}{2}$ and $\psi(u)=\int_{0}^{T}b(t)V(u)dt$ (1.3)

2. Main result

THEOREM 2.1. Assume that

i) $A=s(a_{ij})$ is a positive definite symmetric N-order matrix such that $ a_{ij}\in$

$L^{\infty}(O, T),$ $a_{ij}(T)=a_{ij}(0),$ $i,j=1,$
$\ldots,$

$N$ .
ii) $V\in C^{1}(\mathbb{R}^{N}, \mathbb{R})$ , with $V(O)=0$ , and $\lim_{|x|\rightarrow+\infty}V(x)=+\infty$ .

iii) $b\in C^{0}(\mathbb{R}, \mathbb{R})$ and $b(t)\leq 0$ for all $t\in[0, T],$ $b\neq 0$ .
iv) There exist $a>0,$ $s<2:V(x)\leq a(1+|x|^{s})$ for all $x\in \mathbb{R}^{N}$ .
v) There exists $\gamma>0$ so that for any $x\in \mathbb{R}^{N}$ , where $|x|\leq\gamma$ , we have $ V(x)\leq$

$V(0)=0$ .
Then there is an unbounded interval I such that for every $\lambda\in I$ , problem $(P)$

admits at least three solutions.

Remark. With regards to condition ii), our result also holds if there exists
$\delta>0:V(x)>0$ $a.e$ $|x|\geq\delta$ .
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It is obvious that the critical points of the functional

$I_{\lambda}(x)=\phi(x)+\lambda\psi(x)$ for each real $\lambda$

correspond to solutions of (P).

LEMMA 2.2. If $b\in C[0, T]$ is as in (iii) of theorem 2.1, $V\in C(\mathbb{R}^{N}, \mathbb{R})$ , and
condition iv) in Theorem 2.1 holds, then for each $r>0$ , there exists $M_{r}>0$

such that

$\psi(x)\geq-M_{r}$ for all $x\in\phi^{-1}([0, r])$ .

Proof. From the definition of $\psi$ in Definition 1.2 above, we have

$\psi(x)=\int_{0}^{T}b(t)V(x)$ .

So, for $|x|\leq 1$ , it follows from condition iv) of theorem 2.1 that the proposition
clearly holds, since then $\psi$ is bounded below by a constant 2$amT$ , where $m=$
$\min b(t)$ . So we assume that $|x|>1$ . Then from (iv),we have

$t\in[0,T]$

$\psi(x)$ $\geq am\int_{0}^{T}(1+|x|^{s})$

$\geq 2amT\Vert x\Vert_{\infty}^{s}$

$\geq 2^{\frac{s+2}{2}}amTc_{\infty}^{s}[\phi(x)]^{z}s$

(It is well known that there exists $c_{\infty}>0:\Vert u\Vert_{\infty}\leq c_{\infty}\Vert u\Vert_{1}$ , for all $u\in H_{T}^{1}$ )
and this completes the proof. $\square $

LEMMA 2.3. Given conditions $ii$), $iii$), and v) in Theorem 2.1, then there
exists $r>0$ such that $\varphi_{1}(r)=0$ and $\varphi_{2}(r)>0$ .

Proof. Since $A$ is positive definite, there exists $\beta>0$ such that $ A(t)u.u\geq$

$\beta|u|^{2}$ for all $t\in[0, T],$ $u\in \mathbb{R}^{N}$ . So, letting $\beta^{*}=\min\{1, \beta\}$ we can choose
$c_{\infty}=\frac{1+T}{(T\beta^{*})^{1/2}}$ and then given condition v) in theorem 2.1, we choose $r>0$ :
2 $c_{\infty}^{2}r\leq\gamma^{2}$ .

We shall show that there is a minimum point $x_{r}^{*}\in\phi^{-1}([0, r])$ such that
$\phi(x_{r}^{*})\neq r$ ; in other words, $\phi(x_{r}^{*})<r$ :
Since

$\Vert x\Vert_{\infty}\leq\frac{1+T}{(T\beta^{*})^{1/2}}\Vert x\Vert_{1}$ for all $x\in H_{T}^{1}$ ,
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it follows from condition (v) and the non-positiveness of $b(t)$ on [O,T] that for
all vector functions (constant or non-constant) $x\in\phi^{-1}([0, r]),$ $\psi(x)\geq\psi(0)=0$ .
And so, $x_{r}^{*}=0$ is a minimum point of $\psi$ . Since by definition of $\phi$ , $\phi(x)\rightarrow$

$+\infty$ as $\Vert x\Vert_{1}\rightarrow+\infty$ , we can fix $x^{*}\in H_{T}^{1},$ $\Vert x^{*}\Vert_{1}$ sufficiently large such that

$\phi(0)<r<\phi(x^{*})$ .
The existence of such a point follows from condition (v) as well. Besides,

$inf\psi=\psi(0)=0>\psi(x^{*})$ .
$\phi^{-1}([0,r])$

Therefore, from the definition in (1.1), $\varphi_{1}(r)=0$ .
Furthermore,

$\varphi_{2}(r)\geq\frac{\psi(x_{r})-\psi(x^{*})}{\phi(x^{*})}>0$ .

Thus, $\varphi_{1}(r)<\varphi_{2}(r)$ .
This completes the proof. $\square $

Remark.
a) The set $\phi^{-1}([0, r])$ is convex. So, if the functional $\psi$ is strictly convex,

then $\psi$ has at most one minimum point on $\phi^{-1}([0, r])$ ([8], Theorem 38.C). Since
we have not imposed conditions on the potential $V$ which could make $\psi$ strictly
convex, we cannot claim unique existence of minimum point of $\psi$ in $\phi^{-1}([0, r])$ .

b) $\overline{\phi^{-1}(]0,r[)}=\phi^{-1}([0, r])$ ; and since $\phi$ is continuous and convex (and so
weak sequentially continuous), the set $\phi^{-1}([0, r])$ is closed (or weak sequentially
closed). Reflexivity of $H_{T}^{1}$ implies that every bounded sequence in it has a weakly
convergent subsequence ([8], Proposition 38.2 (2)). Furthermore, $\psi^{\prime}$ is strongly
continuous, and so $\psi$ is weak sequentially continuous ([8], Corollary 41.9). It then
follows $hom[8]$ (Corollary 38.9) that there is a minimum point $x_{r}\in\phi^{-1}([0, r])$

such that

$inf\psi=\psi(x_{r})$ .
$\phi^{-1}([0,r])$

Proof of theorem 2.1. To prove the assertion, it is sufficient to show that the
assumptions of Theorem 1.2 are satisfied by $\phi$ and $\psi$ Clearly, $\phi$ and $\psi$ as
defined in equation (1.3) both satisfy the smoothness conditions in Theorem 1.2.
For each real parameter $\lambda\geq 0$ ,

$\phi(x)+\lambda\psi(x)$ $=\frac{\Vert x\Vert_{1}^{2}}{2}+\lambda\int_{0}^{T}b(t)V(x)dt$

$\geq\frac{\Vert x\Vert_{1}^{2}}{2}+a\lambda mT\Vert x\Vert_{\infty}^{s}+a\lambda mT$

$\geq\frac{\Vert x\Vert_{1}^{2}}{2}-c\Vert x$ li $-d$ , $0<c,$ $ d<\infty$ .
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Thus,

$\lim(\phi(x)+\lambda\psi(x))=+\infty$ for all $\lambda\geq 0$ .
$||x||\rightarrow+\infty$

$\phi(x)\geq 0$ for all $x\in H_{T}^{1}$ ; $\phi(0)=0$ . Therefore,
$\inf_{H_{T}^{1}}\phi=0$

. Hence, for all $r>0$ ,

$ r>\inf_{H_{T}^{1}}\phi$
.

Furthermore, we have shown in Lemma 2.3 that there exists $r>0$ such that

$\psi(x)-\psi(y)$

$\varphi_{2}(r)=\inf_{x\in\phi^{-1}(]-\infty,r[)}\sup_{y\in\phi^{-1}([r,+\infty[)}\overline{\phi(y)-\phi(x)}>\varphi_{1}(r)$

$=\inf_{x\in\phi^{-1}(]-\infty,r[)}\frac{\psi(x)-\frac{\inf}{\phi^{-1}(]-\infty,r[)}w\psi}{r-\phi(x)}=0$ .

And so

$\varphi_{2}(r)>\varphi_{1}(r)$ .

Therefore, for every $\lambda\in$ ] $\frac{1}{\varphi_{2}(r)},$ $+\infty$ [, the problem (P) admits at least three solu-
tions. $\square $

EXAMPLE 1. Let us consider the system

$\ddot{u}_{i}(t)-\sum_{k=1}^{N}a_{ik}(t)u_{i}(t)$

$=\lambda(t-1)$ sin $\pi t[\frac{4(1-\cos(\sum_{k=1}^{N}u_{k}^{2}(t)))}{2(\sum_{k=1}^{N}u_{k}^{2}(t))+1}+2$ sin $(\sum_{k=1}^{N}u_{k}^{2}(t))\log_{e}(M(t))]u_{i}(t)$ ,

where $M(t)=\frac{1}{2}+\sum_{k=1}^{N}u_{k}^{2}(t)$ .

$\dot{u}_{i}(1)-\dot{u}_{i}(0)=u_{i}(1)-u_{i}(0)=0,$ $i=1,2,$ $\ldots$ , N. $(a_{ij}(t))^{T}=(a_{ij}(t))$ is positive
definite, $i,j=1,$ $\ldots N$ for each $t\in[0,1]$ and $a_{ij}(0)=a_{ij}(1)$ , while $b(t)=$

$(t-1)$ sin $\pi t\leq 0$ on $[0,1]$ .
Here,

$ V(u)=(1-\cos|u|^{2})\log_{e}(\frac{1}{2}+|u|^{2})\rightarrow+\infty$ as $|u|\rightarrow+\infty$ ,

($V(u)=0$ if $|u|^{2}=2k\pi,$ $k\in \mathbb{N}$).

and

$V(u)\leq 2(1+\log_{e}(1+2|u|^{2}))$ .
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Clearly, fixing $s:1<s<2$ , we choose $a=4$ and thus have

$V(u)<4(1+|u|^{s})$ for all $u\in \mathbb{R}^{N}$ .

Furthermore,

$V(u)\leq V(0)=0$ for every $u\in \mathbb{R}^{N},$ $|u|\leq 1/\sqrt{2}$ .

So, we choose $\gamma=1/\sqrt{2}$ .

3. conclusion

In a 3-D representation, the function $V$ in the system (P) produces a proto-
type of a juicer; we refer to the real parameter $\lambda$ as a zooming control since it
regulates size. And from the scaling location of the zooming control, the param-
eter takes a minimum value $1/\varphi_{2}(r)$ , while there is no maximum enlargement.
So, in a way, we can say that the volume of the juicer can be maximized as much
as desired while it cannot go below a certain value.

Fig. 1 below illustrates the concept.

Figure 1 Juicer Landscape
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