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Abstract. In this paper we apply some basic properties concerning a-times
integrated C-cosine functions to deduce a characterization of an exponentially
bounded a-times integrated C-cosine function in terms of its Laplace trans-
form,and then use it to show that for each z € (A2 — A)"1CX the second order
abstract Cauchy problem: )

t&—l

[(a)
satisfies ||u(t)|],||u” (t)|| € O(e“?) as t — oo when the closed linear operator A :
D(A) ¢ X — X which generates an exponentially bounded a-times integrated
C-cosine function C(-) on a Banach space X with ||C(t)|| < Me“* for allt >0
and for some fixed M ,w > 0.Moreover , we show that a closed linear operator in
X generates an exponentially bounded o-times integrated C-cosine function on

u' (t) = Au(t)+ z for t > 0,u(0) = u/(0) = 0 has a unique solution u(-) which

X also generates an exponentially bounded %—times integrated C-semigroup on

X.

1. Introduction

Let X be a Banach space with norm || - ||, and let B(X) denote the set of all
bounded linear operators from X into itself. For each a > 0, and C € B(X), a
family T'(-)(= {T'(t)|t > 0}) C B(X) is called an a-times integrated C-semigroup
on X, if

(i) T(-) is strongly continuous. That is, for each z € X, T(-)z : [0,00) = X is
continuous;
(ii) T(-)C = CT(-). That is, T(t)C = CT(t) on X for each t > 0;

t+s t s’
(iil) T)T(s)z = f‘%j[/o —-‘/0 ——/0 |(t+s—7)*"1T(r)Czdr for x € X and
t, s > 0.
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(see [1, 5,7, 8, 16, 17, 20, 21, 23] ) Moreover, we say that T'(-) is nondegenerate,
if z = 0 whenever T'(t)z = 0 for all ¢ > 0. In this case, the closed linear operator
A: D(A) C X — X defined by D(A) = {z|z € X and there exists a y, € X
such that T(t)e — rriyCe = [y T(s)yzds for all t > 0} and Az = y, for all
z € D(A), is called the ( integral ) generator of T'(-). In general, we say that
T(-) is exponentially bounded, if there exist M, w > 0 such that ||T'(t)[| < Me“*
for all ¢ > 0. In this paper we consider the following two abstract Cauchy
problems:

ACPy(f,7) { w'(t) = Au(t) + £(t) for t > 0,
U(O) =,

and

u”(t) = Au(t) + f(¢t) for t > 0,
u(0) =z, u’(()) =y,

where z,y € X are given, A : D(A) C X — X is a closed linear operator and fis
an X-valued function defined on a subset of R containing (0, o0). The concept of
(exponentially bounded) o-times integrated C-semigroups has been extensively
applied to discuss the existence of (strong or weak) solutions to ACP(f, z) (see
(1-5, 7, 8, 16, 17, 20, 23] ). Some equivalence conditions between the existence
of an a-times integrated C-semigroup (or a C-semigroup) and the unique ex-
istence of (strong or weak) solutions of ACP;(f,z) are also deduced as in [9,
10]. Recently many authors have to study the relation between the existence of
a C-cosine function (see [1,5-7,11,14,15,19] ) or an o-times integrated C-cosine
function for a € N (see [15,22,23] ) and the existence of (strong or weak) solutions
of ACP(f,z,y). When a > 0 is arbitrarily given , the formation of an a-times
integrated C-cosine function has been constructed as in m which is presented
as below : A family C(-)(= {C(¢)|t > 0}) C B(X) is called an a-times integrated
C-cosine function on X, if it is strongly continuous, C(-)C = CC(-), and satis-
fies 2C(t)C(s) = w5 {[fs ™" — Jo — [51(t + s — r)*"1C(r)Cdr + Juzg(s—t+
r)a’lC(r)Cmdr—i—fI:_sl (t—s+r)*"1C(r)Cxdr + fo|t_s' (lt—s|+r)>"1C(r)Czdr}
for z € X and t,5 > 0. In this case, its (integral) generator A: D(4A) € X — X
is a closed linear operator in X defined by D(A) = {z|r € X and there ex-
ists a y; € X such that C(t)z — fx:_l Cz = fot Jo C(r)yzdrds for all t > 0}
andAz = y, for all x € D(A) when C(-) is nondegenerate. Some results con-
cernitig ACP,(f,x,y) are also deduced in there and in [12,13],and examples of
exponentially bounded a-times integrated C-semigroup and C-cosine function
generated by partial differential operators given as in [8] and [25], respectively.
As in [9-11] for cases of C-cosine function and a-times integrated C-semigroup,
we shall first prove a characterization of an exponentially bounded a-times in-
tegrated C-cosine function in terms of its Laplace transform, and then use it to

ACP;(f,z,y) {
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show that if C(-) is a nondegenerate a-times integrated C-cosine function on X
with generator A, and satisfies ||C(¢)|| < Me** for all ¢ > 0 and for some M,
w >0, then for each A > w and z € (A2 — A)7!CX, ACP2(jo-1(")z,0,0) has
a unique (strong) solution u(-) which satisfies ||u(t)|,||u”(¢)|| € O(e**) as t ap-
(o) A
closed linear operator A which generates an exponentially bounded a-times inte-

proaches oo, where j,_1(t) = for ¢ > 0. Moreover, we can also show that a

(0 2
grated C-cosine function on X also generates an exponentially bounded E—tlmes
integrated C-semigroup on X.

2. Exponentially bounded a-times integrated C-cosine functions

In this section, we always assume that « is a positive number and C € B(X)
is an injection, and first note some basic properties concerning a-times integrated
C-cosine functions which have been deduced in and frequently applied in this
paper.

PROPOSITION 2.1 (see [12]). Let A be the generator of a nondegenerate c-
times integrated C-cosine function C(-) on X. Then ‘

(2.1) C(t)z € D(A), AC(t)x = C(t)Az for all z € D(A) and t > 0;
t t

2.2) / S(r)zdr € D(A), A / S(r)zdr = C(8)x — ju(t)Cx

0 0

for allt > 0 and x € X, where S(r)z = / C(s)zds;
0

(2.3) C1AC = 4;
(2.4) C(-) is uniquely determined.

DEFINITION 2.2. A function u : [0,00) — X is called a (strong) solution of
ACPy(f,z,y) , if u € C%((0,00); X) N C([0,00); X) N C((0,00); [D(A)]), and
satisfies ACP2(z,y, f), where [D(A)] denotes the Banach space D(A) with the
graph norm |z|4 = ||z|| + || Az]|.

PROPOSITION 2.3 (see [12]). Let A be the generator of a nondegenerate -
times integrated C-cosine function C(-) on X and C* = {z € X|C(-)z is contin-
uously differentiable on (0,00)}. Then

(2.5) ~ S(t)C' Cc D(A) for each t > 0;
(2.6) S(-)z is the unique solution of ACP3(ju—1(-)Ct,0,0) for each z € C;
(2.7) S(-)x is the unique solution of ACPy(ja-1(-)Cz,0,0)

in C2((0,00); X) N C([0, 00); [D(A)])for all z € D(A).
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PROPOSITION 2.4 (see[12]). Let A be the generator of a nondegenerate a-times
integrated C-cosine function C(-) on X and z € X. Assume that C(t)z € R(C)
for all t > 0 and C~1C(-)x is continuously differentiable on (0,00). Then
C~1S(t)z € D(A) for all t > 0 and C~1S(-)x is the unique solution of
ACPz(ja_l(-).’E,0,0).

Next we shall prove an important lemma which can be used to obtain the
main result of this paper.

LEMMA 2.5. Let A be the generator of a n‘ondegenerate a-times integrated
t

C-cosine function C(-) on X and S(t)z = / S(r)xdr for allz € X andt > 0.
For given A > 0 ;we set Dy to denote the set of all those z € X for which Lz =
/ “MC(t)xdt exists and both / e || S (t)z||dt and/ e t||S(t)z||dt are
ﬁgute Then LyDx C D(A) and ()\2 ALz = \Cxz fo?‘ all z € Dy.

Proof. Indeed,.if z € Dy is given,then from integration by parts, we have

/ e MC(t)xdt = e~ / C(s)zds + de™ / / C(s)xdsdt
0

+ A2 / —At / / C(r)zdrdsdt

e A8 (T)z + Ae " S(1)z + N2 / e S(t)zdt,
i 0

which converges to )\2/ ~MS(t)xdt as T — 0o. Therefore, Lyz = )\2/ e S(t)zdt.
0 0

T

It follows from (2.2) and the closedness of A that we have \>+2 / e~ S(t)zdt €
0
D(A) and
Ao+2 4 / e~ MS(t)zdt = A*+? / e M[C(t) —
0 0

ta
» Fa+1)
= A2z — A\Cz as T — oo.

Again, from the closedness of A, we have Lyxz € D(A) and A*ALyz = A\*T2Lyz—
ACz, or equivalently, (A2 — A)A®*Lyz = ACx.

Cz)dt

"THEOREM 2.6. Let {C(t)|t > 0} be a strongly continuous family of bounded

linear operators on X which satisfies ||C(t)|| < Me“* for allt > 0 and for some
M, w > 0. For A > w, we define R(A\)z = A\*Lyz = )\“/ e~ C(t)zdt for

0
z € X. Then C(-) is an a-times integrated C-cosine function on X if and only
if (A — p?)R(p)R(N) = [AR(p) — pR(N)]C for all A, p> w.
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Proof. As in the proof of [9, Proposition 2.2], we have
t+s
T / / e e M| / / / (t+ s —r)> " 1C(r)Czdrd(s,t)
= A" *(A — )" [R(p)Cz — R(A)Cx] for all z € X and t,s > 0.

Next we shall show that

// “HEgTAL[ /Itt s|(s —t+7)2"1C(r)Cxdr

t>3>0

s |t—s|
+ / (t — s+ 7)*"1C(r)Cxdr + / (|t — s| + )2~ 1C(r)Czdr]d(s, t)
|t—s|
=" _a(A +p) T R(A)Cz + AT (A + 1) T R(p)Cx
_ —lpa—1_—pt —Ar v,
I‘(a / / (A4 p) "t e #e " C(r)Cxdtdr
- i_,—— / (A + p)"telem X C(r)Cadtdr.

Indeed, applying Fubini’s theorem and change of variables for double integrals,
we have
oo [o ) r+s ‘
/ / e_’”/ C e M(s—t+1r)*1C(r)Crxdtdrds

/ / / e (s —t+r)*"1C(r)Czxdtdsdr
o Jo ‘

= / e~ M / e " (s —t +7)*"1C(r)Cxdsdtdr
0 T t

-r

=/ / e“)‘t/ e~ #(' =) "1 O(1)Cxds' dtdr
0 T 0

= /Ooo > e~ Mg u(=r+t) /Ooo e_"sls'a—lds'C(r)Ca:dtdr
- /Ooo err /oo e~ AWt =T (a)C(r)Cxdtdr

= Aw pT(a)et" /oo e~ MM AC (r)Cadr
- /0 4o T(@)eh (A + )~ Lem T C(r) Cndr

=p A+ p) () /oo e—'\rC(r)C:cdr‘
0
=T(@)A ™ *(A+ u) ' R\)Cz
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and

e He M(s — t + ) 1C(r)Cxdtdrds

=
S~
™

8
8

e He M (s — t 4 r)* 1O (r)Cdtdsdr

8
8
8

e e (s — t 4+ r)*1C(r)Czdsdtdr

8

e Mt =2t (o 4 1\ 1O(p)Cxds' didr

8
8

8
Nho\{f\&

8

e~ Mmte=ns' (o 4 pYe~lO(r)Cads' dtdr

8

e~ tWite=us' (g 4 P2 10(r)Cadtds'dr

8
8
8

e~ A+t gpo—ns’ (s + r)a—IC(T)C:EdSIdT

8
8

~
> §
+

p)"le"(kﬂ‘)"e"“s’ (s +7)*"1C(r)Cxds'dr

8
8

(A + u)'le—(’\*”“)"e_“(s”“’")s”a_lC(r)C:cds”dfr

I

Il
Nc\o\c\o\ghhc\c\
\ﬂ\o\ho\g*\*}\\xﬁ\

8
8

|

(A + p)~lerrens” s"*7'C(r)Czds" dr

=/ / (A + p) "o temHem O (r) Cadtdr.
0 r

Combining these equalities we obtain:

t>s2>0

— f(laj / / e—Hog—Mt / " (8= t+ 1) C(r) Cadrd(s, 1)

t>s>0

1 oo poo i ,
= 7N —Hs Ao a-1
T(a) /o / /t_s e™%e™ (s — t +r)* 7 C(r)Cdrdtds
= 1 /°° /oo /T+S e_pse—)\t(s —t+ r)a—lc(r)cxdtd’rds
- Nae) Jo /s i
+ 1 /00 /s /'r'+3 e_#-se—z\t(s —t4+ T)a_lc(r)cxdtdfrds
L(a) Jo Jo Js

1 /oo /oo /r+s ps At a1
= — e He s—t+r C(rYCzdtdrds
o Jo /. ( )rem
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a)/ / / e He —t+7)*"'C(r)Cxdtdrds
= A" *(A + ) T'R(\)Cxz

_ —1l,a—1_—ut_—Ar
_I‘(a)/o /r (A4 p) "t e e C(r)Cxdtdr,

which together with the fact

//e weg=nty [ s ) O
t—s|

t>s>0

/ - S|(It_s|+r)°“10( )Cxdrld(s, )

// ~ps —*t/ — s+ )" 1C(r)Cxdrd(s,t)

t>s5>0
= / / / e e (t — s+ r)*"1C(r)Cxdrdtds

/ e~ M(t — s + r)*"1C(r)Czdtdrds

8

8

/ (t' + ) le X+ =B O(r)Cdt drds
0

8
8

Il
NNE\N:\SNO\N
o\.hc\ﬁc\o\o\

8
ﬁ

( + 7)2 " le= ) =X (1) O drdt’ ds

o

/ (t' 4 r)*"le= A tm)s—at! C(r)Czdrdsdt

8
8

o0

(' +r)>t —(f\+u)s —X'C(r)Czdsdrdt’

8
8

8
8

o0

e~ Ot ds(t! 4 r)*~1e 2 C(r)Cadt'dr

/ (t' +7)2 e~ OtmIs =X O (r)\Czdsdt dr

A+ p)"tem OFRT (Y 4 r)e1e= X O(r)Cdt dr

8
8

= (A + p) e AHRIre=AE=")1o=10(p) Czdtdr
0 r
=A+p” / / e e~ Mte=1C(r) Cxdtdr
0 r
A+ ,u)—l[/ / e e~ Mt 1O(r)Cdtdr
o Jo
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/ / ur g=Mya=10(r) Codtdr]
=X+ p) A u T (a)R(p)Cx

~(A+p)” / / re~ 710 (r)Cxdtdr

implies that

// e ¥ ')‘t[ (s —t+7)*"1C(r)Czdr
|t—s|

t>s>0

s [t—s]
+ / (t—s+ r)a’lC(r)C:cdr +'/ (|t — s| + r)*"1C(r)Czdr]d(s,t)
l 0 .

t—s|

=)"° -a(,\ + 1) *ROA)Cz + A7 u (A + u)“lR( )Cx

F(a) / / (A + p)"1te e e " C(r) Cxdtdr

- — X + p) "1t le= A=k O (r)Cadtdr.
o /0 /0 O+ ) (")

Similarly, we can show that

—Hsg =t . r)o— 1 NCz
o // . SI(s t +r)2=1C(r)Cdr

s>t>0

s [t—s|
+ / (t — s+ 7r)*"1C(r)Czdr + / (|t — 8| + )2~ 1C(r)Czdr]d(s, t)
I - 0

t—s|

=A% (A + ) T*RA)Cz + AT (A + p) T R(p)Ca
1 /00/00 —1ia—1_—At —ur
- A+ t* e Me #C(r)Cxdtdr
YORNA (A+ 1) (r)
1 /OO/T —lia—1_—put —Ar
— A+ t* e He T C(r)Cadtdr.
@) Jo s (A+mn) (r)
Consequently, C(-) is an o-times integrated C-cosine function on X if and only
if (A2 — p®)R(p)R(A) = [AR(p) — pR(N)]C for all A, p > w.

As an application of [Theorem 2.6, we can deduce the following characteriza-
tion of an exponentially bounded o-times integrated C-cosine function in terms
of its Laplace transform, which has been deduced by [15,22] when a = n.

THEOREM 2.7. A strongly continuous family C(-) with [|C(t)|| < Me“* for all
t > 0 and for some M, w > 0,is a nondegenerate a-times integrated C-cosine
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function on X with generator A if and only if CC(-) = C(-)C, C71AC = A,
and A\? — A is injective, R(C) C R(\? — A), and for each X > w

(2.8) A*Ly(A2 — A) C A*(\2 = A)Ly = XC.

Proof. Indeed, if C(-) is a nondegenerate a-times integrated C-cosine function
on X with the generator A, then for large A ,the set D, as defined in [Lemma 2.5
is clearly equal to X,which together with (2.1) yields that for each A > w, A2— A
is injective, Ly € B(X), R(Lx) C D(A), R(C) C R(\? — A), and holds.

Conversely, suppose that CC(-) = C(-)C, C~*AC = A, and for each A > w,
A? — A is injective, R(C) C R(A\? — A) and holds. Then R(A\)(\%2 — A) C
(A2 — A)R()\) = XC. Since '

AR(u)C — uR(A)C = R(u)AC — uCR(N)
= R(u)(A* — A)R()) — R(p)(4* — A)R(A)
= (3 — #*)R(W)R(),

implies that C(-) is an a-times integrated C-cosine function on X.
Since A2 — A and C are injective, we conclude from that C(-) is non-
degenerate. Now let B denote its geherator. Then the ” only if ” part of
this theorem asserts that C"!BC = B, and for each A > w, A\? — B is injec-
tive, R(C) C R()\%2 — B), and R(A\)(A\2 — B) C (A2 — B)R()\) = AC. Next if
z € D(A) is given, then A\Cz = R(A\)(\? — A)z € D(B) and A(\? — B)Cz =
(A2 — B)R(A\)(A2 — A)z = A\C(A\? — A)z, so that z € D(C~'BC) = D(B) and
Az = C7'BCz = Bz. Hence A C B. By symmetry, we also have B C A. This

completes the proof of this theorem.

Combining [Theorem 2.7| with [Proposition 2.4, we can deduce the following
theorem.

‘THEOREM 2.8. Let A be the generator of an exponentially bounded a-times

integrated C-cosine function C(-) on X with ||C(t)|| < Me**? for allt > 0 and for
some M, w > 0, and let A\ > w. Then for each x € (A2 — A)71CX = \*" 1L\ X
, w(-) = C71S()z is the unique solution of ACPs(ja—1(-)z,0,0). Moreover,

Nlu@)|Llu”(t)]] € O(e“?) as t = o .

Proof. From [Proposition2.4] it suffices to show that C'(t)z € R(C) and C~1C(-)x
€ C([0,00); X) for each x € (A2 — A)~'CX. Indeed, if z = (A2 — A)~1Cy =
A*~1L,y for some y € X, then

C(t)z = C(t)A\* 1Ly
= A""‘lLAC(t)y
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= /\"‘“1[/0oo e~ C(s)C(t)yds]

=Aa-1/0°° e-*sﬁ%;){[/om—/ot—/08](t+s-r)a—10(r)cydr

+ /lt (s —t+7)*"1C(r)Cydr + / (t—s+7)*"1C(r)Cydr

t—s| |t—s|

[t—s|
+ / (It — s| +7)*"1C(r)Cydr}ds
0

_e-10 /0 T e Zf‘ta) {1 /0 T /0 t— /0 45— e C(r)ydr

+ (s —t+7r)*"1C(r)ydr + /s |(i — s+ 7)271C(r)ydr

lt—s| |[t—s

|t—s]
+ / (It —s|+ r)"“lC(r)ydr}ds
0
€ R(C),

so that . . .
C(t)x — jo(t)Czx = A'/ S(r)zdr = AC/ C18(r)xdr = CA/ C~'S(r)zdr.
0 0 0

Hence C™1C(t)z — ja(t)z = A/Ot C~'S(r)xzdr. Since (A2 — A)z = Cy, we
have Az = A2z — Cy and C(8)7 — jo(t)Cx = /0 ' S(r) Azdr = /0 " S (% —
Cy)dr = )2 f: S(r)mdr;C /Ot S(r)ydr, which implies that C~1C(t)z —ja(t)z =
A2 /Ot C1S(r)zdr — /Ot S(r)ydr. Consequently, C~1C(-)z = ju(-)z + A2 /0. c!

S(r)zdr — / S(r)ydr € C*([0,00); X).
0

3. Connection between integrated C-semigroups and integrated
C-cosine functions

In the following we shall deduce that the generator of a 2o-times integrated
C-cosine function on Banach space X also generates an a-times integrated C-
semigroup on X which has been known when a € N ( see [1, 15] ).

DEFINITION 3.1. A function u : [0,00) — X is called a (strong) solution of
ACP(f,z), if u € C*((0,00); X)NC([0, 00); X)NC((0,0); [D(A)]) and satisfies
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ACP,(f, z).

THEOREM 3.2. Let A be the generator of an exponentially bounded a-times

integrated C-cosine function C(-) on X with ||C(t)|| < Me*t for allt > 0
21=T(a + 1)

d M,w>0 A that K, = dT(t)z =

and for some w > ssume tha I‘(azl)l“(-g‘—-i—l) and T(t)z =

Ka/ e*"20(2t%u)a:du Jor allt > 0 and x € X.Then T(-) is an exponentially
0

bounded g—-tz’mes integrated C-semigroup on X with generator A , and satisfies

IT(t)|| < Ke*’t for allt > 0 and for some K >0 .

Proof. We shall first show that T'(-) is exponentially bounded. Indeed, for each
z € X and t > 0, we have

IT®)z| < Ka / e~ ||C(2t3 ) ||zdu < K, / e~ Me o qy| 2|
0 0

< KaMe“’zt/ e~ —t¥0) il < 9K, Me™ ] =" dullz||
0 0
= KoaMrie !||g| = Ke*t||z||.
It is easy to see from the exponential boundedness of C(-) and the dominated

convergence theorem that 7°(-) is strongly continuous. Combining the closedness
of A with (2.1) , we have for z € D(A) and t > 0, T'(t)z € D(A) and

T(t)Az = Ka/ e‘“zC(Zt%u)A:cdu
0
=Ka/ e""2AC(2t11’u)xdu
0
=A(Ka/ e_UZC(Qt%u):r:du)
0

= AT (t)x.

t ¢

Next we shall show that / T(s)xds € D(A) and A/ T(s)xds = T(t)x —
.3 0 0

Tz +1)

t
/T(s)a:ds
0
oo 2 t 1
=Ka/ e " / C(2s2u)zdsdu
0 0

Cz for all z € X and ¢t > 0. Indeed, if z € X is given, then



70 C.-C. KUO

2t’}’:u
=K, / e~ (2u?)~ / rC(r)zdrdu

) 2t?u )
=—— e" 2u“2/ (2tz2u — r)C(r)zdrdu
2 0 0

oo 2t2'u
+ Kot? / eyl / C(r)adrdu
0
2t7u
=—K— - ’“2/ / C(r)zdrdsdu

+Kat7/ P '-1/ C(r)zdrdd
0

tﬁu
= I; - _2/ /C’ Yzdrdsdu

+ Katie i u / / C(r)zdrds Iﬁ,:8°

+Kat%/ e~k [w ™2 + (2t) 1]/ / C(r)zdrdsdu’
0

t"«'u
=—£{5- e v ‘2/ / C(r)zdrdsdu

+ Ka(20) / [(4t)" w2 + (2)] /0 ke /o " Cr)edrdsdu

2 2t’} u ps
=K, / e / / C(r)zdrdsdu,
0 0 0 -

t
which together with the closedness of A implies that / T(s)xds € D(A) and
0

t . poo
A/ T(s)xds = K-a/ e"“zA/
0 (VI

= Kq /Ooo e~ [C’(2t%u)x - %Cm}du

a

=T(t)z — Ka / e~v204% Y Caxdu
0

ti u
/ C(r)xzdrdsdu

FMa+1)
a—1,% > —u' u,gi_l
= T(t).’]: - Ka2 tz A € mC’wdu
o (&l
=T(t)x — K 2% 1t% (%) Cz

MNa+1)
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[

_? o

r'(s+1)

for all ¢ > 0. It follows from the uniqueness of solutions of ACP,(0,0,0)
that / T'(s)zds is the unique solution of ACP1(jg(-)Cz,0) in C1([0,0); X) N

0
C([0,00); [D(A)]). We conclude from [10,Theorem 2.3] that T'(-) is a nondegen-
erate E-times integrated C-semigroup on X with generator A = C~*AC.

=T(t)z —
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