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Abstract. We give a characterization of totally geodesic Lagrangian surfaces
among minimal or H-minimal surfaces in S2 x §2.

Introduction

Lagrangian submanifolds in Kéhler manifolds have been studied as very in-
teresting subjects in differential geometry. In particular, for Lagrangian sub-
manifolds in a complex projective space with a constant holomorphic sectional
curvature, many results are known, for example, the existence conditions of the
Lagrangian immersion and their congruence (cf.[2]). But for higher rank cases,
for general Hermitian symmetric spaces, it seems that there are no such results
about Lagrangian submanifolds. On the other hand, recently it was shown
that a totally geodesic Lagrangian torus S! x S! in $? x S? has Hamiltonian
volume minimizing property.

In this paper, we consider Lagrangian surfaces in $2 x §2 which are important
next to the complex projective plane C P? among compact Kahler surfaces. Here,
we explain typical examples of Lagrangian surfaces in $?xS?: (i) A surface which
consists of two curves 7;, 72 in S2 embedded in $? x S? by a product immersion.
- In this case, the surface v; X <2 is minimal if and only if both ~; (i = 1,2)
are great circles. (ii) Identify S? with the complex projective line CP! and be
corresponded an element z of CP! to a pair of z and the complex conjugate Z,
then we can get a totally geodesic Lagrangian surface in $? x S2.

We first construct a surface M of S2 x $2 which consists of 1-parameter fam-
ily of pair of great circles in $2 x S2. Then we get the condition for the surface
M to be Lagrangian in S2? x S? (Propositions 1 and 2). Moreover we show that
if such a Lagrangian surface M is minimal, then M is totally geodesic and M is
locally congruent to either the example (i) or (ii) above (Theorem 6). In the last
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section, we study about Lagrangian Hamiltonian minimal (H-minimal) surfaces.
For a compact Lagrangian submanifold in a Kahler manifold, the submanifold
is Lagrangian H-minimal if it has extremal volume under all Hamiltonian defor-
‘mations of the Lagrangian immersion (see and section 1). By definition, a
compact Lagrangian minimal submanifold in a K&hler manifold is H-minimal,
but generally, not vice versa. We give the condition for the Lagrangian surface
M to be H-minimal (Theorem 7). |

The author would like to express her deepest gratitude to Professor Makoto
Kimura for his valuable suggestions and also she heartily thanks the referee for
useful comments.

1. Preliminaries

Let M be a Kihler manifold of complex dimension m with K&hler form 6
and complex structure J. Let M be a real m-dimensional submanifold and let
z:M— Mbea Lagrangian immersion, i.e., z*6 = 0 on M, or equivalently, for
any tangent vector X of M, JX is contained in the normal space to M.

Let S? be a unit sphere in R3. For any p € S2, we define a linear transforma-
tion J of the tangent space T,S2 of S2 at p as Jv = p x v by the vector product
x of R3, so J is a complex structure on S2?. Then the special orthogonal group
SO(3) acts naturally on S? and is the isometry group for the Riemannian metric
on S? which is induced by the standard inner product of R3. Moreover SO(3)
preserves J. Standard symplectic form 8 on S? is given by 6,(u,v) = (p X u) - v,
where u,v € T,52 and - is the induced Riemannian metric on S? by the inclusion
S? C R3.

We define a complex structure J on 2 x $2 by

~

J (X1, X2) = (JX1,JX2) N (1.1)

for all tangent vectors (X1, X2) to S? x S2. Let {, ) be the product metric on
52 x §? defined by :

(X1, X2),(,Y2)) =X; -1 + Xz - Ya.

Then (, ) is a Hermitian metric and S% x S? is a Kéhler manifold with respect
to the complex structure J. S2 x §2 is considered as a symplectic manifold .
with symplectic form 6 = (pr;)*8 + (pry)*6, where pry,pr, : §2 x §2 — 52 are
projection maps and 6 is the standard symplectic form on §2. We also denote -
by (, ) in below.

Finally, we review a Hamiltonian minimal (H-minimal) submanifold ) A
compact Lagrangian submanifold M immersed in a K&hler manifold (M, J) is
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called Hamiltonian minimal or H-minimal if the first variation for the volume
of M vanishes under all Hamiltonian deformations of M of M (cf.[1]). For
the mean curvature vector field H of M, we define the one form ay on M as
ag(X) = g(X, JH) for each tangent vector field X to M, where g is the induced
metric of M. It is known that a compact Lagrangian submanifold M of M is
H-minimal if and only if day = 0 on M where ¢ is the Hodge-dual of the exterior
derivative d on M with respect to the induced metric g (cf.[6], Theorem 2.4).
Hence, a compact Lagrangian submanifold M of M is H-minimal if and only if

div(JH) = _ g(Ve,(JH), &) =0 : (1.2)
i=1
for an orthonormal basis e;,--- ,e, of a tangent space to M where V is the

Levi-Civita connection of M.

2. Lagrangian surfaces in S2? x §2

Let v;(t)(i = 1,2) be great circles in S2. Then (v1,72) : t = (71(t),72(t))
is a geodesic in S? x S2. We put the set of all such pairs (v1,72) as M. We
denote that SO(n) is the special orthogonal group and o(n) is the orthogonal Lie
algebra. Because SO(3) x SO(3) acts transitively on M, M is a homogeneous
space of SO(3) x SO(3). Let v = y(¢) be an element of M satisfying

~v(t) = ((cost,sint,0), (cost,sint,0)).

If K is a set of all elements of SO(3) x SO(3) which preserve v € M, then
K ={(9,9)|lg € SO(2)} and we identify SO(3) x SO(3)/K with M. We define
the natural projection by

7w : SO(3) x SO(3) = M.

Moreover, when we give naturally the two-sided invariant Riemannian metric
for SO(3) x SO(3), we can introduce the Riemannian metric on M such that
m is a Riemannian submersion. Let ¢ be a curve from an open interval I into
SO(3) x SO(3)/K and 3(s) = (g1(s),g92(s)) € SO(3) x SO(3) be a horizontal
lift of p with respect to m. Then, we define a map ® : I x S' — S$2 x $? by
®(s,t) = @(s)v(t). We denote the velocity vector of g;(s) as gi(s) (i =1,2). We
can easily see that g;'(s)g!(s) (i = 1,2) are skew-symmetric matrices of degree
3. We put for some functions a;, b; and ¢;(¢ = 1,2) with respect to s -

0 ai(s) bi(s)
91 (8)gi(s) = | —ai(s) 0  als) ],
—bi(s) —ci(s) 0
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0 az(s)  ba(s)
95 - (8)g2(s) = | —az(s) 0 cs) ]
—ba(s) —c2(s) O

Any element of K is expressed as

coss —sins 0 coss —sins 0
sins coss O0],|sins coss O ,
0 0 1 0 0 1

and the Lie algebra of K is spanned by

0 -1 0\ /0 -1 0\\
((1 0 o) : (1 0 0)) : (2.1)
o o0 o/ \o 0o o

Since G(s) =(91(s), 92(5)) € SO(3) x SO(3) is horizontal, (g1 (s)g4 (), 95 * (5)5 (s))
€ 0(3) x o(3) is orthogonal to [2.1). Hence we have a1(s) +az(s) = 0. So we put
a(s) = a1(s) = —az(s). The map ® : I x S — 52 x §? is written as

cost fcost
d(s,t) = (gl(s) (sint) ,92(s) (sint)) . (2.2)
0 0

First order differentials of ® are
—sint —sint
®, = o2 _ g1(8) | cost | ,g2(s) | cost
ot 0 A 0

a(s)sint
P, = %g = (gl(s) —a(s)cost ) ,
s —b1(s) cost — cy1(s)sint
—a(s)sint
g2(8) a(s) cost . (2.3)
—by(s)cost — co(s)sint
So we get (®;, ®;) = 2 and (P;, P,) = 0. Hence ¥ is regular at (s,t) if and .only
if (®,,®,) # 0. We get from (2.3)

and

(®s,D5) = 2a(s)? + {b1(5)? + ba(5)?} cos? t + {c1(8)? + ca(s)?} sin? ¢
+{b1(s)c1(s) + b2(s)ca(s)} sin 2t.
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We put the right hand of this equation as f(s,t):

f(s,t) = 2a(s)? + {b1(s)? + b2(s)?} cos® t
+ {c1(8)? + ca(s)?} sin® t + {by(s)c1(8) + ba(s)ca(s)}sin2t.  (2.4)

Now, we try to find the condition for the immersion ® to be Lagrangian Xvith re-
spect to the complex structure J defined by [1.1), i.e., the condition of (J®;, ®,)
= 0. We can express J®; by using the vector product x of R3 as

cost —sint
J®, = (gl(s) (sint) x g1(8) ( cost ) ,
0 0
cost —sint ‘
g2(s) (sint) X g2(8) ( cost )) . (2.5)
0 0.

(J®;, ®5) = —{b1(s) + ba(s)} cost — {c1(s) + ca(s)} sint.

So we get

Hence, ® is a Lagrangian immersion if and only if b;(s) + b2(s) = 0 and ¢;(s) +
c2(s) = 0 . Then we get :

PROPOSITION 1. For the map ® : I x S* — 82 x 5% given by (2.2), if ® is a
Lagrangian immersion, then

911 (s)g1(s) + 951 (s)ga(s) = 0. (2.6)

In the following, we put b(s) = b1(s) = —b2(s) and ¢(s) = c1(s) = —cz(s) and
assume that a parameter s of the curve ¢ : I — M satisfies a(s)2+b(s)?+c(s)? =

1. So becomes
f(s, t)‘ =1+ a(s)? + {b(s)? — c(s)?} cos 2t + 2b(s)c(s) sin 2t. (2.7)

Then we can see that

PROPOSITION 2. For the map ® : I x S — 82 x §2 given by (2.2), suppose

that g1(s) and go(s) satisfy the equation (2.6) and a, b and c are functions on I
which satisfy

0 a(s) b(s)
91 1 (8)g1(s) = —g5 ' (8)g5(s) = (—G(S) 0 C(S)) :
—b(s) —c(s) O

Then, for the function f(s,t) given by (2.7),



30 | K. SUIZU

(i) If a(s) # 0, then f(s,t) # 0 for any t.
(ii) If a(so) = 0, then f(s,t) = 0 for some ty, so d® is singular at (so, o)

Now we review the almost product structure of 82 x 82 (cf.[5]). The almost
product structure P of 2 x 52 is defined by
P(Xl,XQ) (Xl, X2) for (Xl,Xz) € Sz X 52.
If M is a Lagrangian surface of §2 x §2, then we have the following (cf.[4]):
LEMMA 3. Letz: M — 82 x S% be a Lagrangian immersz‘on\and P be the
almost product structure of S% x S2. If the vector PX is orthogonal to the

tangent space to M for any tangent vector X of M, then the immersion = is
totally geodesic and the Gauss curvature K of M satisfies K = 1/2.

Here, we suppose a(s) = 0 for the curve ¢ in M. Since

0 0
ﬁis = (gl(s) ( 0 ) ,g2(3) ( 0 )) P
—b(s) cost — c(s)sint —b(s) cost — ¢(s)sint

we get
(P®,,®,) =0 and (P®,,®,)=0.

So P, is a normal vector to M. Hence we get from the Lemma above

PROPOSITION 4. Define a Lagrangian immersion ® : I x S* — S% x S? as

cost cost
®(s,t) = (gl(s) (sint) ,92(8) (sint))
| | 0 0
where g1(s), g2(s) € SO(3) satisfy '
0 0 (s)
97 (8)g1(s) = —g3 " (8)g5(s) = ( 0 0 c(s))

—b(s) —c(s) O
for functions b and ¢ on I. Then the immersion ® is totally geodesic.

3. Lagrangian minimal surfaces in §2 x §?2

First we consider examples of which functions a,b and ¢ are constant and
satisfy '

/0 a b
97 ()91 (s) = —g5 ' (8)g5(s) = (—a 0 c) =: A.
: -b —c O
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Note that solutions of g (s) = g1(s)A and g5(s) = g2(s)(—A) are
91(s) = g1(0)exp(sA)  and  gz(s) = 92(0) exp(—sA).
We suppose that g1(0) and g2(0) are unit matrices of degree 3. Then
91(8) = exp(sA) and  g2(s) = exp(—sA). (3.1)

EXAMPLE 1. The case ofa=1and b=c=0.
In this case, we have

0 s O coss sins 0
exp(sA) =exp|—-s 0 0| = | —sins coss 0].
0 0 O 0 0 1

We calculate similarly for exp(—sA). So we get

coss sins O coss —sins 0
(91(8),92(s)) = —sins coss O0),[sins coss 0] ].
0 0 1 0 0 1

Then is
cos(t — s) cos(t + s)
O(s,t) = ((sin(t - s)) , (sin(t + s)) ) .
0 0

Since we can regard ¢t — s and t + s as independent variable, ® is a product
immersion and totally geodesic immersion. In fact, we put

cos(t — s) cos(t + s)
®, = ((sin(t—s)) , 0) , ®g = (O , (sin(t—!—S))) )
0 ‘ 0

then they are unit normal vectors to S2% x S? ¢ R3 xR3. Hence for X € R3xRS3,
if we denote the normal component of X to S1x 8! C §2x 82 as X1 and 62®/6¢2
as ¥y, similarly to ®;,, P, , then

0(8/t,0/0t) = (By)* = (-B)* =0,
0(8/0t,0/0s) = (B1s)* = (&1 — P2)L =
0(8/8s,0/0s) = (®s5)t = (—®)L =0

where o is the second fundamental form of ®. Therefore we have ¢ =0, i.e., ®
is a totally geodesic immersion.
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EXAMPLE 2. Thecaseof a=c=0and b=1.
By the same calculation as Example 1, we get

cosscost cosscost
&(s,t) = sint , sint .
—sinscost sinscost

Hence & : S?2 — S2 x S2 satisfies

T T T
ely| = vy |,\y
z -z z
Then we have
—cosssint —cosssint
P, = cost , cost ,
sinssint —sinssint
—sinscost {—sinscost
¢3 = 0 ) O )
—cosscost cos scost

so we get (®;,®;) = 2,(®;,®s) = 0 and (P, ®,) = 2cos’t. Hence, P is
regular if ¢ # m/2(mod ). Then, we have o(9/0t,0/0t) = o(0/0t,0/0s)
0(8/8s,0/8s) = 0 by the similar calculation to Example 1. So & is totally

geodesic.

'EXAMPLE 3. The case of af, b and c are general constant real numbers satisfying

a?+b +c%=1. \
We have from [(2.2) and-(3.1)

cost cost
O(s,t) = (exp(sA) (sint) ,exp(—sA) (sint)) ,
0 0

so we get |
: —sint —sint
®, = | exp(sA) | cost | ,exp(—sA) | cost ,
0 0

—bcost — csint

asint —asint
®, = | exp(s4) —acost ,exp(—sA) acost

bcost+ csint

|
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Since A and —A are skew-symmetric matrices, exp(sA) and exp(—sA) are or-

. thogonal matrices. Then these matrices preserve the Riemannian metric ( , ).
Therefore, we get (®:,®:) = 2,(®;,®,) = 0 and (®,,®,) = 1+ a? + (V% -
c?) cos 2t + 2bcsin 2¢t. We put also Example 1 that

, cost cost
®; := | exp(sA) | sint |, 0 |, ®2:= | 0,exp(—sA) | sint ,
0 0

and so ®; and ®; are unit normal vectors to §2x S2 C R3xR3. Then we consider
the condition for ® to be a minimal immersion. Since (8/8t,8/0t) = 0, ® is
minimal if and only if ¢(9/9s,9/8s) = 0. Since

¢33
(¢ —1)cost — besint (c2 — 1) cost — besint
= (exp(sA) ((b2 — 1) sint — bccos t) ,exp(—sA) ((b2 —1)sint — bccos t)) :
—absint + accost —absint + accost

we have

Y

1
(Bss, ®1) = -5+ a® + (b% — c?) cos 2t + 2bcsin 2t},

(Bss, B2) = —%{1 + a? + (b — c?) cos 2t + 2bcsin 2t},
(Pss, ®1) = (b° — %) sin 2t — 2bc cos 2t,
(Dss, @5) = 0.
Hence, we get
0(0/8s,8/0s)
=&, + %{1 + a® + (b — c?) cos 2t + 2bcsin 2t}
‘ —%{(b2 —c?)sin 2t — Zbc cos 2t} P,

0 0
= | exp(sA) 0 ,exp(—sA) 0
a(ccost — bsint) a(ccost — bsint)

So the immersion @ is minimal if and only if a(ccost — bsint) = 0, i.e., a = 0 or
a#0and b=c=0.

Therefore, we have from Proposition 4 and Example 1
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PROPOSITION 5. Let ® : I xS' — 5%x 82 be a Lagrangian immersion defined

by ,
cost cost
(s, t) = (gl(s) (sint) ,g2(s) (sint))
0 0

where g1(8), g2(s) € SO(3) satisfy

0 a b
971 (8)gh(s) = —g5 ' (8)ga(s) = (—a 0 c)
' b —c O

for some constant real numbers a,b and c. Then the immersion ® is minimal if
and only if either a =0 or a # 0 and b = ¢ = 0. Furthermore, the immersion ®
is totally geodesic.

Next, we try to find the condition for which the Lagrangian immersion ®(s, t)
defined by functions a(s),b(s) and c(s), which are not necessarily constant, is
minimal. By a similar calculation above, we get 0(9/0t,0/0t) = 0. Hence,
® is a minimal immersion if and only if ¢(8/8s,8/8s) = 0, i.e., (Pss, .7<I>t) =
(Pss, J ®,) = 0. By a straightforward computation, we get

~{a(s)? + b(s)®} cost + {—b(s)c(s) + a/(s)} sint
D5 = | g1(s) | —{b(s)e(s) + a/(s)}cost — {(a(s)? + ¢(s)?}sint |,
{a(s)c(s) — b/ (s)} cost — {a(s)b(s) + c/(s)}sint
—{a(s)? + b(s)?} cost — {b(s)c(s) + a’(s)}sint
g2(8) | {=b(s)c(s) +a’(s)}cost — {a(s)? + c(s)?}sint | | .
{a(s)c(s) + b'(s)} cost + {—a(s)b(s) + c'(s)}sint

So we have from
(B45, TB;) = 2a(s){—b(s) sint + c(s) cos £} (3.2)

Hence (®,,, J®;) = 0 if and only if a(s) = 0 or a(s) # 0 and b(s) = ¢(s) = 0.

For
‘ cost a(s)sint
Jo, = (gl(s) (sint) X g1(8) ( —a(s)cost ) ,
, 0 —b(s) cost — ¢(s)sint

cost | —a(s)sint
92(s) (sint) X g2(s) ( a(s)cost )) ,
0 b(s) cost + c(s)sint
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we get

(Pss, JOs)
= —2a'(s){b(s) cost + c(s) sint} + 2a(s){b'(s) cost + ' (s) sint}. (3.3)

If a(s) = 0 or b(s) = c(s) = 0, then (®,,, J®,) = 0.
Hence, we get the following result.

THEOREM 6 ([7]). Lagrangian minimal surfaces in S? x S? which consist of
1- parameter family of pair (y1,72) where y1 and 7y, are great circles in S? are
totally geodesic and they are locally congruent to either (a) S x S* C §% x S?
or (b) S? ¢ 8% x §2.

4. Lagrangian H-minimal surfaces in §2 x S2

In this section, we consider the condition for which the Lagrangian immersion
®:1x 8! 52 x 52 with a(s) # 0 is H-minimal. Because of [1.2), we want to
define a Lagrangian immersion ® : I x ST — §2 x §2 ¢ R® x R3 satisfying

div(JH) = (De, (TH), 8,)/]12, + (Do, (TH), 2,/ @]
=0 | (4.1)

I

where D is a connection of R® x R3. Here, from o¢(8/0t,0/6t) = 0, the mean
curvature H of ® is 6(0/0s,0/0s)/2f(s,t) where f(s,t) is the function satisfying
(2.7) (with a(s) # 0). We denote the functions a, b, c and f for simplicity in below.
Then '

0(0/85,0/08) = (D4, JB,)IB, /|| B, |2 + (®ss, JB:) T D, /|| D22
and so we have from ||®,]|2 = f, ||®:]|2 = 2, (3.2) and (3.3)

~

JH
= a(bsint — ccost)®:/2f + {(a’b — ab’) cost + (a’c — ac') sint}®,/f2. (4.2)

We get from and (4.2)
div(JH) = 2{(a"h — ahy, + ah)(a® + h2) + 3heher(a'h — ahs)}/f3

where h = h(s,t) = b(s) cost + c(s)sint , h, = Oh/ds and similarly for hs, ks,
and hs;. We can express the right hand of this equation by only terms of
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cost,sint, cos 3t and sin3t. Since functions cost,sint, cos 3t and sin 3t are lin-
early independent, we get from div(JH) =0

((a? + 3)ba” — (4a? + 3b° + c2)ab” — 2abcc”

= —(a2 + 3)ab — 3(b + 3cc’)(a’b — ab’) + 3(bc’ + ¥'c)(a’c — ac’),
(a? + 3)ca” — 2abch” — (4a? + b* + 3c?)ac” _

= —(a? + 3)ac — 3(3bV’ + cc’)(a’c — ac’) + 3(bc’ + ¥'c)(a’b — ab'),
(62 — 3c2)ba” + (=b% + c?)ab” + 2abec””

= (b + 302)ab + 3(6b’ ~cc')(a'b— ab') — 3(bc’ + ¥'c)(a’c — ac’),
(362 — c2)ca” — 2abeh” + (—b? + c?)ac”
L = (—3b% + c®)ac + 3(bb’ — cc')(a'c — ac’) + 3(bc’ + V' c)(a’b — ab).

-

We put
a = cos a, =sinacosB, c¢=sinasing (4.3)

for these equations where a = a(s) € [0,7] and 3 = B(s) € [0,2n] are some
functions, then we have

o' (cos? o + 3) cos B — B” cos asin a3 cos® a + 1) sin 3

+ 3(a’)? cos asina cos B — 2(8’)? cos asin a(sin® o + 2) cos 3

— o/ #'(8cos® a — 3sin* a) sin B — cos asin a(cos® a + 3) cos B = 0, (4.4)

o’ (cos? o + 3) sin B + B cos asin (3 cos® o + 1) cos B
+ 3(a’)? cos asin asin 8 — 2(8')? cos asin a(sin? a + 2) sin 8
+ o/B' (8 cos® a — 3sin® @) cos B — cos asina(cos® a + 3)sin 3 =0, (4.5)

o' sin® a.cos 38 — 8" cos asin® asin 33

— 3(a/)? cosasinacos 38 + 2(3')? cos asin® a cos 38

+ o' B’ sin? a(cos® a + 3) sin 38 — cos asin® a cos 38 = 0, (4.6)
o' sin® asin 38 + 3" cos asin® o cos 33

— 3(a’)? cos asin asin 38 + 2(8’)? cos asin® asin 33

— o/ sin? a(cos? a + 3) cos 33 — cos asin® asin 33 = 0. (4.7)

Notice that o # 7/2 because a # 0. We get from (4.6) and

a” = 3(a’)? cot a — 2(B')2 cos asina + cos asin o,
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" cos asina = (cos® a + 3)a/F’
and we substitute these equations for (4.4) and (4.5). Then we get
—~(a’)?cos B/sina + (8')? sina cos B + 2o’ cosasin 8 = 0,
—(a/)?sinB/sina + (B')?sinasin B — 2o’ B cos acos B = 0.
Hence we have from these equations
— (/)2 + (B")?sin® o =0, (4.8)
o'B cosa = 0. (4.9)

If sina # 0, we get o/ = 8/ = 0 (i.e,, @ and (3 are constant) because of [4.8),
and cosa # 0. Then equations (4.4) and (4.5) are cos 3 = 0 and sin 3 = 0.
So this case does not occur. If sina = 0, we get @ = 1 and b,c = 0 for [4.3).
Then this is the case of Example 1.

Finally, we consider the case of cosa = 0. Then we get a = 0 for . By
Proposition 4, the immersion & is totally geodesic.

Hence we have

THEOREM 7. Lagrangian H-minimal surfaces in §2 x S% which consist of 1-
parameter family of pair (v1,72) where v1 and 72 are great circles in S? are

totally geodesic and they are locally congruent to either (a) S x S* c §2 x §?
or (b) S%2 C 8% x §2.
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