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Abstract. In a quaternionic K\"ahler manifold $M$ , we introduce a notion of
quaternionic Frenet curves on $M$ which is closely related to the quaternionic
K\"ahler structure of $M$ and give a chracterization of totally geodesic immersions
of $M$ into an ambient real space form $\overline{M}^{N}(\overline{c};\mathbb{R})$ of constant sectional curvature
$\overline{c}$ by the extrinsic shape of such curves.

1. Introduction

A smooth curve $\gamma=\gamma(s)$ in a Riemannian manifold $M$ parametrized by its
arclength $s$ is called a Frenet curve of proper order 2 if there exist a smooth unit
vector field $V=V(s)$ along $\gamma$ and a positive smooth function $\kappa=\kappa(s)$ satisfying
that

(1.1) $\nabla_{\dot{\gamma}}\dot{\gamma}(s)=\kappa(s)V(s)$ and $\nabla_{\dot{\gamma}}V(s)=-\kappa(s)\dot{\gamma}(s)$ ,

where $\dot{\gamma}$ denotes the unit tangent vector of 7 and $\nabla_{\dot{\gamma}}$ denotes the covariant
differentiation along $\gamma$ with respect to the Riemannian connection $\nabla$ of $M$ . The
function $\kappa$ and the orthonormal frame $\{\dot{\gamma}, V\}$ are called the curvature and the
Frenet frame of $\gamma$ , respectively. A Frenet curve of proper order 2 with constant
curvature $k(>0)$ is called a circle of curvature $k$ . We regard a geodesic as a
circle of null curvature.

By observing the extrinsic shape of such curves on a submanifold $M$ , we
can $study\underline{t}he$ properties of the immersion of $M$ into an ambient Riemannian
manifold $M$ in some cases. In their paper [6], Nomizu and Yano proved a well-
known theorem which states that a submanifold $M$ is an extrinsic sphere of $\overline{M}$,
$na\underline{me}lyM$ is a totally umbilic submanifold with parallel mean curvature vector
in $M$ , if and only if all circles of some positive curvature $k$ in $M$ are circles in the
ambient space $M$ . In [3], K\^ozaki and Maeda improved this theorem, that is, they
show that $M$ is an extrinsic sphere of $\overline{M}$ if and only if all circles of some positive
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curvature $k$ in $M$ are Frenet curves of proper order 2 in $\overline{M}$ . On the other hand,
Suizu, Maeda and Adachi gave the characterizations of parallel imbbedings of
complex and quaternionic projective spaces into a real space forms using the
notions of Kahler circles and quaternionic circles (see [9]).

In this context, it is natural to pose the following problem: If an isometric
immersion $f$ : $M\rightarrow\overline{M}$ maps some Frenet curves of proper order 2 on $M$ to
Frenet curves of proper order 2 in ambient space $\overline{M}$, what can we say about the
immersion $f$ ? From this point of view, S. Maeda and the author characterized
totally geodesic immersions into an arbitrary Riemannian manifold, parallel iso-
metric immersions of complex projective spaces into a real space form in terms
of the extrinsic shapes of some kind of Frenet curves of order 2 ([5, 11]).

In this paper, we introduce a notion of quaternionic Frenet curves in a quater-
nionic K\"ahler manifold $M$ , which is a particular class of Renet curves of order
2 closely related to the quaternionic K\"ahler structure of $M$ . By observing the
extrinsic shape of quaternionic Frenet curves, we provide a chracterization of
totally geodesic immersions of $M$ into an ambient real space form $\overline{M}^{N}(\overline{c};\mathbb{R})$ of
constant sectional curvature $\tilde{c}$ (Theorem 1). We also characterize every parallel
isometric immersion of an n-dimensional quaternionic space form $M^{n}(c;\mathbb{H})$ of
quatemionic sectional curvature $c$ into $\overline{M}^{N}(\tilde{c};\mathbb{R})$ from this point of view (The-
orem 2). These are quaternionic versions of our preceding results in [5].

The author wishes to express his hearty thanks to Professor S. Maeda for his
encouragement and help in developing this paper. He also greatly appreciates
the referee’s valuable suggestions.

2. Quaternionic Frenet curves in quaternionic K\"ahler manifolds

A quaternionic Kahler structure $\mathcal{J}$ on a Riemannian manifold $M$ of real
dimension $4n$ is a rank 3 vector subbundle of the bundle of endmorphism of the
tangent bundle $TM$ with the following properties:

1. For each point $x\in M$ there exists an open neighborhood $U$ of $x$ in $M$ and
sections $J_{1},$ $J_{2},$ $J_{3}$ of the restriction $\mathcal{J}|_{U}$ over $U$ such that

(a) each $J_{i}$ is an almost Hermitian structure on $U$ , that is, $J_{i}^{2}=-id$ and
$\langle J_{i}X, Y\rangle+\langle X, J_{i}Y\rangle=0$ for all vector fields $X$ and $Y$ on $U$ , where
$\langle , \rangle$ is the Riemannian metric of $M$ .

(b) $J_{i}J_{i+1}=J_{i+2}=-J_{i+1}J_{i}$ ( $i$ mod 3) for $i=1,2,3$ .
2. The condition that $\nabla_{X}J$ is a section of $\mathcal{J}$ holds for each vector field $X$

on $M$ and section $J$ of the bundle $\mathcal{J}$ , where $\nabla$ denotes the Riemannian
connection of $M$ .
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This triple $\{J_{1}, J_{2}, J_{3}\}$ is called a canonical local basis of $\mathcal{J}$ . For each canonical
local basis of quaternionic structure, there exist three l-forms $q_{1},$ $q_{2}$ and $q_{3}$ on
$U$ satisfying

(2.1) $\nabla_{X}J_{i}=q_{i+2}(X)J_{i+1}-q_{i+1}(X)J_{i+2}$ ( $i$ mod 3)

for each vector field $X$ on $U$ and $i=1,2,3$ .
We say that an n-dimensional connected quaternionic K\"ahler manifold $M$

is an n-dimensional quaternionic space form of quaternionic sectional curvature
$c(\in \mathbb{R})$ if the Riemannian sectional curvature of $M$ is equal to $c$ for all tangent
$2- planeS$ spanned by $v\in T_{x}M$ and $Jv$ with $J\in \mathcal{J}_{x}$ at each point $x\in M$ . We
donote it by $M^{n}(c;\mathbb{H})$ . The standard model of a quaternionic space form is lo-
cally congruent to one of a quaternionic projective space $\mathbb{H}P^{n}(c)$ of quaternionic
sectional curvature $c(>0)$ , a quaternionic Euclidean space $\mathbb{H}^{n}$ and a quater-
nionic hyperbolic space $\mathbb{H}H^{n}(c)$ of quaternionic sectional curvature $c(<0)$ .

Let $\gamma=\gamma(s)$ be a Frenet curve of proper order 2 in a quaternionic K\"aMer
manifold $M$ which satisfies (1.1). For this curve $\gamma$ we put

$\tau_{\gamma}$

$:=\sqrt{\langle\gamma,J_{1}V\rangle^{2}+\langle\gamma,J_{2}V\rangle^{2}+\langle\gamma,J_{3}V\rangle^{2}}$ .

We can see $hom(2.1)$ and (1.1) that $\tau_{\gamma}$ is constant along $\gamma$ . We call $\tau_{\gamma}$ structure
torsion of $\gamma$ (see [1]). Then it is easy to prove

PROPOSITION 1. For the structure torsion $\tau_{\gamma}$ of $\gamma$ satisfying (1.1), the follow-
ing two conditions are mutually equivalent:

(1) $\tau_{\gamma}=1$ ,
(2) there exist a smooth section $J$ of $\mathcal{J}$ with $J^{2}=-id$ such that $V(s)=J_{\gamma(s)}\dot{\gamma}(s)$

for each $s$ .

A Frenet curve $\gamma$ of proper order 2 in a quaternionic K\"ahler manifold $M$

is said to be a quatemionic Frenet curve if it satisfies one (hence both) of the
conditions in Proposition 1. A quaternionic Frenet curve of constant curvature
$k(>0)$ is called a quaternionic circle of curvature $k$ . We regard a geodesic as
a quaternionic circle of null curvature. Thus the notion of quaternionic Frenet
curves is a natural extension of that of quaternionic circles.

Since $\tau_{\gamma}$ is constant along $\gamma$ , using Proposition 1, we can get following propo-
sition.

PROPOSITION 2. Let $x$ be an arbitrary point of a quatemionic Kahler man-
ifold $M$ and $v$ an arbitrary unit vector in $T_{x}M$ . For arbitrary $J\in \mathcal{J}_{x}$ with
$J^{2}=-id$ , there exists a unique quaternionic Foenet curve $\gamma=\gamma(s)$ defined on
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some open interval $(-\epsilon, \epsilon)\subset \mathbb{R}$ such that

$\gamma(0)=x$ , $\dot{\gamma}(0)=v$ and $V(O)=Jv$ .

3. Isotropic immersions

We first recall a few fundamental notions in submanifold theory. Let $M$ ,
$\overline{M}$ be Riemannian manifolds and $f$ : $M\rightarrow\overline{M}$ an isometric immersion. The
Riemannian metrics on $M,\overline{M}$ are denoted by the same notation $\langle$ , $\rangle$ . We
denote by $\nabla$ and $\tilde{\nabla}$ the covariant differentiations of $M$ and $\overline{M}$, respectively.
Then the formulae of Gauss and Weingarten are

$\tilde{\nabla}_{X}Y=\nabla_{X}Y+\sigma(X, Y)$ , $\overline{\nabla}_{X}\xi=-A_{\xi}X+D_{X}\xi$ ,

where $\sigma,$ $A_{\xi}$ and $D$ denote the second fundamental form of $f$ , the shape operator
in the direction of $\xi$ and the covariant differentiation in the normal bundle,
respectively. We define the covariant differentiation V of the second fundamental
form $\sigma$ with respect to the connection in (tangent $bundle$) $\oplus$ ($normal$ bundle) as
follows:

$(\overline{\nabla}_{X}\sigma)(Y, Z)=D_{X}(\sigma(Y, Z))-\sigma(\nabla_{X}Y, Z)-\sigma(Y, \nabla_{X}Z)$ .

If $\overline{\nabla}\sigma=0$ , an isometric immersion $f$ is called parallel.
An isometric immersion $f$ is said to be isotropic at $x\in M$ if $\Vert\sigma(v, v)\Vert/\Vert v\Vert^{2}$

does not depend on the choice of $v(\neq 0)\in T_{x}M$ . In this case we put the number
as $\lambda(x)$ . If the immersion is isotropic at every point, then the immersion is said
to be isotropic. ‘ When the function $\lambda=\lambda(x)\underline{is}$ constant on $M$ , we say that
$M$ is constant isotropic in the ambient space $M$ . Note that a totally umbilic
immersion is isotropic, but not vice versa.

The following is well-known([7]):

LEMMA 1. Let $f$ be an isometric immersion $ofM$ into M. Then $f$ is isotropic
at $x\in M$ if and only if the second fundamental form $\sigma$ satisfies $\langle\sigma(v, v), \sigma(v, u)\rangle$

$=0$ for an arbitrary orthogonal pair $v,$ $u\in T_{x}M$ .

4. Main results

A curve $\gamma=\gamma(s)$ on a Riemannian manifold $M$ is said to be a plane curve
if the curve $\gamma$ is locally contained in some 2-dimensional totally geodesic sub-
manifold of $M$ . As a matter of course, every plane curve with positive curvature
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function is a Frenet curve of proper order 2. But in general, the converse does
not hold. In case that the space $M$ is a real space form $\overline{M}^{N}(\tilde{c};\mathbb{R})$ of constant
sectional curvature $\overline{c}$ (that is, $\overline{M}^{N}(\overline{c};\mathbb{R})$ is locally congruent to either a Euclidean
space $\mathbb{R}^{N}$ , a standard sphere $S^{N}(\overline{c})$ or a real hyperbolic space $H^{N}(\overline{c})$ according
as the curvature $\overline{c}$ is zero, positive, or negative), it is easy to see that a curve
$\gamma$ is a Frenet curve of proper order 2 if and only if the curve $\gamma$ is a plane curve
with positive curvature function.

Now, we give the following theorem.

THEOREM 1. Let $M$ be a quaternionic Kahler manifold of quatemionic di-
$\underline{me}nsionn(\geq 2)$ and $f$ an isometric immersion of $M$ into a real space form
$M^{N}(\tilde{c};\mathbb{R})$ . Assume that there exists a non constant positive smooth function
$\kappa=\kappa(s)$ satisfying that $f$ maps every quaternionic Frenet curve $\gamma=\gamma(s)$ of
curvature $\kappa$ on $M$ to a plane curve in $\overline{M}^{N}(\overline{c};\mathbb{R})$ . Then $f$ is a totally geodesic
immersion.

The idea of proof is similar to that of Theorem 2 in [5]. But for readers we
explain it in detail.

First, relaxing the condition that $\kappa$ is a non constant positive smooth function
to that it is a positive smooth function, we shall prove the following proposition.

PROPOSITION 3. Let $M$ be a quaternionic Kahler manifold of quaternionic
dimension $n(\geq 2)$ and $f$ an isometric immersion of $M$ into a real space form
$\overline{M}^{N}(\overline{c};\mathbb{R})$ . Assume that there exists a positive smooth function $\kappa=\kappa(s)$ satis-
fying that $f$ maps every quaternionic Frenet curve $\gamma=\gamma(s)$ of curvature $\kappa$ on
$M$ to a plane curve in $\overline{M}^{N}(\overline{c};\mathbb{R})$ . Then $f$ is paralell and constant isotropic.

Proof. Let $x$ be an arbitrary point of $M,$ $v\in T_{x}M$ an arbitrary unit vector and
$J$ an arbitrary element of $\mathcal{J}_{x}$ with $J^{2}=-id$ . We consider a quaternionic Renet
curve $\gamma=\gamma(s)(s\in(-\epsilon, \epsilon))$ satisfying equations (1.1) and the initial condition
$\underline{\gamma(}0)=x,\dot{\gamma}(0)=v$ and $V(O)=Jv$ . Since the curve $ f\circ\gamma$ is a plane curve in
$M^{N}(\overline{c};\mathbb{R})$ by assumption, there exist a (nonnegative) function $\tilde{\kappa}=\overline{\kappa}(s)$ and a
field of unit vectors $\tilde{V}=\tilde{V}(s)$ along $ f\circ\gamma$ in $\overline{M}^{N}(\overline{c};\mathbb{R})$ which satisfy

(4.1) $\tilde{\nabla}_{\dot{\gamma}}\dot{\gamma}=\tilde{\kappa}\tilde{V}$ , $\overline{\nabla}_{\dot{\gamma}}\tilde{V}=-\overline{\kappa}\dot{\gamma}$ .

Then by the formula of Gauss we have

(4.2) $\overline{\kappa}\tilde{V}=\kappa V+\sigma(\dot{\gamma},\dot{\gamma})$ ,

so that

(4.3) $\overline{\kappa}^{2}=\kappa^{2}+\Vert\sigma(\dot{\gamma},\dot{\gamma})\Vert^{2}$ .
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We here note that the function $\overline{\kappa}$ is positive because $\kappa>0$ .
Differentiating the left-hand side of (4.2), we see

(4.4) $|\overline{\kappa}\tilde{\nabla}_{\dot{\gamma}}(\overline{\kappa}\tilde{V})=\overline{\kappa}\{\tilde{\kappa}\tilde{V}+\overline{\kappa}\tilde{\nabla}_{\dot{\gamma}}\tilde{V}\}=\overline{\kappa}\overline{\kappa}\tilde{V}-\overline{\kappa}^{3}\dot{\gamma}=\overline{\kappa}\{\kappa V+\sigma(\dot{\gamma},\dot{\gamma})\}-\overline{\kappa}^{3}\dot{\gamma}$

by use of (4.1) and (4.2). On the other hand, differentiating the right-hand side
of (4.2), by the formulae of Gauss and Weingarten we have

(4.5)
$\overline{\kappa}\tilde{\nabla}_{\dot{\gamma}}\{\kappa V+\sigma(\dot{\gamma},\dot{\gamma})\}$

$=\overline{\kappa}\{\dot{\kappa}V+\kappa\tilde{\nabla}_{\dot{\gamma}}V-A_{\sigma(\dot{\gamma},\dot{\gamma})}\dot{\gamma}+D_{\dot{\gamma}}(\sigma(\dot{\gamma},\dot{\gamma}))\}$

$=\overline{\kappa}\{\dot{\kappa}V+\kappa(\nabla_{\dot{\gamma}}V+\sigma(\dot{\gamma}, V))-A_{\sigma(\dot{\gamma},\dot{\gamma})}\dot{\gamma}+(\overline{\nabla}_{\dot{\gamma}}\sigma)(\dot{\gamma},\dot{\gamma})+2\sigma(\nabla_{\dot{\gamma}}\dot{\gamma},\dot{\gamma})\}$

$=\overline{\kappa}\{\dot{\kappa}V-\kappa^{2}\dot{\gamma}+3\kappa\sigma(\dot{\gamma}, V)-A_{\sigma(\dot{\gamma},\dot{\gamma})}\dot{\gamma}+(\overline{\nabla}_{\dot{\gamma}}\sigma)(\dot{\gamma},\dot{\gamma})\}$ .

We compare the tangential components and the normal components for the
submanifold $M$ in (4.4) and (4.5), respectively. Then we get the following:

(4.6) $\overline{\kappa}\kappa V-\overline{\kappa}^{3}\dot{\gamma}=\overline{\kappa}\{\dot{\kappa}V-\kappa^{2}\dot{\gamma}-A_{\sigma(\dot{\gamma},\dot{\gamma})}\dot{\gamma}\}$ ,

(4.7) $\overline{\kappa}\sigma(\dot{\gamma},\dot{\gamma})=\overline{\kappa}\{3\kappa\sigma(\dot{\gamma}, V)+(\overline{\nabla}_{\dot{\gamma}}\sigma)(\dot{\gamma},\dot{\gamma})\}$ .

Equation (4.7) implies

(4.8) $\overline{\kappa}\tilde{\kappa}\sigma(\dot{\gamma},\dot{\gamma})=\tilde{\kappa}^{2}\{3\kappa\sigma(\dot{\gamma}, V)+(\overline{\nabla}_{\dot{\gamma}}\sigma)(\dot{\gamma},\dot{\gamma})\}$ .

On the other hand, from (4.3) we have

$\overline{\kappa}\overline{\kappa}=\frac{1}{2}\frac{d}{ds}\overline{\kappa}^{2}$

(4.9)
$=\kappa\dot{\kappa}+\frac{1}{2}\frac{d}{ds}\langle\sigma(\dot{\gamma},\dot{\gamma}), \sigma(\dot{\gamma},\dot{\gamma})\rangle$

$=\kappa\dot{\kappa}+$ \langle $D_{\dot{\gamma}}(\sigma(\dot{\gamma},\dot{\gamma}))$ , a $(\dot{\gamma},\dot{\gamma})\rangle$

$=\kappa\dot{\kappa}+\langle(\overline{\nabla}_{\dot{\gamma}}\sigma)(\dot{\gamma},\dot{\gamma}), \sigma(\dot{\gamma},\dot{\gamma})\rangle+2\kappa\langle\sigma(V,\dot{\gamma}), \sigma(\dot{\gamma},\dot{\gamma})\rangle$ .

Substituting (4.3) and (4.9) into (4.8), at $s=0$ we obtain

$\{\kappa(0)\dot{\kappa}(0)+\langle(\overline{\nabla}_{v}\sigma)(v, v), \sigma(v, v)\rangle+2\kappa(0)\langle\sigma(v, v), \sigma(v, Jv)\rangle\}\sigma(v, v)$

(4.10)
$=\{\kappa(0)^{2}+\Vert\sigma(v, v)\Vert^{2}\}\{3\kappa(0)\sigma(v, Jv)+(\overline{\nabla}_{v}\sigma)(v, v)\}$ .

Since Proposition 2 guarantees the existence of another quaternionic Frenet curve
$\gamma_{1}=\gamma_{1}(s)(s\in(-\epsilon_{1}, \epsilon_{1}))$ of the same curvature $\kappa$ in $M$ satisfying $\nabla_{\dot{\gamma}_{1}}\dot{\gamma}_{1}=$
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$\kappa V_{1}$ and $\nabla_{\dot{\gamma}_{1}}V_{1}=-\kappa\dot{\gamma}_{1}$ with initial condition $\gamma_{1}(O)=x,\dot{\gamma}_{1}(0)=v$ and $V_{1}(0)=$

$-Jv$ , we can change the vector $Jv$ into $-Jv$ in (4.10). Then the equality (4.10)
for $\gamma_{1}$ turns to

$\{\kappa(0)\dot{\kappa}(0)+\langle(\overline{\nabla}_{v}\sigma)(v, v), \sigma(v, v)\rangle-2\kappa(0)\langle\sigma(v, v), \sigma(v, Jv)\rangle\}\sigma(v, v)$

(4.10’)
$=\{\kappa(0)^{2}+\Vert\sigma(v, v)\Vert^{2}\}\{-3\kappa(0)\sigma(v, Jv)+(\overline{\nabla}_{v}\sigma)(v, v)\}$ .

Therefore, from (4.10) and (4.10’) we have

$2\kappa(0)\langle\sigma(v, v), \sigma(v, Jv)\rangle\sigma(v, v)=3\kappa(0)\{\kappa(0)^{2}+\Vert\sigma(v, v)\Vert^{2}\}\sigma(v, Jv)$ ,

so that

(4.11) $2\langle\sigma(v, v), \sigma(v, Jv)\rangle\sigma(v,v)=3\{\kappa(0)^{2}+\Vert\sigma(v, v)\Vert^{2}\}\sigma(v, Jv)$ .

Taking the inner product of both sides of this with $\sigma(v,v)$ , we get

$ 2\langle\sigma(v, v), \sigma(v, Jv)\rangle\Vert\sigma(v, v)\Vert^{2}=3\{\kappa(0)^{2}+\Vert\sigma(v, v)\Vert^{2}\}\langle\sigma(v, v), \sigma(v, Jv)\rangle$

hence

$\{3\kappa(0)^{2}+\Vert\sigma(v, v)\Vert^{2}\}\langle\sigma(v, v), \sigma(v, Jv)\rangle=0$ .

So we have $\langle\sigma(v, v), \sigma(v, Jv)\rangle=0$ , because $3\kappa(0)^{2}+\Vert\sigma(v, v)\Vert^{2}>0$ . It follows
$hom(4.11)$ again that

(4.12) $\sigma(v, Jv)=0$

for any $v\in T_{x}M$ at any point $x\in M$ and any $J\in \mathcal{J}_{x}$ with $J^{2}=-id$ . Replacing
$v$ by $v+Jv$ in (4.12), we get

(4.13) $\sigma(Jv, Jv)=\sigma(v, v)$ .

Using (4.13), we have

(4.14) $\sigma(Jv, J^{\prime}v)=0$

for $J,$ $J^{\prime}\in \mathcal{J}_{x}$ with $J^{2}=(J^{\prime})^{2}=-id$ and $JJ^{\prime}=-J^{\prime}J$ . By making use of
equations (4.12), (4.13), (4.14) and Codazzi’s equation in a space of constant
curvature we see that the immersion $f$ is parallel (see [4]).

Next, taking the inner product of both sides of (4.6) with $V$ , we have

$\overline{\kappa}\kappa=\overline{\kappa}\dot{\kappa}-\tilde{\kappa}\langle A_{\sigma(\dot{\gamma},\dot{\gamma})}\dot{\gamma}, V\rangle$

$=\tilde{\kappa}\dot{\kappa}-\tilde{\kappa}$ \langle $\sigma(\dot{\gamma},\dot{\gamma})$ , a $(\dot{\gamma},$ $ V)\rangle$ .
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On the other hand, $hom(4.12)$ we know that

(4.15) $\sigma(\dot{\gamma}, V)=0$ for each $s\in(-\epsilon, \epsilon)$ .

Hence the above equation becomes

(4.16) $\overline{\kappa}\kappa=\overline{\kappa}\dot{\kappa}$ ,

so that equation (4.6) reduces to

$A_{\sigma(\dot{\gamma},\dot{\gamma})}\dot{\gamma}=(\overline{\kappa}^{2}-\kappa^{2})\dot{\gamma}$ .

Therefore

$\langle\sigma(v, v), \sigma(v, u)\rangle=\langle A_{\sigma(v,v)}v, u\rangle=0$

for any orthonormal pair of vectors $v,$ $u\in T_{x}M$ at each point $x\in M$ . Thus,
by virtue of Lemma 1, the immersion $f$ is isotropic. Besides, we can see that
$f$ is constant isotropic as follows: Let $c=c(s)$ be an arbitrary geodesic on $M$

parametrized by its arclength $s$ . Then, from the fact that $\overline{\nabla}\sigma=0$ , we have

(4.17) $\frac{d}{ds}\Vert\sigma(\dot{c},\dot{c})\Vert^{2}=2\langle(\overline{\nabla}_{\dot{c}}\sigma)(\dot{c},\dot{c}), \sigma(\dot{c},\dot{c})\rangle+4\langle\sigma(\nabla_{\dot{c}}\dot{c},\dot{c}), \sigma(\dot{c},\dot{c})\rangle=0$ .

Thus $\Vert\sigma(\dot{c},\dot{c})\Vert$ is constant along the curve $c=c(s)$ . Hence our assertion follows. $\square $

We shall now prove Theorem 1. Suppose that the curvature function $\kappa$ is not
constant. Then there exists some $s_{0}\in(-\epsilon, \epsilon)$ with $\dot{\kappa}(s_{0})\neq 0$ . Since $\kappa,\tilde{\kappa}>0$ ,
it follows from (4.16) that $\overline{\kappa}(s_{0})\neq 0$ . We know the fact that Va $=0$ . So
equation (4.7), combined with (4.15), yields $\sigma(\dot{\gamma}(s_{0}),\dot{\gamma}(s_{0}))=0$ . Moreover, we
can see that $\Vert\sigma(\dot{\gamma},\dot{\gamma})$ I is constant along the curve $\gamma$ because the same equation
as (4.17) holds for $\gamma$ . Thus we conclude $\sigma(v, v)=0$ for an arbitrary unit vector
$v\in T_{x}M$ at each point $x\in M$ . Hence our immersion $f$ : $M\rightarrow\overline{M}^{N}(\overline{c};\mathbb{R})$ is
totally geodesic.

Theorem 1 does not hold without the condition that $\kappa$ is not constant. Indeed
we have following theorem:

THEOREM 2. Let $M^{n}$ be a quaternionic Kahler manifold of quatemionic di-
mension $n(\geq 2)$ and $f$ an isometric immersion of $M^{n}$ into a real space form
$M^{4n+p}(C;\mathbb{R})$ . Suppose that there exists a positive smooth function $\kappa$ satisfying
that $f$ maps every quatemionic Frenet curve $\gamma$ of curvatuoe $\kappa$ on $M^{n}$ to a plane
curve in $\overline{M}^{4n+p}(\overline{c};\mathbb{R})$ . Then $f$ is a parallel immersion and locally equivalent to
one of the following:
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(1) $f$ is a totally geodesic immersion of $M^{n}=\mathbb{H}^{n}=\mathbb{R}^{4n}$ into $\overline{M}^{4n+p}(\overline{c};\mathbb{R})=$

$\mathbb{R}^{4n+p}$ , where $\overline{c}=0$ .
(2) $f$ is a totally umbilic immersion of $M^{n}=\mathbb{H}^{n}=\mathbb{R}^{4n}$ into $\overline{M}^{4n+p}(\overline{c};\mathbb{R})=$

$\mathbb{R}H^{4n+p}(\overline{c})$ , where $\overline{c}<0$ .
(3) $f$ is a parallel immersion defined by

$f=f_{2}\circ f_{1}$ : $M^{n}=\mathbb{H}P^{n}(c)\rightarrow^{f_{1}}S^{2n^{2}+3n-1}((n+1)c/(2n))\rightarrow^{f_{2}}\overline{M}^{4n+p}(\overline{c};\mathbb{R})$ ,

where $f_{1}$ is the first standard minimal immersion, $f_{2}$ is a totally umbilic
immersion and $(n+1)c/(2n)\geq\overline{c}$ .

Proof. By Proposition 3 the immersion $f$ is parallel and constant isotropic. Let
$R$ denote the curvature tensor of $M^{n}$ . For arbitrary $J\in \mathcal{J}_{x}$ with $J^{2}=-id$ , from
(4.12), (4.13) and equation of Gauss, we have

$\langle R(v, Jv)Jv, v\rangle=\overline{c}+\langle\sigma(v, v), \sigma(Jv, Jv)\rangle-\Vert\sigma(v, Jv)\Vert^{2}$

$=\overline{c}+\Vert\sigma(v, v)\Vert^{2}$

for an arbitrary unit vector $v\in T_{x}M$ at any point $x$ of $M^{n}$ . Since $M^{n}$ is constant
isotropic, this implies that $M^{n}$ is a quaternonic space form. Then we can see
that the submanifold $M^{n}$ is one of (1), (2) and (3) (cf.[2, 10]).

In order to prove our assertion, we must check the examples (1), (2) and (3)
$satis\Phi$ the hypothesis of theorem. If the function $\kappa$ is not constant, we obtain
only the case (1). If $\kappa$ is constant, we get the cases (1), (2) and (3). In the case
(1), the hypothesis is obviously satisfied. In the case of (2), for each circle $\gamma$ of
curvature $k(>0)$ on $M^{n}$ the curve $ f\circ\gamma$ is a circle of curvature $\sqrt{k^{2}-\overline{c}}$ (see page
169 in [6]), hence it is a plane curve in the ambient space $\overline{M}^{4n+p}(\overline{c};\mathbb{R})$ .

In the case of (3), the isometric immersion $f$ given by (3) is $\sqrt{c-\overline{c}}$ -isotropic
and the parallel second fundamental form $\sigma$ of $f$ satisfies $\sigma(JX, JY)=\sigma(X, Y)$

for all vector fields $X,$ $Y\in TM^{n}$ and all $J\in \mathcal{J}$ . Let $\gamma=\gamma(s)$ be a quaternionic
circle of curvature $k(>0)$ . Then we can see that the curve $ f\circ\gamma$ is a circle
of curvature $\sqrt{k^{2}+c-\overline{c}}$ in $\overline{M}^{4n+p}(\overline{c};\mathbb{R})$ as follows: The curve $ f\circ\gamma$ satisfies
$\tilde{\nabla}_{\dot{\gamma}}\dot{\gamma}=kV+\sigma(\dot{\gamma},\dot{\gamma})$ , so that

$\Vert\tilde{\nabla}_{\dot{\gamma}}\dot{\gamma}\Vert=\sqrt{k^{2}+\Vert\sigma(\gamma,\gamma)\Vert^{2}}=\sqrt{k^{2}+c-\overline{c}}$ .

We write

$\tilde{V}=\frac{1}{\sqrt{k^{2}+c-\overline{c}}}\{kV+\sigma(\dot{\gamma},\dot{\gamma})\}$ .
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Since $\sigma(\dot{\gamma}, V)=\sigma(\dot{\gamma}, J\dot{\gamma})=0$ , we have

$\tilde{\nabla}_{\dot{\gamma}}\tilde{V}=\frac{1}{\sqrt{k^{2}+c-\overline{c}}}\tilde{\nabla}_{\dot{\gamma}}\{kV+\sigma(\dot{\gamma},\dot{\gamma})\}$

$=\frac{1}{\sqrt{k^{2}+c-\overline{c}}}\{k(\nabla_{\dot{\gamma}}V+\sigma(\dot{\gamma}, V))-A_{\sigma(\dot{\gamma},\dot{\gamma})}\dot{\gamma}+D_{\dot{\gamma}}(\sigma(\dot{\gamma},\dot{\gamma}))\}$

$=\frac{1}{\sqrt{k^{2}+c-\overline{c}}}\{-k^{2}\dot{\gamma}-\Vert\sigma(\dot{\gamma},\dot{\gamma})\Vert^{2}\dot{\gamma}+(\overline{\nabla}_{\dot{\gamma}}\sigma)(\dot{\gamma},\dot{\gamma})+2\sigma(\nabla_{\dot{\gamma}}\dot{\gamma},\dot{\gamma})\}$

$=\frac{1}{\sqrt{k^{2}+c-\overline{c}}}\{-(k^{2}+c-\overline{c})\dot{\gamma}+2k\sigma(V,\dot{\gamma})\}$

$=-\sqrt{k^{2}+c-\overline{c}}\dot{\gamma}$ .

Thus the curve $ f\circ\gamma$ is a plane curve in $\overline{M}^{4n+p}(\tilde{c};\mathbb{R})$ . $\square $

Remark. Theorem 2 also holds under the condition $\kappa\equiv 0$ (see [8]).

Added in proof. We recently obtain similar results‘ in the case of Cayley
projective plane (see [12]).
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