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Abstract. We determine an explicit formula for the Igusa local zeta function
corresponding to the character x = 1 and the polynomial f (x) = z7* +z3* +
-+ -4z over the p-adic field Qp, for an arbitrary rational prime p and a positive
rational integer m satisfying ged (m,p) = ged (m,p — 1) = 1.

1. Introduction

Let p be a prime rational integer, let Q, be the field of p-adic numbers, let Z,
be the ring of p-adic integers, and let ZX = Z, — pZ, be the multiplicative group
of units in Z,. Each nonzero p-adic number z € Q, — {0} may be expressed
in the form z = p®ac(z), for a unique rational integer a = ord,(z), called the
p-adic ordinal of z, and a unique unit ac(x) € Z;, called the angular component
of z. The p-adic norm of an element z € Q, — {0} is defined as |z|, = p™¢,
where a = ord,(z). Let n be a positive rational integer, and let dz = dx; - - - dz,
be a product Haar measure on the set Q7, normalized so that the measure of
the subset Zy is 1. For any multiplicative character x from Q) = Q, — {0} to
the complex unit circle and any nonconstant polynomial f(z) € Qp[z], where
z = (z1,... ,Z,), the function Z, : {s € C|Re(s) > 0} = C defined by

25 = | xtac(f@)If@];da
P
 is called the Igusa local zeta function over Q, associated with x and f(z).

In 1999, Hosokawa, [2] determined, for an arbitrary odd prime p, formulas for
the Igusa local zeta function associated with the polynomial f(z) = z? + z3 +
---+z2. Hosokawa’s work was in the more general setting of an arbitrary finite-
degree extension K of the field Q,, and for an arbitrary character x defined on
KX*. ~
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In this article we work over the field Q, and take x = 1, and we prove the
following result.

THEOREM. Fiz any prime rational integer p and any positive rational integers
m and n such that gcd (m,p) = ged (m,p — 1) = 1. Let Z = Z, be the Igusa local
zeta function over Q, associated with the character x = 1 and the polynomial
flz) =z +aP +---+27. Let s € C such that Re(s) > 0, and write t =p~*°
Then '

-1 @E" -1
(p-t) (" —tm)

Observe that our hypothesis ged (m,p) = ged(m,p —1) = 1 implies that
m # 2, and so the case treated here is disjoint from that of Hosokawa.

We mention that the argument presented here can be generalized, with only
a few (essentially notational) modifications and a bit of additional explanation,
to yield an explicit formula for the the Igusa local zeta function Zx of the same
polynomial over any finite-degree extension K of the field Q,, just as Hosokawa

Z(s) =

did with his polynomial. In this more general setting, if we let Ok be the

ring of integers in K, let Px be the unique maximal ideal of Ok, let g denote

" the cardinality of the finite field Ok /Pk of characteristic p, and assume that

ged (m, p) = ged (m, g — 1) = 1, then the resulting formula is

_g-1(g"—1)
Zi(s) = (g—1t) (g7 —t™)’

where we have written ¢ = ¢—°. In case K = Q,, we have, of course, O = Z,
and Px = pZ, and ¢ =

Igusa local zeta functlons are related to the number of solutlons of congru-
ences modulo various powers of the prime p [1]. Suppose f(z) has coeflicients in
Ok, and let Ny be the number of solutions of the congruence f(z) = 0 (mod P¥)
in Ok /P%. Then the Poincaré series P(t) = Y ;2,¢ ™ Nt! is related to the
Igusa local zeta function Zg, for the trivial character x = 1, by the formula
Pt)=[1-tZk(s)]/(1-1).

This article was adapted from the Senior Honor’s Thesis of the first author,

completed under the supervision of the second author, at the University of Akron,
USA.

2. Preliminaries

The following lemma shows how we make use of the hypothesis gcd (m,p) =
ged (m,p—1) = 1. We use this lemma frequently throughout this paper to
re-write certain integrals using change of variables.
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LEMMA. Fiz any prime rational integer p and any positive rational integer m
such that ged (m,p) = ged (m,p— 1) = 1. Then the map g : Z,; — Z, defined
by g (z) = =™ is a measure-preserving bijection.

Proof. We show first that g is surjective. Fix o € Z;. It suffices to find a
root in Z) for the polynomial f(z) = ™ — a. Define ap € {1,...,p — 1}
by o — a9 € pZ,. As ged(m,p—1) = 1, there exists Gp € {1,... ,p — 1}
such that 85" = ap (modp). Choose 8 € Z, such that 8 — By € pZp. Thus
f(B) =B™ — a € pZ,. As f'(x) = ma™! with ged(m,p) =1 and B € Z;, we
have f'(8) = mp™1 € Z, . Now by Hensel’s there exists v € Z, such
that f(y) =0and v~ a € pZ,. Asa € Z}, it follows that v € Z;, as desired.

We now show that g is injective. As g is a homomorphism from the abelian
multiplicative group Z) to itself, it suffices to show that the kernel of g contains
only the identity element. Fix a € Zy such that o™ = 1. We may write
a=ay+s whereag € {1,... ,p—1} and s € pZ,. Thus 1 = a™ =aof + s
where s’ € pZ,, forcing af* = 1. As gcd (m,p — 1) = 1, it follows that ag = 1,
and so a = 1+ s. Now we suppose that s # 0 and work for a contradiction.
Then for some integer i > 1, we have s = a;p’ + t where a; € {1,...,p — 1}
and t € p*'Z,. Thus 1 = o™ = 1+ ma;p* + t' where t' € pt'Z,. This
forces ma; = 0(modp). As ged(m,p) = 1 and a; € {1,...,p— 1}, thisis a
contradiction, so g is injective.

The condition ged (m,p) = 1 implies that |m|, = 1, and so for each unit
T € Z,, we have '

lg’ ()], = |mxm_1|p = |m|, - Ixm‘llp =1.

Thus, by Proposition 7.4.1 in [3], the function g is locally measure-preserving.
But since g is injective, it follows that g is a (globally) measure-preserving func-
tion, as claimed. The proof is now complete. : |

We compute the Igusa local zeta function Z using a method introduced by
Weil in 1965, which is a three-step process. The first step is to compute
the so-called Generalized Exponential Sum. This is the function F* : Q, =+ C
defined as

F*(i*) = /Z T (i *'f (z)) dz,

where ¥ is an arbitrary additive complex-valued character on @, such that
¥ (z) = 1if and only if z € Z,. (The particular choice of ¥ does not affect
the value F*(i*).) The second step is to take an inverse Fourier Transform of F™*
to compute the so-called Local Singular Series. This is the function F : Z, — C
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defined as

F(i):/ F* (i*)  (—id*) di*.

P

In the third step, we take the Mellin Transform of the Local Singular Series to
obtain the Igusa local zeta function as

Z(s) = /Z F () lil% di.

Our main tool for evaluating these integrals will be the so-called Orthogo-
nality Relations, established by Igusa in 1987, which assert that if m is any
rational integer and ¥ is any additive complex-valued character on Q, with the
property that ¥ (z) =1 if and only if z € Z,, then

1-p7! if m<0
/ U (p~™y)dy = -p71 if m=1
z; 0 if m>1.

Given any real number r, we shall use the notation |r] to denote the greatest
rational integer less than or equal to r, and the notation [r] to denote the least
rational integer greater than or equal to 7. ‘

3. Computation of F*

3.1 Computation of F* for g (z) = z™

We begin by computing the Generalized Exponential Sum F* corresponding
to g (z) = z™. Fix an arbitrary nonzero p-adic number * € Q, — {0}. We may
write i* = p~°v for a unique rational integer e and a unique unit v € Z;. We
will see that F*(:*) depends on the value e, but not on the value v. Observe
that’

o0

F* (%) =_/ ¥ (i*z™)dx = Z /j(zx) ¥ (p~vz™) da:.‘

Zy 7=0

We make the change of variables p’y = z and p~7dy = dz, where y € Zy, to
obtain ‘

F*(i*) = ip—j / o (p-<e~mj>uym) dy.
i=0 z;
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Since ged (m,p) = ged (m,p — 1) = 1, we know that y — y™ is a bijection on

Z, . This allows us to make the change of variables y' = y™ and dy’ = dy, where
y' € Z*, to obtain

p
P =5 [ 8 () oy
i jz:%p . ' (p vy') dy

Now vy’ — %' is also a bijection on Z, , and this allows us to make the change
of variables y" = vy’ and dy" = dy', where y" € Z, to obtain

F* (’L*) = Zp—j/ ) (p—(e—mj)yn) dyll.
=0 z;

By the Orthogonality Relations, we have

1—-p 1 if j>e/m
/ v (p-(e-mﬂy”) dy" =¢ —p' if j=(e—1)/m
Zp 0 if j<(e—1)/m.
With the use of infinite geometric series, it follows that ‘
1 if e<0
F* (i*) = 0 if e>0ande=1(modm)

p~le/ml if e>0ande#1(modm).

3.2 Computation of F* for f(x) =z + P+l

n

We illustrate the situation using case n = 2. By the additivity of the function
¥ and by Fubini’s [Theorem),

L w6 e+ o dvdys = [ @Gy -9 6 don doe
P Jz3

= /Z ¥y i [

P P

(/.

This observation allows us to compute F* corresponding to the polynomial
f(x) =z + =P + --- + 2 by simply taking the function F* correspond-
ing to g(z) = z™ and raising it to the n** power. Thus, for the polynomial
fx) = + 23 +--- + =, we obtain
1 if e<O0
F*(3*) = 0 if e>0ande=1(modm)
\ ple/m) if e>0ande#1(modm).

W (i*y;") dy2

2
@ (i*y™) dy) .

P
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4. Computation of F'

We now compute the Local Singular Series. Fix an arbitrary nonzero p-adic
integer i € Z, — {0}. We may write i = p*u for a unique nonnegative integer k
and a unique unit u € ZY. We will see that F' (i) depends on the value k, but
not on the value u. Define the value r € {0,1,... ,m — 1} by k = r (modm).
- Thus (k — r)/m is a nonnegative integer. We now define

0 if k=r | (k—r)/m
X = (k= r)/m 1 d ma— na
pmene if k>r an ;:-; P

a=0

Observe that Y — 1 = p™ "X, a fact that will be used later. The goal of this
section is to show that

F(i)—{ 1+p™ (@™ -p) X if r=0
- 1 +p—n [(pm - pr) X + (pr —'p) Y] _pk—n((k—xr)/m+1) if r ;é 0.

To begin this computation, recall that when i* € Z,, we have F* (i*) = 1 =
¥ (~i3*). Thus

/ F* (i) W (ii") di* =/ di* = 1.
Z, z

P

This last fact allows us to express F'(i) in the following manner.
F (i) = / F* (4*) W (—4i*) di*
Q»
= / F* (*) @ (=ii*) di* + / F* (*) @ (ii") di*
zZ, Q-2

; —Z

=1+ Z / p~ e/ (i) di*,
—e Zx

e;‘él(mod ™m)

F*(z) ( ") di* —1+Z/ \Il(—n)

—e ZX

where the final form of this expression uses the computed value of F™* (¢*) from
the preceding section.

In case m = 1, we clearly have e = 1 (modm) for all e € {1,2,3,...}, and so
F (i) =1 in this case.

Now suppose that m # 1. Recall that m > 1. The conditions ged (m,p) =
ged (m,p — 1) = 1 guarantee that m # 2. Hence m > 3. Further expanding the
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previous expression for F'(i), we obtain

FGi) =1+ Z / —ne/m{ (—43*) di*
e=1 P—E(Zx)
e=0(mod m)
+ E Z /_c (2) prerm=a/my (%) di*

c=2
e= c(mod m)

Define the set C = {2,3,, ..m — 1}. For each ¢ € CU {0}, we make the change
of variables p~(m2+)y = {* and p™**+°dv = di*, where v € Z, on the integral
corresponding to e = ¢ (mod m). This leads us to

F(’l) =1+ mea /x p——na‘p (_pkup—mav) dv
4 Z (mea+c/ —n(a+1)‘I, (‘_pkup—(ma-%c)v) dv) .

c=2 a=0

We now make another change of variables, namely v' = —uv and du’ = dv,
where u' € Z. For each value ¢ € C U {0} and integer a > 0, for notational
convenience we write

I(a,c) = / v (p—(—k+ma+c)ul) du'.
z;

As an immediate consequence of the Orthogonality Relations, we know that

1-p7! if a<(k—-c)/m
I(a,c) = -p7t if a=(k—c+1)/m
0 if a>(k—-c+1)/m.

After this latest change of variables, and using this new notation, we obtain

FGi) =1+ Zp(m maf (a,0) + Z (Zp‘"“p“" ne] (a, c))

c=2 a=0

For each value ¢ € C U {0}, for notational convenience we define

c)=> pm ™I (a,c).

a=0
It then follows that

F@li)=1+S5(0)— "Zp

We now determine F' (i) separately for the cases 0 < k <m —1 and k > m.
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4.1 Computation of F in case 0 < k<m — 1

Let c € C U {0}. We now determine S(c).

First suppose that ¢ > k + 1. Then (k — ¢+ 1)/m < 0, and so for each
nonnegative integer a we have a > (k — ¢ + 1)/m, forcing I (a,c) = 0. Hence
S(c) = 0 in this case.

Now suppose that ¢ = k+1. Then (k—c+1)/m =0, and so I (0,¢) = —p~L.
For each positive integer a we have a > (k—c+1)/m, forcing I (a,c) = 0. Hence
S(c) = p°I (0,c¢) = —p~! in this case.

Finally, suppose that ¢ < k+1, which is equivalent to ¢ < k. Thus (k—c)/m >
0. However, since k < m — 1 while c is nonnegative, we have (k — ¢)/m < 1.
So 0 < (k—c)/m < 1. Thus a = 0 is the only nonnegative integer satisfying
a < (k —c)/m. Hence I (0,c) =1 —p~*. The next two paragraphs continue to
address the case c < k + 1.

Now suppose in particular that c=0and k =m—1. Then (k—c+1)/m =1
is an integer, and so I (1,¢) = —p~! while I (a,c) = 0 for all a > 2. Hence
S)=p°(1-p ) +p™ " (-p7!) =1—p~! —p™ ™! in this case.

Now suppose that either ¢ # 0 or £k # m — 1. If £k # m — 1 then we have
0 < k < m — 1, and so the fact that c is nonnegative yields (k — ¢+ 1)/m < 1.
If ¢ # 0, then we know ¢ € C, and so the fact that 0 < k < m — 1 clearly yields
(k—c+1)/m < 1. So in either case we see that (k — ¢+ 1)/m < 1. Thus
for each integer @ > 1 we have a > (k — ¢ + 1)m, forcing I (a,c) = 0. Hence
S (c) =p°I(0,c¢) =1 —p~! in this case.

In summary, we have shown for each value ¢ € C U {0} that

1—-pl—pm 1l if c=0andk=m-1
S(o) = 1-p?! if c<k+1andeitherc#Qork#m—1
- —p~! if c=k+1
0 ' if c>k+1

Using the fact-I (0,0) = 1 — p~!, along with the above summary with ¢ = 0,
we deduce that

1 if 0<k<m-1

Write W = p™" Z'c“:;l p°S (c). We now determine an explicit formula for w.
In case k = 0, then for all values ¢ € C we have ¢ > k+ 1, and so S (¢) = 0,
which forces W = 0.
In case k = 1, we have S(2) = —p~!, while S(c) =0for3<c<m—1, so

W = p—np2 (_p—l) — _pl—n‘
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In case 1 < k < m —1, we see that S(c) = 1 —p~! for 2 < ¢ < k and
k
Sk+1)=-pltand S(c)=0fork+1<ec<m-—1. SoW=p‘"[2p°(1—

c=2
p) + o4+ (-pY)| = pn[(1 - p7) (B2 - o] = [0t~ p) - 2] =
—p!~™ in this case. ,
In case k = m — 1, we see that S(¢) =1 —p~lforallce€ {2,...,m —1}.
. m—1 ™m
So W = p" 2_32 pP(l-p) =p(1-p") (”T_'{ﬁ) =p """ -p) =

p™~"~1 — pl—" in this case.
In summary, we have now shown that

m—1 0 if k=0
p " z p°S (¢c) = L if 1<k<m-1
=2 . pm Tl oplmm if k=m -1

It now follows easily that

. 1 if k=0
F(’)_{ 1-pt " if 1<k<m-1.

Note that this is consistent with the explicit form of F (i) given earlier, since we
are currently working in the special case k = r, which forces X = 0and Y = 1.

4.2 Computation of F in case k > m

Now assume that k£ > m. For each value ¢ € C U {0}, clearly

lk—cJ:{ (k=r)/m if r>c

m (k=-r)/m-1 if r<e

For each ¢ € C U {0}, we define

k2]
T(e)=(1-p") Y pmme
’ a=0
The condition £ > m guarantees that k —c > 0, and so clearly |(k — ¢)/m] > 0.
First suppose that ¢ € CU{0} satisfies ¢ = r+1 (mod m). Hence (k—c+1)/m
is an integer. In fact, the condition & > m implies that (k —c+ 1)/m is a
positive integer. Thus for a = (k — c+ 1)/m we have I (a,c) = —p~!. Note that
l[(k—=c)/m] +1=(k—c+1)/m. Hence we see that :

L52]
S@= 3 pme (1-p) + (")

a=0

(A=t (=p™1)
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=T (c) — pm—m(557) -1,

Now suppose that ¢ € CU{0} satisfies ¢ Z r+1 (mod m). Hence (k—c+1)/m
is an not an integer, and indeed [(k —c+ 1)/m] = [(k — ¢)/m] > 0. Hence we
see that

=
S(c) = Z p(m—me (1—p™) =T(c).
a=0

We may summarize the last two paragraphs to say for each value ¢ € CU {0}
that

S(c) = T(C)"P(m—")(k__'%ﬂ)"l if ¢c=r+1(modm)
T (c) if ¢#r+1(modm)

In particular, for ¢ = 0 we obtain

_ _J1+10)-100,00-p5) if r=m-1
1+500) I(O’O)_{ 1+T(0) —I(0,0) if r#m-—1.

Recall that |k/m] = (k —r)/m. Thus T(0) = (1—p~!)Y. Observe that
1(0,0) =1—-p~!. We thus have T(0) — I(0,0) = (1-p )Y - (1-p~!) =
(1-p~') (Y —1). Recall that Y —1 = p™™"X. Hence T(0) — I(0,0) =
(1-p™ ) p™ "X =p~" (p™ —p™ 1) X, and it follows that

l1+p " (pm-pm™ 1) X if r#m-—1

1+S(0)—I(0,0)={ 1'+p._n (pm_pm——l)X_pk""(lc‘v#‘) if r=m-1.

For notational convenience, we now define

A=Y pT() and B=)» pT().

‘ceC ceC
c<r : c>r

First suppose that r € {0,m — 1}. Then for each value ¢ € C we have ¢ #
m—1 m—1
r+1(modm), and so we have S (c) = T (c), forcing > p°S(c)= >, p°T(c) =
c=2 c=2
A+ B.

Now suppose that 1 <r <m —2. Then r + 1 € C. Thus for each value c € C
we have

5(0) T (¢) if c#r+1
Cc) = —c+1
T (¢) —p("‘_")(’c w) =1 i c=r+1,
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m—1 m—1
andso 3 p°S(c)= 3 p°T (¢) — p"+t [p(m—n) .
c=2 c=2

In summary, we have

mz-l S (¢) A+B if re{0,m-1}
Cc) = —_r
P A+B-p(57) i 1<r<m-1.

_1] — A4 B-ptn(55),

We now calculate A rexplicitly.‘ In case r € {0,1}, there is no value c € C
satisfying ¢ < r, and so A = 0. Now assume that r € {2,3,... ,m —1}. When
¢ <r,wehave |[(k—c)/m] =(k—r)/m a,nd soT(c)=(1-p~!)Y. Thus

A= chT(c) sz = ( )Y (pr+x__1p2) =@ -pY.

c=2 c=2 p

In summary then,

A= 0 if r=20
"l @ -pY if re{1,2,...,m—-1}.

We now calculate B explicitly. In case r = m—1, there is no value ¢ € C satis-

fying ¢ > r, and so B = 0. Now assume that r € {0,1,... ,m — 2}. Whenc > r,
we have |[(k—c)/m] =(k—r)/m —1,and so T (¢) = ( p ') X. Thus B =
(1-p )X > p¢. Ifr e {1,...,m—1},then 3 p° = E pe -—E—-—E-—— and

ceC ceC c=r+1

c>r Ce>T N

- m_prtl m— r c =l c
so B = (251) X (£2282) = (' - pr) X. fr=0then £ p'= ¥ o =
c>r

m 2

(™ - p*)/(p~ 1). Thus B = (232) X (Z£=£) = (p»~* - p) X. In summary
then,

B (pmt-p) X if r=0
(pmt-p)X if re{l,2,...,m-1}.

5. Computation of the Igusa Local Zeta Function

Throughout this section, we set ¢ = p~°. Recall the fact stated earlier about
the Igusa Local Zeta Function:

Z(s):/z F (i) |z'|;§dz'=/Z {O}F(i) |z’|§dz’=2/k(z )F(z |i|5di.
P . - k=0"YP P

P
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In case m = 1, we have seen that F (i) = 1 for all values ¢ € Z, — {0}, and so
the change of variables p*u = i and p~*du = di, where u € Z%, yields

o o] [ o] o0
= Z/k ) il di = Z/ |p*ul) p*du = l;)\p"”"“ b

— k(s+1) p—1 _‘P—l
Zp P = T e

which conforms to the expression for Z(s) stated in the introduction when we
let m = 1.

Now suppose that m # 1. Recall that this forces m > 3. We expand our
earlier expression for Z (s) to obtain

k oo m—1
Z= Y / F()lidi+ Y Z / F (i) il di
k= pk(Z,) r=1
k=0(mod m) k= r(modm)

The expression for F'(i) computed in the preceding section involves the variables
X and Y. But the expressions for X and Y both depend on whether n is equal
to m. Thus we treat the cases n = m and n # m separately. For convenience,
write H =p—tand I = p" —t™ and J = p™ —t™ and K = p™t — pt™ and

m—1
L= 3 t". Note that L is a number whose value we do not need to know.
r=1

5.1 The case m # n.

In this case we have

(m—n)(k;r) _ (m—n)(k;r+1) _
L and v=P21 !
pm—n — 1 pm-n — 1

x=2

Hence, using the expressions for F'(i) computed in preceding section, we obtain -

p"

) e [EE] (pes) —a)
F () = [ ]( (m_n)(";jﬂ)_l) if 1<r<m-1,

\ _pk n("‘ )

(14 [L_—P_] (p(m‘")(%) — 1) - if r=0

and these expressions may be substitued for F(i) in our earlier expression for
Z(s) as a sum of integrals. For each integer k > 0, the Division Algorithm yields
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unique integers a > 0 and r € {0,1,...,m — 1} such that ¥ = ma + r. On the
integrals in the expression for Z (s) above, we now make the change of variables
p™atTy =4 and p~(™met")dy = di, where u € Zy and 0 <r <m—1. Thus we
obtain ‘

Z(s) = i (p~t)™ (1 + —”-n-l_:ﬁ (p“n—")“ - 1)) /Z: du (1)

g pm — pn
m—1 oo
—1,\ma+r _p ( (m—n)a _
+ ; (;)(p t) (1 + o \P 1)

pr—p (m~—n)(a+1) ma+r—n(a+1)> /
+ PP ~1) - du.  (2)
(P )-» - (

This expression for Z (s) is a sum of two terms, labelled as (1) and (2). We refer to
S0 o (P71)™* - 1 as the first term of (1), 2%, (p™1t)™ pﬂl":f- (p(m—me — 1)
as the second term of (1), 3o (p ’1t)ma+r -1 as the first term of (2), and
so on. Let S, denote the sum of the first terms of (1) and (2), let Sz denote
the second term of (1), let S, denote the second term of (2), let S5 denote the
third term of (2), and let S, denote the fourth term of (2). Thus, if we write

S=5.+Ss+S,+ S5+ S, it then follows that
Z(s)=S du=(1-p71)8S.
z;

We now determine simplified expressions for each of S,, Sg, Sy, Ss, and Sc.
Observe that

m— 1 oo
Z(p—-l ma+r_ Z (p~)" Z (™™
r=0 a=0 r=0 a=0

_ ()" - 1 -1 p _p
p‘lt—l 1—(p~1)™| plt—-1 p—-t H’

Further,
— p™ - p = -1, ™ma (m=n)a
Sg= | —> t -1
? [p"‘ - p“] ;, ™) (p )
_|[pr-p ] [tm @™ =] _ @™ —p)t"
p" —p 1J IJj
Further

m—1 m T oo |
Sy = [pp———m - ﬁn] > (7)™ (pm e - 1)
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3 o[22 S e

pm pn a=0

p’",—p’] [t"‘ (p™ —p")]
pm —pn 1J

i

P

l
—-

~
~—
3

—

Further,

I

E_: (r11)" [ P —p J S )" v(p<m—n>(a+1) _ 1)
_ - (0-1t)" [p -p ] [p’”(p —p")]
=%T§(p‘lt)r(p -n=% [Zt’—pzl p't) ]
S s ()]s

And finally,

B

-1 oo n _
_nztrzp natmaz_p—nL<_pi[_):_TI:'

= a=0

l

5.2 The case m = n.

In this case we have X = (k—r)/m and ¥ = (k — r)/m + 1. Hence,
using the expressions for F'(i) computed in precedmg sectlon and replacing each
occurrence of n by m, we obtain

14+p™™ (p™ - p) (£) | if r=0
F@) =9 1+p™™ [(0™ —p") (557) + (0" - p) (55Z +1)]
~ pF—m(55E+1) if 1<r<m-1,
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and these expressions may be substitued for F'(i) in our earlier expression for
Z(s) as a sum of integrals. Now, using the same change of variables that was
used in Section 5.1, we obtain

oo

Z(s) = Z (p’;lt)ma (1+p™™ (™ —p)a) /x du (3)
a=0 : ) Zp
+ i: (Z(p“lt)"‘“” (1 +p" "™ —pa
r=1 \a=0

+p@ - p)(a+1) - pm“”-"(““’)) [ (@

This expression for Z (s) is a sum of two terms, labelled as (3) and (4). We refer

to Yoo (p71t)™" - 1 as the first term of (3), 3.0, (p~2t)" " p~™ (p™ —plaas -

the second term of (3), 3°%° (p~1t)™*"" - 1 as the first term of (4), and so
on. Let S] denote the sum of the first terms of (3) and (4), let S denote
the second term of (3), let S., denote the second term of (4), let S; denote the
third term of (4), and let S’ denote the fourth term of (4). Thus, if we write
S' =8, + Sz + S, + S5 + S., it then follows that

Z(s)=8 du=(1-p71) 8"
z;

Clearly S!, = S, and S. = S.. We now show that S; = Sz and S;, = S, and \
S5 = Ss. From this it will follow that S’ = S, and so our expression for Z (s) is
the same for the cases m # n and m = n. Note that

=p™ (" -p) Y (p7) ™ a=p " (" —p) [pmtm] - DT s

et 17 17
Further,
m—1
5= 6m - 3 7)™ s
r=1
m—1 o<}
=1 a.—O
m—1 oo
=p—m [pm —lt + Z tril Z —-lt
r=1 =1 a=0

e | K [P K g
- [H LHIJ]‘IJ[H L}‘S"
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And finally,
‘"‘Z(p —p)z p~ tma+r( +1)
a=0 )
m—1 oo oo
=p" rZ (p78)" (0" - P)} [Z (P )™ a+ (p‘lt)m“}
L r=1 a=0 a=0

[n—1 mm m
(S g a5

=1

- o-p () 25

1 K N pm = L [jmp _PE]
= [t (g) [ = ar -] s

5.3 The simplification

Recalling that J = p™ — t™, we observe that

1 t"m —p) K tm"—-p) K+ HJL
S‘y‘*‘Sé:ﬁ{(—‘—I;L‘f'JL} ( pI){IJ .

As S = —HJL/HIJ, it follows that

_("-pK
S7+SJ+SE— HIJ .

Using Sg = (p™ —p)t™H/HIJ, we then obtain

—p)th+(tm—'p)K

(p™
Sg+S,+Ss+8S. = oy

It is tedious but straightforward to show that (p™ — p) t"H+ (t"-p)K =
p(t™ —t) J. Hence

_pim-t)J _p(t™ -1t
Sg+5~,+55+55— I = oI

In the case t = 1 (which corresponds to s = 0), we have t™ — t = 0, and so
Sg+ Sy + Ss + Se = 0. Hence in this case, S = S, = p/H. But the condition
t=1also forces H=p—t=p-—1, and soS=p/H=p/(p—1). Thus

o= (52) 1= (52 () =
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Now suppose that ¢t # 1. In this case we have

tm —
S=S8,+(Ss+ S, +55+S)_HI+(—IH——).

But observe that I + (t™ —t) = (p —tm)+ (t™ —t) = p" —t. Hence S =
p(p™ —1t) /HI, and so

z@=(-r)s= (222) [T - 00
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