VARIATIONAL STABILITY AND LOCAL RIGIDITY OF EINSTEIN METRICS

By
Mitsuhiro Itoh and Tomomi Nakagawa

(Received May 11, 2004; Revised October 7, 2004)

Abstract

Certain curvature conditions for variational stability of Einstein metrics are given. The argument of Besson, Courtois and Gallot, developed in [2], is improved in terms of the Weyl curvature operator and the scalar curvature. For compact Kähler-Einstein manifolds (M, g, J) we can show that the infinitesimal rigidity of complex structures J is equivalent to the variational stability of Einstein metrics g.

1. Introduction

An Einstein metric g on a compact manifold M is called locally rigid, if it gives an isolated point $[g]$ in the moduli space of Einstein metrics on M. Further, an Einstein metric g is called variationally stable, when the quadratic form associated to the second variation of the total scalar curvature functional $S\left(g^{\prime}\right)=\operatorname{Vol}\left(g^{\prime}\right)^{2 / n-1} \int_{M} s_{g^{\prime}} d v_{g^{\prime}}$ is positive definite; i.e., there exists $\lambda>0$ such that

$$
-S_{g}^{\prime \prime}(h, h) \geq \lambda\|h\|^{2}
$$

for any $h \in \Gamma\left(M ; S^{2}(M)\right)$ satisfying $\operatorname{tr}_{g} h=0$ and $\delta_{g} h=0$. See Definition 4.63 in [1].

For the precise definition of local rigidity refer to [10], where (and also in [1]) the terminology rigidity is used. Notice also that by the result of [9] any variationally stable Einstein metric is locally rigid, since any variationally stable Einstein metric admits no non-trivial infinitesimal Einstein deformation.

Several examples of locally rigid Einstein metrics are given in [1]; the n sphere S^{n} with the standard metric, the complex projective space $\mathbf{C} P^{n}$ with the Fubini-Study metric and a compact Einstein manifold of negative sectional curvature.

For Einstein manifolds of negative sectional curvature Besson, Courtois and

[^0]Gallot considered in [2] the functional $g^{\prime} \mapsto K\left(g^{\prime}\right)=\int_{X}\left|s_{g^{\prime}}\right|^{n / 2} d v_{g^{\prime}}$ which is closely related to the functional $S=S\left(g^{\prime}\right)$ and obtained the following variational stability theorem.

Theorem (Besson, Courtois and Gallot [2]). Let (X, g) be a compact, connected oriented n-manifold X with an Einstein metric g of negative scalar curvature. If g is a metric of negative sectional curvature or a locally symmetric metric of non-compact type, then $K: \Sigma \rightarrow \mathbf{R}$ is locally minimal at $g^{\prime}=g$. Here Σ denotes the set of all smooth metrics g^{\prime} with $\operatorname{vol}\left(g^{\prime}\right)=1$ and of constant scalar curvature. Namely, such an Einstein metric is variationally stable and hence locally rigid.

The local rigidity of Einstein manifolds of negative curveture is also stated in [1], Corollary 12.73.

The following theorem, known as a global rigidity theorem, states that the moduli of Einstein metrics on hyperbolic manifolds consists of a single point.

Theorem (Besson, Courtois and Gallot [3], LeBrun [13]). Let X be a compact, connected oriented 4-manifold admitting a real or complex hyperbolic metric g_{0}. Then any Einstein metric g on X is homothetic to g_{0} up to diffeomorphisms of X.

The aim of this article is to relax the strictly negative curvature condition of the local rigidity of Einstein metrics in Theorem(Besson, Courtois and Gallot [2]). Since the Ricci tensor is a multiple of the metric, the Riemannian curvature tensor R is expressed as the sum of the Weyl conformal curvature part W and the scalar curvature part and we obtain the following variational stability theorems.

THEOREM 1. Let (M, g) be a compact, connected oriented Einstein n-manifold with $s_{g}<0$. If

$$
\sup _{x \in M} w(x)+\frac{1}{n(n-1)} s_{g}<0
$$

then g is variationally stable and then locally rigid. Here $w(x)$ denotes the largest eigenvalue of the Weyl curvature operator $W: \Lambda^{2}(M) \longrightarrow \Lambda^{2}(M)$ at x.

THEOREM 2. Let (M, g) be a compact, connected oriented Einstein 4-manifold. If $s_{g}<0$ and

$$
\sup _{x \in M}\left\{w^{+}(x)+w^{-}(x)\right\}+\frac{s_{g}}{6}<0
$$

then g is variationally stable and hence locally rigid.

Here $w^{+}=w^{+}(x)$ and $w^{-}=w^{-}(x)$ denote the largest eigenvalue of the (anti-)self-dual Weyl curvature operators $W^{ \pm}: \Lambda_{ \pm}^{2}(M) \longrightarrow \Lambda_{ \pm}^{2}(M)$ at x, respectively. Here $\Lambda_{ \pm}^{2}(M)$ are the bundles of self-dual, or anti-self-dual 2 -forms.

Corollary 1. Let (M, g) be a compact, connected oriented Einstein 4 -manifold. Suppose that $s_{g}<0$ and g is self-dual, i.e., $W^{-}=0$ identically. If $\sup _{M} w^{+}+\frac{s_{g}}{6}<0$, then g is variationally stable and then locally rigid.

This corollary supports strongly the following conjecture; a compact, oriented self-dual Einstein 4 -manifold (M, g) with $s_{g}<0$ must be real hyperbolic or complex hyperbolic.

Now, let (M, g) be a compact Kähler-Einstein manifold of real dimension four with $s_{g}<0$. Then from Proposition 2, [4] the largest eigenvalue of W^{+}is exactly $w^{+}=-\frac{1}{12} s_{g}$.

COROLLARY 2. Let (M, g) be a compact, connected Kähler-Einstein manifold of real dimension four. Suppose that $s_{g}<0$ and $\sup _{M} w^{-}+\frac{s_{g}}{12}<0$. Then g is variationally stable and hence locally rigid.

For compact Kähler-Einstein manifolds of $s_{g}<0$ and of dimension n for arbitrary n we are able to present a similar stability theorem in terms of the Bochner curvature tensor(indeed, as Theorem 4.1 in $\S 4$). However, due to Calabi-Aubin-Yau's argument, deformation of Einstein metrics on a complex manifold is directly related to the deformation of complex structures. By the result of Koiso, if a compact Kähler-Einstein manifold of $s_{g}<0$ is variationally stable, then the first Kodaira-Spencer cohomology group vanishes, i.e., $H^{1}(M ; \Theta)=0$, that is, the complex structure is infinitesimally rigid(see [8]). See for this statement [11] and Proposition 12.98, [1]. We derive the following theorem which is the converse implication.

Theorem 3. Let (M, g, J) be a compact Kähler-Einstein manifold of $s_{g}<0$. If $H^{1}(M ; \Theta)=0$, then g is variationally stable.

2. The functionals K and S

Let \mathcal{R} be the space of all smooth metrics on a compact oriented n-manifold M. Define functionals $K, S: \mathcal{R} \longrightarrow \mathbf{R}$ by

$$
K\left(g^{\prime}\right)=\int_{M}\left|s_{g^{\prime}}\right|^{n / 2} d v_{g^{\prime}},
$$

$$
S\left(g^{\prime}\right)=\operatorname{vol}\left(g^{\prime}\right)^{2 / n-1} \int_{M} s_{g^{\prime}} d v_{g^{\prime}}, \quad g^{\prime} \in \mathcal{R}
$$

These functionals K, S are significantly important for studying geometry of Riemannian manifolds and appear for instance in the Yamabe problem associated to scalar curvature (see [12], and [15]).

Theorem 2.1 (Besson, Courtois and Gallot [2]). Let g be a smooth metric on a compact oriented n-manifold M having negative constant scalar curvature. If g^{\prime} is a smooth metric and is conformal to g, then

$$
\begin{equation*}
K\left(g^{\prime}\right) \geq K(g) \tag{1}
\end{equation*}
$$

and the equality holds if and only if $g^{\prime}=c g$ for some positive constant c.
Remark that the same statement is also given in [15]. In four dimension the Seiberg-Witten theory enables to estimate for certain 4-manifolds the absolute minimum of K, the square L^{2}-functional of scalar curvature, in terms of the topological invariants, as

$$
K\left(g^{\prime}\right) \geq 32 \pi^{2}(2 \chi(M)+3 \tau(M))
$$

for any smooth metric g^{\prime} and the equality holds when the 4 -manifold is KählerEinstein. See for this [5], [14].

Denote by $\mathcal{R}^{v o l}$ the space of smooth metrics of unit volume,

$$
\mathcal{R}^{v o l}=\left\{g^{\prime} \in \mathcal{R} \mid \operatorname{vol}\left(g^{\prime}\right)=1\right\}
$$

and by $\mathcal{R}^{\text {scal }}$ the space of smooth metrics of constant scalar curvature,

$$
\mathcal{R}^{s c a l}=\left\{g^{\prime} \in \mathcal{R} \mid s_{g} \text { is constant }\right\}
$$

and restrict the functional K to $\Sigma=\mathcal{R}^{\text {vol }} \cap \mathcal{R}^{s c a l}$, the space of metrics of unit volume having constant scalar curvature. Then

$$
K\left(g^{\prime}\right)=\left|s_{g^{\prime}}\right|^{n / 2}=\left(-s_{g^{\prime}}\right)^{n / 2}=\left\{-S\left(g^{\prime}\right)\right\}^{n / 2}
$$

Therefore, $\left.K\right|_{\Sigma}$ is locally minimal at $g^{\prime}=g$ if and only if $\left.S\right|_{\Sigma}$ is locally maximal at $g^{\prime}=g$.

The functional S is invariant under the action of the group $\operatorname{Diff}^{+}(M)$ of orientation preserving diffeomorphisms of M. The space $\mathcal{R}^{v o l}$ is also invariant under its action. Notice that for any $g \in \mathcal{R}^{v o l}$ there exists a slice $\mathcal{R}_{o}^{\text {vol }} \subset$
$\mathcal{R}^{\text {vol }}$ transversal to the action of $\mathrm{Diff}^{+}(M)$ such that $g \in \mathcal{R}_{o}^{\text {vol }}$ and the subset $\left\{\phi^{*}\left(g^{\prime}\right) \mid g^{\prime} \in \mathcal{R}_{o}^{v o l}, \phi \in \operatorname{Diff}^{+}(M)\right\}$ contains a neighborhood of g in $\mathcal{R}^{v o l}$.

Then the tangent space at g to $\mathcal{R}^{v o l}$ is given by the direct sum

$$
T_{g} \mathcal{R}^{\text {vol }}=\mathcal{L}_{\mathfrak{X}(M)} \oplus T_{g} \mathcal{R}_{o}^{\text {vol }}
$$

where

$$
\mathcal{L}_{\mathfrak{X}(M)}=\left\{h \in \Gamma\left(M ; S^{2} M\right) \mid h=\mathcal{L}_{X} g \text { for } X \in \mathfrak{X}(M)\right\}
$$

is the infinite dimensional vector space tangent to the Diff ${ }^{+}(M)$-orbit through g and

$$
T_{g} \mathcal{R}_{o}^{v o l}=\left\{h \in \Gamma\left(M ; S^{2} M\right) \mid \int_{M} \operatorname{tr}_{g} h d v_{g}=0, \delta_{g} h=0\right\}
$$

is the tangent space at g to $\mathcal{R}_{o}^{\text {vol }}$.
Any 2-symmetric tensor h is written as $h=h_{0}+f g$, where h_{0} is trace free and $f \in C^{\infty}(M)$. The space $T_{g} \mathcal{R}_{o}^{v o l}$ then decomposes into the subspaces $\Phi \oplus C_{o}^{\infty}(M) g$, where

$$
\Phi=\left\{h \mid \operatorname{tr}_{g} h=0, \delta_{g} h=0\right\}
$$

and

$$
C_{o}^{\infty}(M) g=\left\{h=f g \mid f \in C^{\infty}(M), \int_{M} f d v_{g}=0\right\}
$$

the tangent space to the conformal deformations $\left\{e^{f} g \in \mathcal{R}^{\text {vol }} \mid f \in C^{\infty}(M)\right\}$ of the metric g.

The first variation formula of $S: \mathcal{R} \longrightarrow \mathbf{R}$ is

$$
-S_{g}^{\prime}(h)=\int_{M}\left(r_{g}-\frac{s_{g}}{2} g, h\right)_{g} d v_{g}
$$

where r_{g} is the Ricci tensor and $g(t):(-\epsilon, \epsilon) \longrightarrow \mathcal{R}$ is a curve with $g(0)=g$ and $\left.\frac{d}{d t} g(t)\right|_{t=0}=h$. This formula is derived from the following formulae([10], [1]);

$$
\begin{aligned}
\left.\left(\frac{d}{d t} s_{g(t)}\right)\right|_{t=0} & =\Delta_{g}\left(\operatorname{tr}_{g} h\right)+\delta_{g}\left(\delta_{g} h\right)-\left(r_{g}, h\right)_{g} \\
\left(\frac{d}{d t} d v_{g(t)}\right)_{\mid t=0} & =\frac{1}{2} \operatorname{tr}_{g} h d v_{g}
\end{aligned}
$$

Therefore, we have

Proposition 2.1. Let g be a smooth metric of negative constant scalar curvature s_{g}. Then, the following are equivalent.
(i) g is Einstein,
(ii) g is critical for the total scalar curvature functional $S: \Sigma \longrightarrow \mathbf{R}$.

This proposition, a well known result of D. Hilbert, appears in [1] as Proposition 4.47. The proof of this proposition is easy so that we omit it.

3. The quadratic form Q

Let g be an Einstein metric on a compact manifold M with $s_{g}<0$.
Proposition 3.1 (Koiso [9], Theorems 2.4, 2.5 and Besse [1], Theorem 4.60). The second variation formula of $S: \Sigma \cap \mathcal{R}_{o}^{\text {vol }} \longrightarrow \mathbf{R}$ at g is given by

$$
\begin{equation*}
-2 S_{g}^{\prime \prime}(h, h)=\int_{M}\left\{|D h|^{2}-2(\hat{R}(h), h)\right\} d v_{g} \tag{2}
\end{equation*}
$$

where $\hat{R}: S_{0}^{2}(M) \longrightarrow S_{0}^{2}(M), \quad S_{0}^{2}(M)=\left\{h \in S^{2}(M) \mid \operatorname{tr}_{g} h=0\right\}$, is an endomorphism defined by

$$
\hat{R}(h)_{i j}=\sum_{k, \ell} R_{i k j \ell} h_{k \ell}
$$

in terms of an orthonormal basis. Here $R=\left(R_{i k j \ell}\right)$ is the Riemannian curvature tensor of (M, g).

We remark here that the tangent space at g to $\Sigma \cap \mathcal{R}_{o}^{v o l}$ is given, as noticed in p.131, [1], by

$$
T_{g}\left(\Sigma \cap \mathcal{R}_{o}^{v o l}\right)=\left\{h \in \Gamma\left(M ; S^{2} M\right) \mid \operatorname{tr}_{g} h=0, \delta_{g} h=0\right\}
$$

In fact, take a one-parameter family $g(t)$ in $\Sigma \cap \mathcal{R}_{o}^{\text {vol }}$ with $g(0)=g$. Then $h=\frac{d}{d t} g(t)_{\mid t=0}$ satisfies $\delta_{g} h=0$ and $\int_{M} \operatorname{tr}_{g} h d v_{g}=0$. Also from the scalar curvature constant condition we have $\Delta_{g(t)} s_{g(t)}=0$ and by differentiating this by t

$$
\Delta_{g}\left(\Delta_{g}\left(\operatorname{tr}_{g} h\right)+\delta_{g}\left(\delta_{g} h\right)-\frac{s_{g}}{n} \operatorname{tr}_{g} h\right)=0
$$

Since $\delta_{g} h=0, \Delta_{g}\left(\operatorname{tr}_{g} h\right)-\frac{s_{g}}{n} \operatorname{tr}_{g} h$ must be constant. However, this constant must be further zero, because $\int_{M} \operatorname{tr}_{g} h d v_{g}=0$. Then $\operatorname{tr}_{g} h$ is an eigenfunction of negative eigenvalue $\frac{s_{g}}{n}$. This implies that h is trace free.

Now we will investigate the second variation formula (2). We define the quadratic form Q associated with this formula.

The rough Laplacian $D^{*} D$ for $h \in \Gamma\left(M ; S_{0}^{2}(M)\right)$ can be written as

$$
\begin{equation*}
D^{*} D h=\left(\delta_{g}^{D} d_{g}^{D}+d_{g}^{D} \delta_{g}^{D}\right) h-h \circ r+\hat{R}(h), \tag{3}
\end{equation*}
$$

where

$$
(h \circ r)_{i j}=\sum_{k} h_{i k} r_{k j} .
$$

We will follow the argument given by [2].
Take an arbitrary $\alpha \in(0,1)$. Then, since $\delta_{g} h=0$, it holds from the above formula that

$$
\begin{align*}
-2 S_{g}^{\prime \prime}(h, h)= & \alpha \int_{M}|D h|^{2} d v_{g}+(1-\alpha) \int_{M}\left|d_{g}^{D} h\right|^{2} d v_{g} \\
& -2 \alpha \int_{M}(\hat{R}(h), h) d v_{g}+(1-\alpha) \int_{M} Q(h, h) d v_{g} \tag{4}
\end{align*}
$$

Here the quadratic form $Q=Q_{x}$ at $x \in M$ is defined by

$$
\begin{equation*}
Q_{x}(h, h)=-\left\{(h \circ r, h)_{g}(x)+(\hat{R}(h), h)_{g}(x)\right\} \text { for } h \in S_{0}^{2}(M) \tag{5}
\end{equation*}
$$

The positive definiteness of Q gives a sufficient criterion to the variational stability of Einstein metrics in the following lemma.

Lemma 3.1 (Besson, Courtois and Gallot [2]). If there exists a positive constant λ such that for any $x \in M$ and for any h of $\operatorname{tr}_{g} h=0$

$$
Q_{x}(h, h) \geq \lambda|h|^{2}
$$

then there exists also $\lambda^{\prime}>0$ such that

$$
\begin{equation*}
-2 S_{g}^{\prime \prime}(h, h) \geq \lambda^{\prime} \int_{M}|h|_{g}^{2} d v_{g} \tag{6}
\end{equation*}
$$

for all h.
If, in fact, we take $\alpha>0$ sufficiently small, then we obtain (6) from (4).
We will verify our theorems and corollaries stated in Introduction. Let g be an Einstein metric of $s_{g}<0$. Then, since $r=\frac{s_{g}}{n} g$, the Riemannian curvature tensor R_{g} is written as

$$
R_{g}=W-\frac{s_{g}}{n(n-1)} g \boxtimes g
$$

where W is the Weyl curvature tensor, so that

$$
\hat{R}(h)=\hat{W}(h)-\frac{s_{g}}{n(n-1)} h, \quad h \in S_{0}^{2}(M) .
$$

The quadratic form $Q_{x}(h, h)$ is therefore

$$
Q_{x}(h, h)=-\left\{\frac{n-2}{n(n-1)} s_{g}|h|^{2}+(\hat{W}(h), h)\right\} .
$$

Diagonalize h as

$$
h\left(e_{i}, e_{i}\right)=h_{i i}, \quad h\left(e_{i}, e_{j}\right)=h_{i j}=0, \quad i \neq j
$$

We have then $|h|^{2}=\sum_{i=1}^{n} h_{i i}^{2}$ and

$$
\hat{W}(h)_{i j}=\sum_{k, \ell} W_{i k j \ell} h_{k \ell}=\sum_{k=1}^{n} W_{i k j k} h_{k k}
$$

so that

$$
\begin{aligned}
(\hat{W}(h), h) & =\sum_{i, j}(\hat{W}(h))_{i j} h_{i j}=\sum_{i, k}\left(W_{i k i k} h_{k k}\right) h_{i i} \\
& =\sum_{i \neq k} W_{i k i k} h_{i i} h_{k k}
\end{aligned}
$$

which turns out to be

$$
\frac{1}{2} \sum_{i \neq k} W_{i k i k}\left(h_{i i}+h_{k k}\right)^{2}=\sum_{i<k} W_{i k i k}\left(h_{i i}+h_{k k}\right)^{2},
$$

since $\sum_{i} W_{i k i j}=0$. We have

$$
W_{i k i k}=\left(W\left(\theta^{i} \wedge \theta^{k}\right), \theta^{i} \wedge \theta^{k}\right) \leq w\left|\theta^{i} \wedge \theta^{k}\right|^{2}=w
$$

for each $i, k, i \neq k$, where $w=w(x)$ is the maximum eigenvalue of the self-adjoint operator $W: \Lambda^{2}(M) \longrightarrow \Lambda^{2}(M)$ at $x \in M$. Then

$$
\sum_{i<k} W_{i k i k}\left(h_{i i}+h_{k k}\right)^{2} \leq w(x) \sum_{i<k}\left(h_{i i}+h_{k k}\right)^{2}=w\left\{(n-1) \sum_{i} h_{i i}^{2}+2 \sum_{i<k} h_{i i} h_{k k}\right\} .
$$

Further we have from $\operatorname{tr}_{g} h=0$

$$
2 \sum_{i<k} h_{i i} h_{k k}=-\sum_{i} h_{i i}^{2}=-|h|^{2}
$$

from which it follows

$$
(\hat{W}(h), h) \leq(n-2) w(x)|h|^{2}, \quad h \in S_{0}^{2}(M)
$$

and then

$$
\frac{n-2}{n(n-1)} s_{g}|h|^{2}+(\hat{W}(h), h) \leq(n-2)\left(w(x)+\frac{1}{n(n-1)} s_{g}\right)|h|^{2}
$$

at each x.
Since, by the assumption,

$$
\sup _{x \in M} w(x)+\frac{1}{n(n-1)} s_{g}<0
$$

there exists a positive constant λ such that

$$
Q_{x}(h, h) \geq \lambda|h|^{2}, \quad h \in S_{0}^{2}(M)
$$

therefore for sufficiently small α we can use Lemma 3.1 to have

$$
-2 S^{\prime \prime}(h, h) \geq \lambda^{\prime}\|h\|^{2}
$$

for any $h \in \Gamma\left(M ; S_{0}^{2}(M)\right)$ satisfying $\delta_{g} h=0$. This verifies Theorem 1.
Proof of Theorem 2. Since $\operatorname{dim} M=4$, we have $h_{i i}+h_{j j}=-\left(h_{k k}+h_{\ell \ell}\right)$ for distinct i, j, k, ℓ so that

$$
\begin{aligned}
& \sum_{i<k} W_{i k i k}\left(h_{i i}+h_{k k}\right)^{2}=\left(W_{1212}+W_{3434}\right)\left(h_{11}+h_{22}\right)^{2} \\
& \quad+\left(W_{1313}+W_{2424}\right)\left(h_{11}+h_{33}\right)^{2}+\left(W_{1414}+W_{2323}\right)\left(h_{11}+h_{44}\right)^{2}
\end{aligned}
$$

We have

$$
W_{1212}+W_{3434}=\left(W\left(\theta^{1} \wedge \theta^{2}\right), \theta^{1} \wedge \theta^{2}\right)+\left(W\left(\theta^{3} \wedge \theta^{4}\right), \theta^{3} \wedge \theta^{4}\right)
$$

and the similar formulae for $W_{1313}+W_{2424}$ and $W_{1414}+W_{2323}$.
Since the space of 2 -forms $\Lambda^{2}(M)$ splits into $\Lambda_{+}^{2} \oplus \Lambda_{-}^{2}$ equipped with the orthogonal basis

$$
\begin{aligned}
f_{1}^{ \pm} & =\frac{1}{2}\left(\theta^{1} \wedge \theta^{2} \pm \theta^{3} \wedge \theta^{4}\right) \\
f_{2}^{ \pm} & =\frac{1}{2}\left(\theta^{1} \wedge \theta^{3} \pm \theta^{4} \wedge \theta^{2}\right) \\
f_{3}^{ \pm} & =\frac{1}{2}\left(\theta^{1} \wedge \theta^{4} \pm \theta^{2} \wedge \theta^{3}\right)
\end{aligned}
$$

respectively, we have

$$
\theta^{1} \wedge \theta^{2}=f_{1}^{+}+f_{1}^{-}, \quad \theta^{3} \wedge \theta^{4}=f_{1}^{+}-f_{1}^{-}
$$

so that

$$
W_{1212}=\left(W\left(f_{1}^{+}+f_{1}^{-}\right), f_{1}^{+}+f_{1}^{-}\right)=\left(W^{+}\left(f_{1}^{+}\right), f_{1}^{+}\right)+\left(W^{-}\left(f_{1}^{-}\right), f_{1}^{-}\right)
$$

which coincides with W_{3434} so that

$$
W_{1212}+W_{3434}=2\left\{\left(W^{+}\left(f_{1}^{+}\right), f_{1}^{+}\right)+\left(W^{-}\left(f_{1}^{-}\right), f_{1}^{-}\right)\right\}
$$

Here we used the four dimensional Weyl curvature property, namely, $W: \Lambda^{2}(M)$ $\longrightarrow \Lambda^{2}(M)$ decomposes into $W^{ \pm}: \Lambda_{ \pm}^{2} \longrightarrow \Lambda_{ \pm}^{2}$.

Let w^{+}and w^{-}be the maximum eigenvalue of $W^{ \pm}$, respectively. Then, we have

$$
W_{1212}+W_{3434} \leq 2\left(w^{+}\left|f_{1}^{+}\right|^{2}+w^{-}\left|f_{1}^{-}\right|^{2}\right)=w^{+}+w^{-}
$$

(here $\left|f_{i}^{ \pm}\right|^{2}=\frac{1}{2}, i=1,2,3$) and hence

$$
\begin{aligned}
\sum_{i<k} W_{i k i k}\left(h_{i i}+h_{k k}\right)^{2} & \leq\left(w^{+}+w^{-}\right)\left\{\left(h_{11}+h_{22}\right)^{2}+\left(h_{11}+h_{33}\right)^{2}+\left(h_{11}+h_{44}\right)^{2}\right\} \\
& =\left(w^{+}+w^{-}\right)|h|^{2} .
\end{aligned}
$$

From the assumption of Theorem 2, $\sup _{x \in M}\left\{w^{+}(x)+w^{-}(x)\right\}+\frac{1}{6} s_{g}<0$. Then, it follows that for some positive constant λ

$$
Q_{x}(h, h) \geq \lambda|h|^{2}, \quad h \in S_{0}^{2}(M)
$$

at each point x of M. This implies from Lemma 3.1 the variational stability of our Einstein metric g.

4. Bochner curvature and Kähler-Einstein metrics

The Bochner curvature tensor $B=B_{i k j \ell}$ is defined on a Kähler manifold (M, J, g), quite similarly to the Weyl conformal curvature tensor on a real Riemannian manifold. The following stability theorem is a generalization of Corollary 2 in $\S 1$, because in four dimension B coincides with W^{-}.

Theorem 4.1. Let (M, g, J) be a compact Kähler-Einstein manifold of real dimension n. Suppose $s_{g}<0$. If the Bochner curvature tensor $B=B_{i k j \ell}$ satisfies

$$
\sup _{x} \beta^{+}(x)+\frac{1}{n+2} s_{g}<0
$$

then g is variationally stable. Here β^{+}denotes the largest eigenvalue of the selfadjoint endomorphism B over the space $\left\{h \in S_{0}^{2}(M) \mid h\right.$ is anti-J-invariant $\}$.

Proof. As explained in the proof of Lemma 12.94, [1], the operator $D^{*} D-2 \hat{R}$ preserves J-invariant and anti- J-invariant symmetric tensors. Therefore, for $h=h_{1}+h_{2}$, where h_{1} is J-invariant and h_{2} is anti- J-invariant, we have

$$
\left(\left(D^{*} D-2 \hat{R}\right) h, h\right)_{g}=\left(\left(D^{*} D-2 \hat{R}\right) h_{1}, h_{1}\right)_{g}+\left(\left(D^{*} D-2 \hat{R}\right) h_{2}, h_{2}\right)_{g}
$$

For J-invariant h_{1}, set a 2 -form ψ as $\psi(X, Y)=h_{1}(X, J Y)$. Then by arranging the Weitzenböck formula 12.92' in [1] as

$$
\left(\left(D^{*} D-2 \hat{R}\right) h_{1}\right)(X, Y)=-2 \frac{s_{g}}{n} h_{1}(X, Y)-(\Delta \psi)(X, J Y)
$$

we obtain

$$
\left(\left(D^{*} D-2 \hat{R}\right) h_{1}, h_{1}\right)_{g}=-2 \frac{s_{g}}{n}\left|h_{1}\right|^{2}+2(\Delta \psi, \psi)_{g}
$$

and by integrating

$$
-2 S^{\prime \prime}\left(h_{1}, h_{1}\right)=\int_{M}\left(\left(D^{*} D-2 \hat{R}\right) h_{1}, h_{1}\right)_{g} d v_{g} \geq-2 \frac{s_{g}}{n} \int_{M}\left|h_{1}\right|_{g}^{2} d v_{g}
$$

since $\int_{M}(\Delta \psi, \psi) d v_{g} \geq 0$.
On the other hand, for an anti- J-invariant h_{2} we make use of the Bochner curvature tensor and apply Lemma 3.1. The Bochner curvature tensor for a Kähler-Einstein metric g is

$$
B_{i j k \ell}=R_{i j k \ell}-\frac{s_{g}}{n(n+2)}\left\{\left(g_{i k} g_{j \ell}-g_{i \ell} g_{j k}\right)+\left(J_{i k} J_{j \ell}-J_{j k} J_{i \ell}+2 J_{i j} J_{k \ell}\right)\right\}
$$

(see for example [6] and [16]) so that a complex space form metric is a Kähler metric whose Bochner curvature tensor vanishes. So, similarly to the proof of Theorem 1 we have

$$
\left(\hat{R}\left(h_{2}\right), h_{2}\right)_{g}=\left(\hat{B}\left(h_{2}\right), h_{2}\right)_{g}-2 \frac{s_{g}}{n(n+2)}\left|h_{2}\right|_{g}^{2}
$$

and the quadratic form Q is then

$$
\begin{aligned}
Q_{x}\left(h_{2}, h_{2}\right) & =-\left\{\frac{s_{g}}{n}\left|h_{2}\right|^{2}+\left(\hat{B}\left(h_{2}\right), h_{2}\right)-2 \frac{s_{g}}{n(n+2)}\left|h_{2}\right|^{2}\right\} \\
& =-\left\{\frac{s_{g}}{n+2}\left|h_{2}\right|^{2}+\left(\hat{B}\left(h_{2}\right), h_{2}\right)\right\}
\end{aligned}
$$

Therefore, from the assumption of the theorem there exists $\lambda>0$ such that $Q_{x}\left(h_{2}, h_{2}\right) \geq \lambda\left|h_{2}\right|^{2}$ for all h_{2}. By combining these two arguments we obtain the theorem.

5. Stability and deformations of complex structures

Let (M, g, J) be a compact Kähler-Einstein manifold and of $s_{g}<0$.
For the proof of Theorem 3 it suffices to show that there is a $\lambda>0$ such that

$$
\int_{M}\left(\left(D^{*} D-2 \hat{R}\right)(h), h\right)_{g} d v_{g} \geq \lambda \int_{M}|h|_{g}^{2} d v_{g}
$$

for all h satisfying $\operatorname{tr}_{g} h=0$ and $\delta_{g} h=0$.
As discussed in the above we divide the argument into the J-invariant case and the anti- J-invariant case. For the invariant case we have

$$
\int_{M}\left(\left(D^{*} D-2 \hat{R}\right)\left(h_{1}\right), h_{1}\right)_{g} d v_{g} \geq-2 \frac{s_{g}}{n} \int_{M}\left|h_{1}\right|^{2} d v_{g}
$$

On the other hand, for h_{2} we set $I \in \Gamma(M$; End $(T M))$ by $g(X, I Y)=$ $h_{2}(X, J Y)$. Then I is symmetric, i.e., $g(I X, Y)=g(X, I Y)$ and anti-commutes with J, i.e., $I J+J I=0$. Therefore we may regard I as a $T^{1,0} M$-valued (0,1)form. By making use of the Weitzenböck formula

$$
\left(D^{*} D-2 \hat{R}\right)\left(h_{2}\right)(X, J Y)=g\left(X,\left(\Delta^{\prime \prime} I\right)(Y)\right)
$$

where $\Delta^{\prime \prime}=\overline{\partial \partial}^{*}+\bar{\partial}^{*} \bar{\partial}$ is the complex Laplacian associated with the Dolbeault complex of the holomorphic tangent bundle $T^{1,0} M$. See for this, formula 12.93', [1]. Therefore

$$
\left(D^{*} D-2 \hat{R}\right)\left(h_{2}\right)(X, Y)=-g\left(X,\left(\Delta^{\prime \prime} I\right) J Y\right)
$$

which is equal to $g\left(X, J\left(\Delta^{\prime \prime} I\right) Y\right)$, since $I J+J I=0$. Then

$$
\left(\left(D^{*} D-2 \hat{R}\right)\left(h_{2}\right), h_{2}\right)=\sum_{i, j} g\left(e_{i}, J\left(\Delta^{\prime \prime} I\right)\left(e_{j}\right)\right) h_{2}\left(e_{i}, e_{j}\right)=\left(\Delta^{\prime \prime} I, I\right)_{g}
$$

since $h_{2}\left(e_{i}, e_{j}\right)=g\left(e_{i}, J I e_{j}\right)$. Therefore

$$
\begin{aligned}
\int_{M}\left(\left(D^{*} D-2 \hat{R}\right)\left(h_{2}\right), h_{2}\right)_{g} d v_{g} & =\int_{M}\left(\Delta^{\prime \prime} I, I\right)_{g} d v_{g} \\
& \geq \lambda \int_{M}|I|^{2} d v_{g}=\lambda \int_{M}\left|h_{2}\right|^{2} d v_{g}
\end{aligned}
$$

because the operator $\Delta^{\prime \prime}$ is positive definite, self-adjoint elliptic and the assumption $\operatorname{Ker} \Delta^{\prime \prime}=H^{1}(M ; \Theta)=0$ ensures that the first eigenvalue of $\Delta^{\prime \prime}$ is positive. Theorem 3 follows from these arguments.

References

[1]. A. L. Besse, Einstein Manifolds, Springer-Verlag, 1987.
[2] G. Besson, G. Courtois and S. Gallot, Le volume et l'entropie minimal des espaces localement symétriques, Invent. Math., 103 (1991), 417-445.
[3] G. Besson, G. Courtois and S. Gallot, Entropies et rigidités des espaces localement symétriques de courbure strictement négative, GAFA, 5 (1995), 731-799.
[4] A. Derdziński, Self-dual Kähler manifolds and Einstein manifolds of dimension four, Compositio Math., 49 (1983), 405-433.
[5] M. Itoh, Almost Kähler 4-Manifolds, L^{2}-Scalar Curvature Functional and Seiberg-Witten Equations, Intern. J. M., 15 (2004), 573-580.
[6] M. Itoh and D. Kobayashi, Isolation Theorems of the Bochner Curvature Type Tensors, Tokyo M. J., 27 (2004), 227-237.
[7] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Interscience Publisher, 1969.
[8] K. Kodaira and J. Morrow, Complex Manifolds, Holt, Rinehart and Winston, 1971.
[9] N. Koiso, On the second derivative of the total scalar curvature, Osaka J. Math., 16 (1979), 413-421.
[10] N. Koiso, Rigidity and stability of Einstein metrics. The case of compact symmetric spaces, Osaka J. Math., 17 (1980), 51-73.
[11] N. Koiso, Einstein metrics and complex structures, Inventiones Math., 73 (1983), 71106.
[12] J.M. Lee and T.H. Parker, The Yamabe problem, Bull. Amer. Math. Soc., 17 (1987), 37-91.
[13] C. LeBrun, Einstein metrics and Mostow rigidity, Math. Res. Lett., 2 (1995), 1-8.
[14] C. LeBrun, On four-dimensional Einstein manifolds, 109-122, Geometric Universe, Oxford University Press, 1998.
[15] C. LeBrun, Kodaira Dimension and the Yamabe Problem, Comm. Anal. and Geom., 7 (1999), 133-156.
[16] S. Tachibana, On the Bochner curvature tensor, Nat. Sci. Rep. Ochanomizu Univ., 17 (1966), 27-32.

Mitsuhiro Itoh
Institute of Mathematics, University of Tsukuba
305-8571, TSUKUBA, JAPAN
E-mail: itohmesakura.cc.tsukuba.ac.jp
Tomomi Nakagawa
Graduate Course of Mathematics, University of Tsukuba
305-8571, TSUKUBA, JAPAN
E-mail: tomomin@math.tsukuba.ac.jp

[^0]: 2000 Mathematics Subject Classification: 53C24, 53C25, 58D17, 58E11
 Key words and phrases: Einstein metric, Variational Stability, scalar curvature, Weyl conformal curvature

