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Abstract. Certain curvature conditions for variational stability of Einstein met-
rics are given. The argument of Besson, Courtois and Gallot, developed in ,
is improved in terms of the Weyl curvature operator and the scalar curvature.
For compact Kihler-Einstein manifolds (M, g, J) we can show that the infinites-
imal rigidity of complex structures J is equivalent to the variational stability of
Einstein metrics g.

1. Introduction

An Einstein metric g on a compact manifold M is called locally rigid, if
it gives an isolated point [g] in the moduli space of Einstein metrics on M.
Further, an Einstein metric g is called variationally stable, when the quadratic
form associated to the second variation of the total scalar curvature-functional
S(g') = Vol(g')?/"=1 [, sgdvy is positive definite; i.e., there exists A > 0 such
that

~Sy (h, k) > AlIR|I?

for any h € T'(M;S?(M)) satisfying tr,h = 0 and §;h = 0. See Definition 4.63
in [1]. _

For the precise definition of local rigidity refer to [10], where (and also in
[1]) the terminology rigidity is used. Notice also that by the result of any
variationally stable Einstein metric is locally rigid, since any variationally stable
Einstein metric admits no non-trivial infinitesimal Einstein deformation.

Several examples of locally rigid Einstein metrics are given in ; the n-
sphere S™ with the standard metric, the complex projective space CP™ with
the Fubini-Study metric and a compact Einstein manifold of negative sectional
curvature.

For Einstein manifolds of negative sectional curvature Besson, Courtois and
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Gallot considered in [2] the functional g’ — K(g') = [y |s¢'|™/?dvy which is
closely related to the functional S = S(g’) and obtained the following variational
stability theorem.

THEOREM (Besson, Courtois and Gallot [2]). Let (X,g) be a compact, con-
nected oriented n-manifold X with an Einstein metric g of negative scalar cur-
vature. If g is a metric of negative sectional curvature or a locally symmetric
metric of non-compact type, then K : ¥ — R is locally minimal at g’ = g. Here
¥ denotes the set of all smooth metrics g' with vol(g') = 1 and of constant scalar
curvature. Namely, such an Einstein metric is variationally stable and hence
locdlly rigid.

The local rigidity of Einstein manifolds of negative curveture is also stated
in [1], Corollary 12.73. '

‘ ‘The following theorem, known as a global rigidity theorem, states that the
moduli of Einstein metrics on hyperbolic manifolds consists of a single point.

THEOREM (Besson, Courtois and Gallot [3], LeBrun [13]). Let X be a compact,
connected oriented 4-manifold admitting a real or complex hyperbolic metric go.

Then any Einstein metric g on X is homothetic to go up to diffeomorphisms of
X. ‘

The aim of this article is to relax the strictly negative curvature condition
of the local rigidity of Einstein metrics in [Theoreml(Besson, Courtois and Gallot
). Since the Ricci tensor is a multiple of the metric, the Riemannian curvature
tensor R is expressed as the sum of the Weyl conformal curvature part W and the
scalar curvature part and we obtain the following variational stability theorems.

THEOREM 1. Let (M, g) be a compact, connected oriented Einstein n-manifold .
with sy < 0. If \

1
SUP e M w(z) + msg <0,

then g is variationally stable and then locally rigid. Here w(zx) denotes the largest
eigenvalue of the Weyl curvature operator W : A2(M) — A%(M) at z.

THEOREM 2. Let (M, g) be a compact, connected oriented Einstein 4-manifold.
If s, <0 and

supgen {wh(z) +w(2)} + %g <0,

then g is variationally stable and hence locally rigid.



VARIATIONAL STABILITY OF EINSTEIN METRICS 105

Here wt = w*(z) and w~ = w~(z) denote the largest eigenvalue of the
(anti-)self-dual Weyl curvature operators W* : A2 (M) — A%(M) at z, re-
spectively. Here A% (M) are the bundles of self-dual, or anti-self-dual 2-forms.

COROLLARY 1. Let (M,g) be a compact, connected oriented FEinstein
4-manifold. Suppose that s, < 0 and g is self-dual, i.e., W~ = 0 identically. If
sup,  wt + %‘1 < 0, then g is variationally stable and then locally rigid.

This corollary supports strongly the following conjecture; a compact, oriented
self-dual Einstein 4-manifold (M,g) with s, < 0 must be real hyperbolic or
complex hyperbolic.

Now, let (M,g) be a compact Kahler-Einstein manifold of real dimension
four with s; < 0. Then from Proposition 2, [4] the largest eigenvalue of W is
exactly wt = — &s,.

COROLLARY 2. Let (M, g) be a compact, connected Kdihler-Einstein manifold
of real dimension four. Suppose that s, < 0 and sup,, w™ + %"2- < 0. Then g is
variationally stable and hence locally rigid.

For compact Kéhler-Einstein manifolds of s, < 0 and of dimension n for
arbitrary n we are able to present a similar stability theorem in terms of the
Bochner curvature tensor(indeed, as in §4). However, due to Calabi-
Aubin-Yau’s argument, deformation of Einstein metrics on a complex manifold is
directly related to the deformation of complex structures. By the result of Koiso,
if a compact Kéhler-Einstein manifold of s, < 0 is variationally stable, then the
first Kodaira-Spencer cohomology group vanishes, i.e., H*(M;®) = 0, that is,
the complex structure is infinitesimally rigid( see ). See for this statement
and Proposition 12.98, . We derive the following theorem which is the
converse implication. ' ‘

THEOREM 3. Let (M,g,J) be a compact Kahler-Einstein manifold of s, < 0.
If HY(M;®©) = 0, then g is variationally stable.

2. The functionals K and S

Let R be the space of all smooth metrics on a compact oriented n-manifold
M. Define functionals K, S : R — R by

K(g') =/ |sg’|n/2dvg”
M
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S(g") = vol(g')g/”_1 sgdvg, g €R.
R

These functionals K, S are significantly important for studying geometry of
Riemannian manifolds and appear for instance in the Yamabe problem associated

to scalar curvature (see [12], and [15]).

THEOREM 2.1 (Besson, Courtois and Gallot [2]). Let g be a smooth metric on
a compact oriented n-manifold M having negative constant scalar curvature. If
g’ is a smooth metric and is conformal to g, then

K(g') > K(9), (1)
and the equality holds if and only if ¢’ = cg for some positive constant c.

Remark that the same statement is also given in [15]. In four dimension the
Seiberg-Witten theory enables to estimate for certain 4-manifolds the absolute
minimum of K, the square L2?-functional of scalar curvature, in terms of the
topological invariants, as

K(g') > 32n*(2x(M) + 37(M)),

for any smooth metric g’ and the equality holds when the 4-manifold is K&hler-
Einstein. See for this [5], [14].

Denotre by RV the space of smooth metrics of unit volume,
R = {g' € R|vol(g) = 1},
and by R*<@! the space of smooth metrics of constant scalar curvature,
R = {¢' € R|s,isconstant },

and restrict the functional K to £ = Rv°! N R*? the space of metrics of unit
volume having constant scalar curvature. Then

K(g') = |sg|™? = (—sy)"/* = {=S(¢g")}"/%.
Therefore, K|s is locally minimal at ¢’ = g if and only if S|x is locally maximal
at g’ =g.

The functional S is invariant under the action of the group Difft(M) of
orientation preserving diffeomorphisms of M. The space R¥% is also invariant
under its action. Notice that for any g € R there exists a slice R?” C
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RV transversal to the action of Diff ™ (M) such that g € R¥® and the subset
{¢*(g') | g’ € R, ¢ € Diff " (M)} contains a neighborhood of g in Rv°.

Then the tangent space at g to R*% is given by the direct sum
TRV = Lz ® TR
where
Lz ={h e T(M;S*M)|h=LxgforX € X(M)}

is the infinite dimensional vector space tangent to the Diff ¥ (M)-orbit through
g and

T,R: = {h € T(M;S*M)| / trohdv, =0, 5,h =0}
M

is the tangent space at g to R2°.

Any 2-symmetric tensor h is written as h = hg + fg, where hq is trace
free and f € C>°(M). The space T,R?* then decomposes into the subspaces
d o C°(M)g, where

® = {h|tr,h =0, 5,h =0}
and
C=()g={h=fglf € C=0M), [ fdv, =0},
the tangent space to the conformal deformations {efg € R | f € C>°(M)} of

the metric g.

The first variation formula of S : R — R is
' Sg
- = ——2g,h) dv,,
Sg(h) / (Tg ) 9, )g Vg

where r, is the Ricci tensor and g(t) : (—€,6) — R is a curve with g(0) =g
and 2 g(t)|st=0 = h. This formula is derived from the following formulae([10],

[1D;

d
(Z5300)limo = Ag(trgh) +8,(3,h) = (rg, h),
d

1
(Ei?dvg(t)) t=0 PR

Therefore, we have
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PROPOSITION 2.1. Let g be a smooth metric of negative constant scalar cur-
vature sq. Then, the following are equivalent.

(i) g is FEinstein,

(ii) g s critical for the total scalar curvature functional S : ¥ — R.

This proposition, a well known result of D. Hilbert, appears in |1} as Propo-
sition 4.47. The proof of this proposition is easy so that we omit it.

3. The quadratic form @
Let g be an Einstein metric on a compact manifold M with s, < 0.

PROPOSITION 3.1 (Koiso [9], Theorems 2.4, 2.5 and Besse [1], Theorem 4.60).
The second variation formula of S : ¥ NRY! — R at g is given by

~25(h ) = [ {IDAI? ~ 2(R(h), F)}dv,, @)
M

where R ': SE(M) — SE(M), S2(M) = {h e S?(M)|tryh = 0}, is an endo-
morphism defined by ‘

R(h);; = ZRikjlhkl
.

in terms of an orthonormal basis. Here R = (R;xj¢) is the Riemannian curvature
tensor of (M, g).

We remark here that the tangent space at g to ¥ NRY° is given, as noticed
in p.131, , by

T,(ENR) = {h e T(M;S*M)|tr,h = Q, §;h = 0}.

In fact, take a one-parameter family g(¢) in ¥ N R¥% with g(0) = g. Then
h = Zg(t);;=0 satisfies §gh = 0 and [, tryhdv, = 0. Also from the scalar
curvature constant condition we have Ag)s4;) = 0 and by differentiating this
by t

Ag(Ag(trgh) + 6,(6,h) — fnitrgh) =0.
Since dgh = 0, Ay(trgh) — 22tryh must be constant. However, this constant

* must be further zero, because [,, trghdv, = 0. Then tryh is an eigenfunction of
negative eigenvalue 22. This implies that h is trace free.

Now we will investigate the second variation formula (2). We define the
quadratic form @ associated with this formula.
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The rough Laplacian D*D for h € I'(M; S3(M)) can be written as
D*Dh = (62dP + dP6P)h — hor + R(h), 3)
where

(h [e) 7‘)1']- = Z hikrkj.
k

We will follow the argument given by [2].

Take an arbitrary a € (0,1). Then, since d;h = 0, it holds from the above
formula that ‘

—25;(h,h) = & /M |Dh|2dz}g +(1-a) /M |dP h|?dv,
_ z —a dv,.
20 /M(R(h),h)dvg +(1-a) /M’Q(h, h)dv, @)

Here the quadratic form Q = Q. at z € M is defined by
Qz(h,h) = —{(hor,h)g(z) + (R(h),h)y(x)} for h € SF(M). (5)

The positive definiteness of @ gives a sufficient criterion to the variational
stability of Einstein metrics in the following lemma.

LEMMA 3.1 (Besson, Courtois and Gallot [2]). If there ezists a positive con-
stant A such that for any x € M and for any h of tr,h =0

Qz(h, k) > A|R|?,
then there exists also X' > 0 such that
—28"(h ) > / |2 du,. (6)
M
for all h.

If, in fact, we take a > 0 sufficiently small, then we obtain (6) from (4).

We will verify our theorems and corollaries stated in Introduction. Let g be
an Einstein metric of s, < 0. Then, since r = %f—g, the Riemannian curvature
tensor R, is written as

Sg

RgZW—mg®g,
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where W is the Weyl curvature tensor, so that

"R(R) = W(h) —

Sg

The quadratic form Q. (h, h) is therefore

n—

Qelh i) =—{ -

T2y B2+ (W (), ).

Diagonalize h as
h(ei’ei) zhii: h(eiaej) =hij 20, i #J
We have then |h|? = ) -, h% and
W(h)ij ‘—‘-Z Wikjehre = ZWikjkhkk
k£ k=1

so that

(W(R), h) Z(W h))ijhij = Z(Wikikhkk)hii

1,5 ik

=Y Wikikhihir
ik

which turns out to be

= Z Winit (hii + hik)? Z Wikik (his + hir)?,
1,;ék i<k

since )_; Wir;; = 0. We have
‘ ' Wikik = (W(OiAOk),OiAGk) 5w|6‘7\9’°|2 = w,

for each i, k, ¢ # k, where w = w(z) is the maximum eigenvalue of the self-adjoint
operator W : A>(M) — A?(M) at z € M. Then

' V ZW,k,k(hu + hkk)z <w :1:) Z(h” + hkk)z— w{(n - 1 Z h + 22 h"hkk}
i<k i<k i<k
Further we have from tryh =0

2 ) hihir = }: R2, = —|h|?

i<k



VARIATIONAL STABILITY OF EINSTEIN METRICS 111

from which it follows

(W(h),h) < (n—2)w(z) |hf, heSFHM)

and then
L_—Q——s |h|2 + (W(h) h) < (n-2) (w(x) + ;s )|h|2
nn—-1)"7 =0 n(n—-1)"7

at each z.

Since, by the assumption,
su w(z) + 1 8§, <0
pIGM n(n _ 1) 9 )
there exists a positive constant A\ such that
Qz(h,h) > ARf*, h e S§(M)
therefore for sufficiently small o we can use to have
—25"(h,h) > X'||A||?
for any h € I'(M; SZ(M)) satisfying 6,h = 0. This verifies [Theorem 1.

Proof of Since dim M = 4, we have h;; + hj; = —(hir + he) for
distinct %, j, k, £ so that

D Wikik(hii + har)? = (Wizra + Waaza) (i1 + hao)?
i<k
+ (Wiz13 + Wagzs) (ha1 + has)® + (Wiais + Waszs) (h11 + has)?.
We have
Wiziz + Wagzs = (W(6' A 62),0" A 6%) + (W(6° A 6*),6% A 6*)
and the similar formulae for Wi313 + Was24 and Wig14 + Wasas.

Since the space of 2-forms A%(M) splits into A2 & A2 equipped with the
orthogonal basis

= %(91 NG + 6% A 6%,
£ = %(91 A% £ 6% A 62),

= %(91 AG* £ 62 A 69,
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respectively, we have
N =fr+fT, BPNO*=fr—fT
so that
Winz = WS+ D) i+ ) = WD ) + W= (DL )
which coincides with W3434 so that o
Wiziz + Waaza = 2{(W T (fi"), fi") + W~ (f), )}

Here we used the four dimensional Weyl curvature property, namely, W : A2(M )
— A2(M) decomposes into W* : AL — A%.

Let wt and w™ be the maximum eigenvalue of W=, respectively. Then, we
have
W1212 + Wagas <2 (wH|ff P +w|f7?) = wt +w™
(here |f|2 = 1, i=1,2,3) and hence

Z Wikik (hii + hkk)2 < (wr + w){(h11 + h22)?® + (ha1 + h33)2 + (h11 + haa)?}
i<k

= (vt + w‘)|h|2.

From the assumption of Theorem 2, sup, ¢ {w*(z)+w™(z)}+4sy < 0. Then,
it follows that for some positive constant A

Q= (R, h) > Ah)?, he S3M)

at each point z of M. This implies from the variational stability of
our Einstein metric g.

4. Bochner curvature and Kﬁhler-Eihstein metrics

The Bochner curvature tensor B = Bikj¢ is defined on a Kéhler manifold
(M, J,g), quite similarly to the Weyl conformal curvature tensor on a real Rie-
mannian manifold. The following stability theorem is a generalization of Corol-
lary 2 in §1, because in four dimension B coincides with W .

THEOREM 4.1. Let (M,g,J) be a compact Kihler-Einstein manifold of real
dimension n. Suppose s; < 0. If the Bochner curvature tensor B = Bije
satisfies

sup .87 (z) + 5% <0,

then g is variationally stable. Here Bt denotes the largest eigenvalue of the self-
adjoint endomorphism B over the space {h € S3(M) | h is anti-J-invariant}.
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Proof. As explained in the proof of Lemma 12.94, , the operator D*D — 2R
preserves J-invariant and anti-J-invariant symmetric tensors. Therefore, for
h = hy + hg, where h; is J-invariant and h, is anti-J-invariant, we have

((D*D = 2R)h, h), = ((D*D — 2R)hy, hy), + (D*D — 2R)hs, hy),.

For J-invariant h;, set a 2-form v as w(X Y) = h1(X,JY). Then by arranging
the Weitzenbock formula 12.92’ in [1] as

((D*D —2R)M)(X,Y) = -2 1 (X, Y) - (M) (X, IY),
we obtain
((D*D = 2R)hy, )y = =272 I [? + 2 A, ¥)g
and by integrating

_ZS”(h]_,hl) = / ((D*D — ZE)hl,hl)g d'l)g Z —2%/ Ihllg d’Ug,
M M

since [,,(Ay,)dv, > 0.

On the other hand, for an anti-J-invariant h, we make use of the Bochner
curvature tensor and apply Lemma 3.1. The Bochner curvature tensor for a
Kahler-Einstein metric g is

Bijke = Rijre — m{(glkgjl 9ie9ik) + (JinJje — ijJit +2J55Jke)}
(see for example [6] and [16]) so that a complex space form metric is a Kihler
metric whose Bochner curvature tensor vanishes. So, similarly to the proof of
we have

(R(h2), ha)g = (B(hs), ha)y — 2

and the quadratic form Q is then _
s

Qz(h2, h2) = —{ |hz|2 + (B(h2), ha) — ;l—ng—|h2|2}

=—{ |h2)? + (B(hs), h2)}.

n+2

Therefore, from the assumption of the theorem there exists A > 0 such that
Qz(ha, hg) > A|h2|2 for all hy. By combining these two arguments we obtain the
theorem.
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5. Stability and deformations of complex structures

Let (M,g,J) be a compact Kéhler-Einstein manifold and of s, < 0.
For the proof of it suffices to show that there is a A > 0 such that

[ (@D 2Byt 0y oy 2 3 [ (hi2a,
M M

for all h satisfying trgh = 0 and d,h = 0.
As discussed in the above we divide the argument into the J-invariant case
and the anti-J-invariant case. For the invariant case we have

[ (0D = 2R)(h), )y vy 2 =222 [ (1P,
M ‘ nJMm

On the other hand, for hy we set I € I'(M;End (TM)) by g(X,IY) =
ha(X,JY). Then I is symmetric, i.e., g(/X,Y) = g(X,IY) and anti-commutes
with J, i.e., IJ + JI = 0. Therefore we may regard I as a T1® M-valued (0, 1)-
form. By making use of the Weitzenbock formula

(D*D - 2R)(ho)(X, JY) = g(X, (A"T)(Y)),

where A” =38 + 8 0 is the complex Laplacian associated with the Dolbeault
complex of the holomorphic tangent bundle T1°M. See for this, formula 12.93’,
[1]. Therefore

(D*D - 2R)(hs)(X,Y) = —g(X, (A"T)JY)
which is equal to g(X, J(A"I)Y), since IJ + JI = 0. Then
((D*D = 2R)(ha), ha) = 3 gles, J(A"I)(e;) hales, e5) = (AT, T),,
,J

since ha(e;,e;) = g(e;, JIe;). Therefore
| (0D = 2R)(ha), )y, = [ (A"11) v,
JIm ; M

> )\/ |1|2dvg'=,\/ |h2)? du,,
M M

because the operator A" is positive definite, self-adjoint elliptic and the assump-
tion Ker A” = H'(M;©) = 0 ensures that the first eigenvalue of A" is positive.
follows from these arguments.
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