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Abstract. Certain curvature conditions for variational stability of Einstein met-
rics are given. The argument of Besson, Courtois and Gallot, developed in [2],
is improved in terms of the Weyl curvature operator and the scalar curvature.
For compact K\"ahler-Einstein manifolds $(M, g, J)$ we can show that the infinites-
imal rigidity of complex structures $J$ is equivalent to the variational stability of
Einstein metrics $g$ .

1. Introduction

An Einstein metric $g$ on a compact manifold $M$ is called locally rigid, if
it gives an isolated point $[g]$ in the moduli space of Einstein metrics on $M$ .
Further, an Einstein metric $g$ is called variationally stable, when the quadratic
form associated to the second variation of the total scalar curvature $\cdot\cdot$ functional
$S(g^{\prime})=Vol(g^{\prime})^{2/n-1}\int_{M}s_{g^{\prime}}dv_{g^{\prime}}$ is positive definite; i.e., there exists $\lambda>0$ such
that

$-S_{g}^{\prime\prime}(h, h)\geq\lambda||h||^{2}$

for any $h\in\Gamma(M;S^{2}(M))$ satisfying $tr_{g}h=0$ and $\delta_{g}h=0$ . See Definition 4.63
in [1].

For the precise definition of local rigidity refer to [10], where (and also in
[1]) the terminology rigidity is used. Notice also that by the result of [9] any
variationally stable Einstein metric is locally rigid, since any variationally stable
Einstein metric admits no non-trivial infinitesimal Einstein deformation.

Several examples of locally rigid Einstein metrics are given in [1]; the n-
sphere $S^{n}$ with the standard metric, the complex projective space $CP^{n}$ with
the Fubini-Study metric and a compact Einstein manifold of negative sectional
curvature.

For Einstein manifolds of negative sectional curvature Besson, Courtois and
2000 Mathematics Subject Classification: $53C24,53C25,58D17$ , 58Ell
Key words and phrases: Einstein metric, Variational Stability, scalar curvature, Weyl

conformal curvature



104 M. ITOH AND T. NAKAGAWA

Gallot considered in [2] the functional $g^{\prime}\leftrightarrow K(g^{\prime})=\int_{X}|s_{g^{\prime}}|^{n/2}dv_{g^{\prime}}$ which is
closely related to the functional $S=S(g^{\prime})$ and obtained the following variational
stability theorem.

THEOREM (Besson, Courtois and Gallot [2]). Let (X, g) be a compact, con-
nected oriented n-manifold $X$ with an Einstein metric $g$ of negative scalar cur-
vature. If $g$ is a metric of negative sectional curvature or a locally symmetric
metric of non-compact type, then $K$ : $\Sigma\rightarrow R$ is locally minimal at $g^{\prime}=g$ . Here
$\Sigma$ denotes the set of all smooth metrics $g^{\prime}$ with $vol(g^{\prime})=1$ and of constant scalar
curvature. Namely, such an Einstein metric is variationally stable and hence
locally rigid.

The local rigidity of Einstein manifolds of negative curveture is also stated
in [1], Corollary 12.73.

The following theorem, known as a global rigidity theorem, states that the
moduli of Einstein metrics on hyperbolic manifolds consists of a single point.

THEOREM (Besson, Courtois and Gallot [3], LeBrun [13]). Let $X$ be a compact,
connected oriented 4-manifold admitting a real or complex hyperbolic metric $g_{0}$ .
Then any Einstein metric $g$ on $X$ is homothetic to $g_{0}$ up to diffeomorphisms of
X.

The aim of this article is to relax the strictly negative curvature condition
of the local rigidity of Einstein metrics in Theorem(Besson, Courtois and Gallot
[2]). Since the Ricci tensor is a multiple of the metric, the Riemannian curvature
tensor $R$ is expressed as the sum of the Weyl conformal curvature part $W$ and the
scalar curvature part and we obtain the following variational stability theorems.

THEOREM 1. Let $(M, g)$ be a compact, connected oriented Einstein n-manifold
with $s_{g}<0$ . If

$\sup_{x\in M}w(x)+\frac{1}{n(n-1)}s_{g}<0$ ,

then $g$ is variationally stable and then locally rigid. Here $w(x)$ denotes the largest
eigenvalue of the Weyl curvature operator $W$ : $\Lambda^{2}(M)\rightarrow\Lambda^{2}(M)$ at $x$ .

THEOREM 2. Let $(M, g)$ be a compact, connected oriented Einstein 4-manifold.
If $s_{g}<0$ and

$\sup_{x\in M}\{w^{+}(x)+w^{-}(x)\}+\frac{s_{g}}{6}<0$ ,

then 9 is variationally stable and hence locally rigid.
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Here $w^{+}=w^{+}(x)$ and $w^{-}=w^{-}(x)$ denote the largest eigenvalue of the
(anti-)self-dual Weyl curvature operators $W^{\pm}$ : $\Lambda_{\pm}^{2}(M)\rightarrow\Lambda_{\pm}^{2}(M)$ at $x$ , re-
spectively. Here $\Lambda_{\pm}^{2}(M)$ are the bundles of self-dual, or anti-self-dual 2-forms.

COROLLARY 1. Let $(M, g)$ be a compact, connected oriented Einstein
4-manifold. Suppose that $s_{g}<0$ and $g$ is self-dual, $i.e.,$ $W^{-}=0$ identically. If
$supM^{W^{+}}+\underline{s}_{A,6}<0$ , then $g$ is variationally stable and then locally rigid.

This corollary supports strongly the following conjecture; a compact, oriented
self-dual Einstein 4-manifold $(M, g)$ with $s_{g}<0$ must be real hyperbolic or
complex hyperbolic.

Now, let $(M, g)$ be a compact K\"ahler-Einstein manifold of real dimension
four with $s_{g}<0$ . Then from Proposition 2, [4] the largest eigenvalue of $W^{+}$ is
exactly $w^{+}=-\frac{1}{12}s_{g}$ .

COROLLARY 2. Let $(M, g)$ be a compact, connected Kahler-Einstein manifold
of real dimension four. Suppose that $s_{g}<0$ and $\sup_{M}w^{-}+\frac{s}{1}42<0$ . Then $g$ is
variationally stable and hence locally rigid.

For compact K\"ahler-Einstein manifolds of $s_{g}<0$ and of dimension $n$ for
arbitrary $n$ we are able to present a similar stability theorem in terms of the
Bochner curvature tensor(indeed, as Theorem 4.1 in \S 4). However, due to Calabi-
Aubin-Yau’s argument, deformation of Einstein metrics on a complex manifold is
directly related to the deformation of complex structures. By the result of Koiso,
if a compact K\"ahler-Einstein manifold of $s_{g}<0$ is variationally stable, then the
first Kodaira-Spencer cohomology group vanishes, i.e., $H^{1}(M;\Theta)=0$ , that is,
the complex structure is infinitesimally rigid( see [8]). See for this statement
[11] and Proposition 12.98, [1]. We derive the following theorem which is the
converse implication.

THEOREM 3. Let $(M, g, J)$ be a compact Kahler-Einstein manifold of $s_{g}<0$ .
If $H^{1}(M;\Theta)=0$ , then $g$ is variationally stable.

2. The functionals $K$ and $S$

Let $\mathcal{R}$ be the space of all smooth metrics on a compact oriented n-manifold
$M$ . Define functionals $K,$ $S$ : $\mathcal{R}\rightarrow R$ by

$K(g^{\prime})=\int_{M}|s_{g^{\prime}}|^{n/2}dv_{g^{\prime}}$ ,
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$S(g^{\prime})=vol(g^{\prime})^{2/n-1}\int_{M}s_{g^{\prime}}dv_{g^{\prime}},$ $g^{\prime}\in \mathcal{R}$ .

These functionals $K,$ $S$ are significantly important for studying geometry of
Riemannian manifolds and appear for instance in the Yamabe problem associated
to scalar curvature (see [12], and [15]).

THEOREM 2.1 (Besson, Courtois and Gallot [2]). Let $g$ be a smooth metric on
a compact oriented n-manifold $M$ having negative constant scalar curvature. If

$g^{\prime}$ is a smooth metric and is conformal to $g$ , then

$K(g^{\prime})\geq K(g)$ , (1)

and the equality holds if and only if $g^{\prime}=cg$ for some positive constant $c$ .

Remark that the same statement is also given in [15]. In four dimension the
Seiberg-Witten theory enables to estimate for certain 4-manifolds the absolute
minimum of $K$ , the square $L^{2}$ -functional of scalar curvature, in terms of the
topological invariants, as

$K(g^{\prime})\geq 32\pi^{2}(2\chi(M)+3\tau(M))$ ,

for any smooth metric $g^{\prime}$ and the equality holds when the 4-manifold is K\"ahler-

Einstein. See for this [5], [14].

Denote by $\mathcal{R}^{vo\ell}$ the space of smooth metrics of unit volume,

$\mathcal{R}^{vo\ell}=\{g^{\prime}\in \mathcal{R}|vol(g^{\prime})=1\}$ ,

and by $\mathcal{R}^{scal}$ the space of smooth metrics of constant scalar curvature,

$\mathcal{R}^{scal}=$ { $g^{\prime}\in \mathcal{R}|s_{g}$ is constant},

and restrict the functional $K$ to $\Sigma=\mathcal{R}^{vol}\cap \mathcal{R}^{scal}$ , the space of metrics of unit
volume having constant scalar curvature. Then

$K(g^{\prime})=|s_{g^{\prime}}|^{n/2}=(-s_{g^{\prime}})^{n/2}=\{-S(g^{\prime})\}^{n/2}$ .

Therefore, $K|_{\Sigma}$ is locally minimal at $g^{\prime}=g$ if and only if $S|_{\Sigma}$ is locally maximal
at $g^{\prime}=g$ .

The functional $S$ is invariant under the action of the group $Diff^{+}(M)$ of
orientation preserving diffeomorphisms of $M$ . The space $\mathcal{R}^{vol}$ is also invariant
under its action. Notice that for any $g\in \mathcal{R}^{vo\ell}$ there exists a slice $\mathcal{R}_{o}^{vo\ell}\subset$
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$\mathcal{R}^{vol}$ transversal to the action of $Diff^{+}(M)$ such that $g\in \mathcal{R}_{o}^{vol}$ and the subset
$\{\phi^{*}(g^{\prime})|g^{\prime}\in \mathcal{R}_{o}^{vol}, \phi\in Diff^{+}(M)\}$ contains a neighborhood of $g$ in $\mathcal{R}^{vol}$ .

Then the tangent space at $g$ to $\mathcal{R}^{vol}$ is given by the direct sum

$T_{g}\mathcal{R}^{vol}=\mathcal{L}_{X(M)}\oplus T_{g}\mathcal{R}_{o}^{vo\ell}$

where

$\mathcal{L}_{X(M)}=$ { $h\in\Gamma(M;S^{2}M)|h=\mathcal{L}_{X}g$ for $X\in X(M)$ }

is the infinite dimensional vector space tangent to the $Diff^{+}(M)$ -orbit through
$g$ and

$T_{g}\mathcal{R}_{o}^{vol}=\{h\in\Gamma(M;S^{2}M)|\int_{M}tr_{g}hdv_{9}=0, \delta_{9}h=0\}$

is the tangent space at $g$ to $\mathcal{R}_{o}^{vol}$ .
Any 2-symmetric tensor $h$ is written as $h=h_{0}+fg$ , where $h_{0}$ is trace

free and $f\in C^{\infty}(M)$ . The space $T_{g}\mathcal{R}_{o}^{vol}$ then decomposes into the subspaces
$\Phi\oplus c_{o}\infty(M)g$ , where

$\Phi=\{h|tr_{g}h=0, \delta_{g}h=0\}$

and

$C_{o}^{\infty}(M)g=\{h=fg|f\in C^{\infty}(M), \int_{M}fdv_{g}=0\}$ ,

the tangent space to the conformal deformations $\{e^{f}g\in \mathcal{R}^{vo\ell}|f\in C^{\infty}(M)\}$ of
the metric $g$ .

The first variation formula ofS: $\mathcal{R}\rightarrow Ris$

$-S_{g}^{\prime}(h)=\int_{M}(r_{g}-\frac{s_{g}}{2}g,$ $h)_{g}dv_{g}$ ,

where $r_{g}$ is the Ricci tensor and $g(t)$ : $(-\epsilon, \epsilon)\rightarrow \mathcal{R}$ is a curve with $g(O)=g$

and $\frac{d}{dt}g(t)|_{t=0}=h$ . This formula is derived from the following formulae([10],
[1]);

$(\frac{d}{dt}s_{g(t))}|_{t=0}=\triangle_{g}(tr_{g}h)+\delta_{g}(\delta_{g}h)-(r_{g}, h)_{g}$

$(\frac{d}{dt}dv_{g(t))_{|t=0}}=\frac{1}{2}tr_{g}hdv_{g}$

Therefore, we have
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PROPOSITION 2.1. Let $g$ be a smooth metric of negative constant scalar cur-
vature $s_{g}$ . Then, the following are equivalent.

(i) $g$ is Einstein,
(ii) $g$ is critical for the total scalar curvature functional $S$ : $\Sigma\rightarrow R$ .

This proposition, a well known result of D. Hilbert, appears in [1] as Propo-
sition 4.47. The proof of this proposition is easy so that we omit it.

3. The quadratic form $Q$

Let $g$ be an Einstein metric on a compact manifold $M$ with $s_{g}<0$ .

PROPOSITION 3.1 (Koiso [9], Theorems 2.4, 2.5 and Besse [1], Theorem 4.60).
The second variation formula of $S;\Sigma\cap \mathcal{R}_{o}^{vol}\rightarrow R$ at $g$ is given by

$-2S_{g}^{\prime\prime}(h, h)=\int_{M}\{|Dh|^{2}-2(\hat{R}(h), h)\}dv_{g}$ , (2)

where $\hat{R}$ : $S_{0}^{2}(M)\rightarrow S_{0}^{2}(M)$ , $S_{0}^{2}(M)=\{h\in S^{2}(M)|tr_{g}h=0\}$ , is an endo-
morphism defined by

$\hat{R}(h)_{ij}=\sum_{k,t}R_{ikjt}h_{kt}$

in terms of an orthonormal basis. Here $R=(R_{ihj\ell})$ is the Riemannian curvature
tensor of $(M, g)$ .

We remark here that the tangent space at $g$ to $\Sigma\cap \mathcal{R}_{o}^{vol}$ is given, as noticed
in p.131, [1], by

$T_{g}(\Sigma\cap \mathcal{R}_{o}^{vo\ell})=\{h\in\Gamma(M;S^{2}M)|tr_{g}h=0, \delta_{g}h=0\}$ .

In fact, take a one-parameter family $g(t)$ in $\Sigma\cap \mathcal{R}_{o}^{vol}$ with $g(O)=g$ . Then
$h=\frac{d}{dt}g(t)_{|t=0}$ satisfies $\delta_{g}h=0$ and $\int_{M}tr_{g}hdv_{g}=0$ . Also from the scalar
curvature constant condition we have $\triangle_{g(t)}s_{g(t)}=0$ and by differentiating this
by $t$

$\triangle_{g}(\Delta_{g}(tr_{9}h)+\delta_{g}(\delta_{9}h)-\frac{s_{g}}{n}tr_{g}h)=0$ .

Since $\delta_{g}h=0,$ $\Delta_{g}(tr_{g}h)-\underline{s}_{A,n}tr_{g}h$ must be constant. However, this constant
must be further zero, because $\int_{M}tr_{g}hdv_{g}=0$ . Then $tr_{g}h$ is an eigenfunction of
negative eigenvalue $\underline{s}_{A,n}$ . This implies that $h$ is trace free.

Now we will investigate the second variation formula (2). We define the
quadratic form $Q$ associated with this formula.
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The rough Laplacian $D^{*}D$ for $h\in\Gamma(M;S_{0}^{2}(M))$ can be written as

$D^{*}Dh=(\delta_{g}^{D}d_{g}^{D}+d_{g}^{D}\delta_{9}^{D})h-h\circ r+\hat{R}(h)$ , (3)

where

$(hor)_{ij}=\sum_{k}h_{ik}r_{kj}$
.

We will follow the argument given by [2].

Take an arbitrary $\alpha\in(0,1)$ . Then, since $\delta_{g}h=0$ , it holds from the above
formula that

$-2S_{g}^{\prime\prime}(h, h)=\alpha\int_{M}|Dh|^{2}dv_{g}+(1-\alpha)\int_{M}|d_{g}^{D}h|^{2}dv_{9}$

$-2\alpha\int_{M}(\hat{R}(h), h)dv_{g}+(1-\alpha)\int_{M}Q(h, h)dv_{g}$ . (4)

Here the quadratic form $Q=Q_{x}$ at $x\in M$ is defined by

$Q_{x}(h, h)=-\{(h\circ r, h)_{g}(x)+(\hat{R}(h), h)_{g}(x)\}$ for $h\in S_{0}^{2}(M)$ . (5)

The positive definiteness of $Q$ gives a sufficient criterion to the variational
stability of Einstein metrics in the following lemma.

LEMMA 3.1 (Besson, Courtois and Gallot [2]). If there exists a positive con-
stant $\lambda$ such that for any $x\in M$ and for any $h$ of $tr_{g}h=0$

$Q_{x}(h, h)\geq\lambda|h|^{2}$ ,

then there exists also $\lambda^{\prime}>0$ such that

$-2S_{g}^{\prime\prime}(h, h)\geq\lambda^{\prime}\int_{M}|h|_{g}^{2}dv_{g}$ . (6)

for all $h$ .

If, in fact, we take $\alpha>0$ sufficiently small, then we obtain (6) from (4).

We will verify our theorems and corollaries stated in Introduction. Let $g$ be
an Einstein metric of $s_{g}<0$ . Then, since $r=\underline{s}_{A,ng}$ the Riemannian curvature
tensor $R_{9}$ is written as

$R_{9}=W-\frac{s_{g}}{n(n-1)}g$ \copyright $g$ ,
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where $W$ is the Weyl curvature tensor, so that

$\hat{R}(h)=\hat{W}(h)-\frac{s_{g}}{n(n-1)}h,$ $h\in S_{0}^{2}(M)$ .

The quadratic form $Q_{x}(h, h)$ is therefore

$Q_{x}(h, h)=-\{\frac{n-2}{n(n-1)}s_{g}|h|^{2}+(\hat{W}(h), h)\}$ .

Diagonalize $h$ as

$h(e_{i}, e_{i})=h_{ii}$ , $h(e_{i}, e_{j})=h_{ij}=0$ , $i\neq j$ .

We have then $|h|^{2}=\sum_{i=1}^{n}h_{ii}^{2}$ and

$\hat{W}(h)_{ij}=\sum_{k,l}W_{ikjt}h_{k\ell}=\sum_{k=1}^{n}W_{ikjk}h_{kk}$

so that

$(\hat{W}(h), h)=\sum_{i,j}(\hat{W}(h))_{ij}h_{ij}=\sum_{i,k}(W_{ikik}h_{kk})h_{ii}$

$=\sum_{i\neq k}W_{ikik}h_{ii}h_{kk}$

which turns out to be

$\frac{1}{2}\sum_{i\neq k}W_{ikik}(h_{ii}+h_{kk})^{2}=\sum_{i<k}W_{ikik}(h_{ii}+h_{kk})^{2}$ ,

since $\sum_{i}W_{ikij}=0$ . We have

$W_{ikik}=(W(\theta^{i}\wedge\theta^{k}), \theta^{i}\wedge\theta^{k})\leq w|\theta^{i}$ A $\theta^{k}|^{2}=w$ ,

for each $i,$ $k,$ $i\neq k$ , where $w=w(x)$ is the maximum eigenvalue of the self-adjoint
operator $W:\Lambda^{2}(M)\rightarrow\Lambda^{2}(M)$ at $x\in M$ . Then

$\sum_{i<k}W_{ikik}(h_{ii}+h_{kk})^{2}\leq w(x)\sum_{i<k}(h_{ii}+h_{kk})^{2}=w\{(n-1)\sum_{:}h_{ii}^{2}+2\sum_{i<k}h_{ii}h_{kk}\}$ .

Further we have from $tr_{g}h=0$

2
$\sum_{i<k}h_{ii}h_{kk}=-\sum_{i}h_{ii}^{2}=-|h|^{2}$
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from which it follows

$(\hat{W}(h), h)\leq(n-2)w(x)|h|^{2},$ $h\in S_{0}^{2}(M)$

and then

$\frac{n-2}{n(n-1)}s_{9}|h|^{2}+(\hat{W}(h), h)\leq(n-2)(w(x)+\frac{1}{n(n-1)}s_{g})|h|^{2}$

at each $x$ .
Since, by the assumption,

$\sup_{x\in M}w(x)+\frac{1}{n(n-1)}s_{g}<0$ ,

there exists a positive constant $\lambda$ such that

$Q_{x}(h, h)\geq\lambda|h|^{2},$ $h\in S_{0}^{2}(M)$

therefore for sufficiently small $\alpha$ we can use Lemma 3.1 to have

$-2S^{\prime\prime}(h, h)\geq\lambda^{\prime}||h||^{2}$

for any $h\in\Gamma(M;S_{0}^{2}(M))$ satisfying $\delta_{9}h=0$ . This verifies Theorem 1.

Proof of Theorem 2. Since dim $M=4$ , we have $h_{ii}+h_{jj}=-(h_{kk}+h_{tt})$ for
distinct $i,j,$ $k,$ $\ell$ so that

$\sum_{i<k}W_{ikik}(h_{ii}+h_{kk})^{2}=(W_{1212}+W_{3434})(h_{11}+h_{22})^{2}$

$+(W_{1313}+W_{2424})(h_{11}+h_{33})^{2}+(W_{1414}+W_{2323})(h_{11}+h_{44})^{2}$ .

We have

$W_{1212}+W_{3434}=(W(\theta^{1}\wedge\theta^{2}), \theta^{1}\wedge\theta^{2})+(W(\theta^{3}\wedge\theta^{4}), \theta^{3}\wedge\theta^{4})$

and the similar formulae for $W_{1313}+W_{2424}$ and $W_{1414}+W_{2323}$ .

Since the space of 2-forms $\Lambda^{2}(M)$ splits into $\Lambda_{+}^{2}\oplus\Lambda_{-}^{2}$ equipped with the
orthogonal basis

$f_{1}^{\pm}=\frac{1}{2}(\theta^{1}\wedge\theta^{2}\pm\theta^{3}\wedge\theta^{4})$ ,

$f_{2}^{\pm}=\frac{1}{2}(\theta^{1}\wedge\theta^{3}\pm\theta^{4}\wedge\theta^{2})$ ,

$f_{3}^{\pm}=\frac{1}{2}(\theta^{1}\wedge\theta^{4}\pm\theta^{2}\wedge\theta^{3})$ ,
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respectively, we have

$\theta^{1}\wedge\theta^{2}=f_{1}^{+}+f_{1}^{-}$ , $\theta^{3}\wedge\theta^{4}=f_{1}^{+}-f_{1}^{-}$

so that

$W_{1212}=(W(f_{1}^{+}+f_{1}^{-}), f_{1}^{+}+f_{1}^{-})=(W^{+}(f_{1}^{+}), f_{1}^{+})+(W^{-}(f_{1}^{-}), f_{1}^{-})$

which coincides with $W_{3434}$ so that

$W_{1212}+W_{3434}=2\{(W^{+}(f_{1}^{+}), f_{1}^{+})+(W^{-}(f_{1}^{-}), f_{1}^{-})\}$ .

Here we used the four dimensional Weyl curvature property, namely, $W$ : $\Lambda^{2}(M)$

$\rightarrow\Lambda^{2}(M)$ decomposes into $W^{\pm}$ : $\Lambda_{\pm}^{2}\rightarrow\Lambda_{\pm}^{2}$ .

Let $w^{+}$ and $w^{-}$ be the maximum eigenvalue of $W^{\pm}$ , respectively. Then, we
have

$W_{1212}+W_{3434}\leq 2(w^{+}|f_{1}^{+}|^{2}+w^{-}|f_{1}^{-}|^{2})=w^{+}+w^{-}$

(here $|f_{i}^{\pm}|^{2}=\frac{1}{2},$ $i=1,2,3$ ) and hence

$\sum_{i<k}W_{ikik}(h_{ii}+h_{kk})^{2}\leq(w^{+}+w^{-})\{(h_{11}+h_{22})^{2}+(h_{11}+h_{33})^{2}+(h_{11}+h_{44})^{2}\}$

$=(w^{+}+w^{-})|h|^{2}$ .

Rom the assumption of Theorem 2, $\sup_{x\in M}\{w^{+}(x)+w^{-}(x)\}+\frac{1}{6}s_{g}<0$ . Then,
it follows that for some positive constant $\lambda$

$Q_{x}(h, h)\geq\lambda|h|^{2},$ $h\in S_{0}^{2}(M)$

at each point $x$ of $M$ . This implies from Lemma 3.1 the variational stability of
our Einstein metric $g$ .

4. Bochner curvature and K\"ahler-Einstein metrics

The Bochner curvature tensor $B=B_{ikjt}$ is defined on a K\"ahler manifold
$(M, J, g)$ , quite similarly to the Weyl conformal curvature tensor on a real Rie-
mannian manifold. The following stability theorem is a generalization of Corol-
lary 2 in \S 1, because in four dimension $B$ coincides with $W^{-}$

THEOREM 4.1. Let $(M, g, J)$ be a compact Kahler-Einstein manifold of real
dimension $n$ . Suppose $s_{g}<0$ . If the Bochner curvature tensor $B=B_{ikj\ell}$

satisfies
$supx\beta^{+}(x)+\frac{1}{n+2}s_{9}<0$ ,

then $g$ is variationally stable. Here $\beta^{+}$ denotes the largest eigenvalue of the self-
adjoint endomorphism $B$ over the space { $h\in S_{0}^{2}(M)|h$ is anti-J-invariant}.
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Proof. As explained in the proof of Lemma 12.94, [1], the operator $D^{*}D-2\hat{R}$

preserves J-invariant and anti-J-invariant symmetric tensors. Therefore, for
$h=h_{1}+h_{2}$ , where $h_{1}$ is J-invariant and $h_{2}$ is anti-J-invariant, we have

$((D^{*}D-2\hat{R})h, h)_{g}=((D^{*}D-2\hat{R})h_{1}, h_{1})_{g}+((D^{*}D-2\hat{R})h_{2}, h_{2})_{g}$ .

For J-invariant $h_{1}$ , set a 2-form $\psi$ as $\psi(X, Y)=h_{1}(X, JY)$ . Then by arranging
the Weitzenb\"ock formula 12.92’ in [1] as

$((D^{*}D-2\hat{R})h_{1})(X, Y)=-2\frac{s_{9}}{n}h_{1}(X, Y)-(\Delta\psi)(X, JY)$ ,

we obtain

$((D^{*}D-2\hat{R})h_{1}, h_{1})_{g}=-2\frac{s_{g}}{n}|h_{1}|^{2}+2(\Delta\psi, \psi)_{g}$

and by integrating

$-2S^{\prime\prime}(h_{1}, h_{1})=\int_{M}((D^{*}D-2\hat{R})h_{1}, h_{1})_{g}dv_{g}\geq-2\frac{s_{g}}{n}\int_{M}|h_{1}|_{g}^{2}dv_{9}$ ,

since $\int_{M}(\Delta\psi, \psi)dv_{9}\geq 0$ .

On the other hand, for an anti-J-invariant $h_{2}$ we make use of the Bochner
curvature tensor and apply Lemma 3.1. The Bochner curvature tensor for a
K\"ahler-Einstein metric $g$ is

$B_{ijk\ell}\backslash =R_{ijk\ell^{-}}\frac{s_{g}}{n(n+2)}\{(g_{ik}g_{j}\ell-g_{it}g_{jk})+(J_{ik}J_{j\ell}-J_{jk}J_{il}+2J_{ij}J_{k\ell})\}$

(see for example [6] and [16]) so that a complex space form metric is a K\"ahler

metric whose Bochner curvature tensor vanishes. So, similarly to the proof of
Theorem 1 we have

$(\hat{R}(h_{2}), h_{2})_{g}=(\hat{B}(h_{2}), h_{2})_{g}-2\frac{s_{g}}{n(n+2)}|h_{2}|_{g}^{2}$

and the quadratic form $Q$ is then

$Q_{x}(h_{2}, h_{2})=-\{\frac{s_{g}}{n}|h_{2}|^{2}+(\hat{B}(h_{2}), h_{2})-2\frac{s_{g}}{n(n+2)}|h_{2}|^{2}\}$

$=-\{\frac{s_{g}}{n+2}|h_{2}|^{2}+(\hat{B}(h_{2}), h_{2})\}$ .

Therefore, from the assumption of the theorem there exists $\lambda>0$ such that
$Q_{x}(h_{2}, h_{2})\geq\lambda|h_{2}|^{2}$ for all $h_{2}$ . By combining these two arguments we obtain the
theorem.
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5. Stability and deformations of complex structures

Let $(M, g, J)$ be a compact K\"ahler-Einstein manifold and of $s_{g}<0$ .
For the proof of Theorem 3 it suffices to show that there is a $\lambda>0$ such that

$\int_{M}((D^{*}D-2\hat{R})(h), h)_{g}dv_{g}\geq\lambda\int_{M}|h|_{g}^{2}dv_{g}$

for all $h$ satisfying $tr_{g}h=0$ and $\delta_{g}h=0$ .
As discussed in the above we divide the argument into the J-invariant case

and the anti-J-invariant case. For the invariant case we have

$\int_{M}((D^{*}D-2\hat{R})(h_{1}), h_{1})_{g}dv_{9}\geq-2\frac{s_{g}}{n}\int_{M}|h_{1}|^{2}dv_{g}$ .

On the other hand, for $h_{2}$ we set $ I\in\Gamma$ ( $M$ ; End $(TM)$ ) by $g(X, IY)=$

$h_{2}(X, JY)$ . Then $I$ is symmetric, i.e., $g(IX, Y)=g(X, IY)$ and $anti\backslash $-commutes
with $J$ , i.e., $IJ+JI=0$ . Therefore we may regard $I$ as a $T^{1,0}M$-valued $(0,1)-$

form. By making use of the Weitzenb\"ock formula

$(D^{*}D-2\hat{R})(h_{2})(X, JY)=g(X, (\Delta^{l/}I)(Y))$ ,

where $\Delta^{\prime l}=\overline{\partial\partial}^{*}+\overline{\partial}^{*}\overline{\partial}$ is the complex Laplacian associated with the Dolbeault
complex of the holomorphic tangent bundle $T^{1,0}M$ . See for this, formula 12.93’,
[1]. Therefore

$(D^{*}D-2\hat{R})(h_{2})(X, Y)=-g(X, (\Delta^{\prime\prime}I)JY)$

which is equal to $g(X, J(\Delta^{\prime\prime}I)Y)$ , since $IJ+JI=0$ . Then

$((D^{*}D-2\hat{R})(h_{2}), h_{2})=\sum_{i,j}g(e_{i}, J(\triangle\prime\prime I)(e_{j}))h_{2}(e_{i}, e_{j})=(\Delta^{\prime\prime}I, I)_{g}$
,

since $h_{2}(e_{i}, e_{j})=g(e_{i}, JIe_{j})$ . Therefore

$\int_{M}((D^{*}D-2\hat{R})(h_{2}), h_{2})_{g}dv_{g}=\int_{M}(\Delta^{\prime\prime}I, I)_{g}dv_{g}$

$\geq\lambda\int_{M}|I|^{2}dv_{g}=\lambda\int_{M}|h_{2}|^{2}dv_{g}$ ,

because the operator $\triangle^{\prime\prime}$ is positive definite, self-adjoint elliptic and the assump-
tion Ker $\Delta^{\prime\prime}=H^{1}(M;\Theta)=0$ ensures that the first eigenvalue of $\Delta^{\prime\prime}$ is positive.
Theorem 3 follows from these arguments.
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