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Abstract. Here we show that for every open subset $U$ of every Fr\’echet space
$V$ without any continuous norm there is no real analytic function on $U$ with an
isolated zero. We prove the same result for a certain Banach space $V$ . We also
prove an extension theorem for real analytic functions.

1. Introduction

The function $\sum_{i=1}^{n}x_{i}^{2}$ is a real analytic function on $R^{n}$ with an isolated
zero. Here we investigate the existence of such functions on open subsets of
infinite-dimensional real topological vector spaces. In Section 2 we will prove
the following result.

THEOREM 1. Let $V$ be a real Fr\’echet space without any continuous norm and
$U$ an open subset of V. Then there is no real analytic function on $U$ with an
isolated zero.

We also have an example in which $V$ is a Banach space.

EXAMPLE 1. Fix an uncountable discrete set $A$ and let $C_{0}(A, R)$ (resp. $C_{0}(A$ ,
$C))$ be the the Banach space of all R-valued (resp. C-valued) functions $f$ on
$A$ which vanish at infinity with the supremum norm, i.e. such that for every
$\epsilon>0$ there is a finite set $S\subset A$ such that $|f(i)|<\epsilon$ for every $i\in A\backslash S$ . For any
open subset $U$ of $C_{0}(A, C)$ every holomorphic function on $U$ depends only on a
countable number of variables ([3] or [1], Prop. 8). Using the complexification
we see that for every open subset $B$ of $C_{0}(A, R)$ and every real analytic function
$f$ on $B,$ $f$ depends only on a countable subset of $A$ . In particular no such $f$ may
have an isolated zero or vanish exactly on a non-empty finite-dimensional real
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analytic subvariety of $B$ .

Of course, for many topological vector spaces $V$ there are many real analytic
functions on $V$ with exactly one zero.

EXAMPLE 2. Fix an infinite set $I$ and a real number $p>0$ . Let $\ell^{p}(I)$ be the
set of all p-summable real-valued functions on $I$ with the usual norm $||||_{p}$ ; if
$0<p<1$ , this is not a norm, but a $\gamma norm$ . Let $z_{i}$ : $\ell^{p}(I)\rightarrow R$ be the function
defined by $z_{i}(f)=f(i)$ for all $f\in\ell^{p}(I)$ . Fix an even integer $d\geq p$ . The function
$h:=\sum_{i\in I}z_{i}^{d}$ is a continuous homogeneous real-valued polynomial on $\ell^{p}(I)$ (and
hence a real analytic function on $\ell^{p}(I))$ with an isolated zero at $\{0\}$ . For $p=2$

this example covers all infinite-dimensional Hilbert spaces. Let $U\subsetneqq\ell^{p}(I)$ and
fix $P\in\partial(U)$ . Take a real analytic function $h$ on $\ell^{p}(I)$ which vanishes only at $P$

and set $f$ $:=1/h$ . Thus $f$ is a real analytic function on $U$ which diverges at $P$ .
Hence $U$ is a domain of holomorphy with respect to the set of all real analytic
functions on $U$ .

Then we will consider another, but related problem. As in [2], Theorem 4,
we will obtain the following result.

THEOREM 2. Let $V$ be an infinite-dimensional real topological vector space
such that its dual $V^{\prime}$ separates V. Let $V_{\sigma}$ be $V$ equipped with the weak topology.
Let $K\subset V_{\sigma}$ be a compact convex set and $U$ an open neighborhood of $K$ in $V_{\sigma}$ .
Then every real analytic function on $U\backslash K$ is the restriction to $U\backslash K$ of a real
analytic function on $U$ .

2. The proofs

LEMMA 1. Let $V$ be an infinite-dimensional real (resp. complex) topological
vector space such that its dual $V^{\prime}$ separates V. Let $V_{\sigma}$ be $V$ equipped with the
weak topology. Let $U$ be an open subset of $V_{\sigma}$ and $f$ a real analytic (resp. holo-
morphic) function on $U$ with respect to the sigma-topology. Then for every
$P\in U$ there is an open neighborhood $\Omega$ of $Pin_{\backslash }U$ , finitely many $f_{i}\in V^{\prime}$ , say
$f_{i}$ for $1\leq i\leq s$ , a neighborhood $A$ of $(f_{1}(P), \ldots, f_{s}(P))$ in $R^{s}$ (resp. $C^{s}$) and
a real analytic (resp. holomorphic) function $g$ on $A$ such that $ f|\Omega=g\circ\tau|\Omega$ ,
where $\tau=(f_{1}, \ldots, f_{s})$ . Furthermore, the minimal such integer $s$ is a continuous
function of $P$ .

Proof. Using the complexification we are reduced to prove the statement in the
complex case. By the definition of weak topology there are finitely many $f_{i}\in V^{\prime}$ ,
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say $f_{i}$ for $1\leq i\leq s$ , and $\epsilon>0$ such that $B$ $:=$ { $x\in V_{\sigma}$ : $|f_{i}(x)|<\epsilon$ for all $i$ } is
contained in $U$ and $f|B$ is bounded. Since every bounded holomorphic function
on $C$ is constant, the restriction of $f$ to each fiber of $\tau$ is constant, proving the
first assertion. For the last assertion copy the proof of [2], Th. 2. $\square $

Use Lemma 1 to make the trivial modifications of the proof of [2], Th. 4,
needed to obtain the following result.

THEOREM 3. Let $V$ be an infinite-dimensional real topological vector space
such that its dual $V^{l}$ separates V. Let $V_{\sigma}$ be $V$ equipped with the weak topology.
Let $U$ be an open connected subset and $L$ a closed subset of $U$ such that for every
$x\in L$ there is an open neighborhood $\Omega$ of $x$ in $U$ (for the weak topology) and
finitely many $f_{i}\in V^{\prime}$ , say $f_{i}$ for $1\leq i\leq s$ , such that for all integers $n\geq s$ and
all $f_{j}\in V^{\prime},$ $s+1\leq j\leq n$ , calling $\tau$ : $V\rightarrow R^{n}$ the map defined by $(f_{1}, \ldots , f_{n})$ ,
and every $z\in\Omega\cap L$ the set $\tau^{-1}(\tau(z))\cap(U\backslash L)$ is connected and non-empty. Then
every real analytic function on $U\backslash L$ is the restriction to $U\backslash L$ of a real analytic
function on $U$ .

Proof of Theorem 2. Fix an integer $n\geq 2$ and $f_{i}\in V^{\prime},$ $1\leq i\leq n$ . Call
$\tau$ : $V_{\sigma}\rightarrow R^{n}$ the map defined by $(f_{1}, \ldots, f_{n})$ . Since $\tau(K)$ is compact and convex,
$R^{n}\backslash \tau(K)$ is connected and non-empty. Fix $P\in K$ . Since $K$ is convex and the
fiber $\tau^{-1}(\tau(P))$ is an infinite-dimensional affine space, $\tau^{-1}(\tau(P))\backslash \tau^{-1}(\tau(P))\cap K$

is connected and non-empty. Hence we may apply Theorem 3. $\square $

Proof of Theorem 1. Up to translation we may assume $0\in U$ . By [4], Th. 2.6.13,
$V$ has a subspace $E$ isomorphic to $R^{N}$ . Set $D$ $:=U\cap E$ . It is sufficient to prove
the same assertion for $D$ . By [2], Cor. 1, every real analytic function on $D$

depends locally only on finitely many variables and hence it cannot have any
isolated zero. $\square $

REMARK 1. The proof of Theorem 1 shows that we may take as $V$ an arbi-
trary real topological vector space (even a non-locally convex one) containing a
subspace isomorphic to $R^{N}$ .
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