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Abstract. The structure of the unit group consisting of units of finite order in
the character ring of a finite group is well known (see [8]). We also have studied
the unit group in the character ring of an alternating group $A_{n}(n\geq 5)$ . In this
article our objective is to construct units of infinite order in the character ring
of a finite group concretely, by making use of units in $Z[\omega]$ where $Z$ is the ring
of rational integers, $\omega$ is a primitive $p$-th root of unity, and $p(\geq 5)$ is a prime
number.

1. Introduction

Throughout this article, $G$ denotes always a finite group, $Z$ the ring of rational
integers, $Q$ the rational field, and $C$ the complex number field. For a finite set
$S$ , we denote by $|S|$ the number of elements in $S$ .

Let $Irr(G)=$ { $\chi_{1}=1_{G}$ (the principal character), . . . , $\chi_{h}$ } be the complete
set of absolutely irreducible complex characters of $G$ .

Let us set

$R(G)=\{\sum_{i=1}^{h}a_{i}\chi_{i}|a_{i}\in Z(i=1, \ldots h)\}$ .

That is, $R(G)$ is the set of generalized characters of $G$ . It is well known that
$R(G)$ forms a commutative ring with an identity element $\chi_{1}$ . We call $R(G)$ the
character ring of a finite group $G$ .

Let $\zeta$ be a primitive $|G|$ -th root of unity and $K=Q(\zeta)$ be the smallest
subfield of $C$ containing $Q$ and $\zeta$ . Then $K$ is a splitting field for $G$ .

We denote by $A$ the ring of algebraic integers in $K$ . In [8] we proved the fol-
lowing theorem and corollary concerning the units of finite order in the character
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ring of a finite group $G$ .

THEOREM 1.1. Any unit of finite order in $AR(G)$ has the form $\epsilon\chi$ for some
linear character $\chi$ of $G$ and some root $\epsilon$ of unity in A where $AR(G)$ is $a$ A-
algebra spanned by $Irr(G)=\{\chi_{1}, \ldots\chi_{h}\}$ , that is, $ AR(G)=\{\sum_{i=1}^{h}a_{i}\chi_{i}|a_{i}\in$

$A(i=1, \ldots h)\}$ .

COROLLARY 1.2. Any unit of finite order in $R(G)$ has the $ form\pm\chi$ for some
linear character $\chi$ of $G$ .

Next we state some results, which have been obtained so far, concerning the
units of infinite order in the character ring of a finite group $G$ .

Here we fix the following notation;
Let $R$ be a commutative ring with an identity element.
$U(R):=the$ unit group of $R$ ,
$U_{f}(R):=the$ subgroup of $U(R)$ which consists of units of finite order in $R$ ,
$S_{n},$ $A_{n}$ : $=$ a symmetric group and an alternating group on $n$ symbols for a

natural number $n$ , respectively.
We assume that $n\geq 5$ for a natural number $n$ .
Since $A_{n}(n\geq 5)$ is a simple group, $A_{n}=D(A_{n})$ holds where $D(A_{n})$ is the

commutator subgroup of $A_{n}$ , and so $A_{n}$ has only one linear character $\chi_{1}$ (that is,
the principal character of $A_{n}$ ). By Corollary 1.2 we have $U_{f}(R(A_{n}))=\{\pm\chi_{1}\}$

and so we use a notation $U(R(A_{n}))/\{\pm 1\}$ in place of $U(R(A_{n}))/U_{f}(R(A_{n}))$

for simplicity, by identifying $\{\pm 1\}$ with $\{\pm\chi_{1}\}$ . Let $c(n)$ be the number of self-
associated frames of real type $[m_{1}, \ldots m_{r}],$ $m_{1}+\cdots+m_{r}=n$ . (See Definition
2.4 in [9] about $c(n).)$

In [9] we proved the following theorem.

THEOREM 1.3. rank of $U(R(A_{n}))/\{\pm 1\}=c(n)$ .

In [10] we constructed $c(n)$ units of infinite order $\psi_{1},$ $\ldots\psi_{c(n)}$ in $R(A_{n})$ con-
cretely which are free generators, and showed that $ U^{2}(R(A_{n}))\subseteq\langle\psi_{1}, \ldots\psi_{c(n)}\rangle$

where $U^{2}(R(A_{n}))=\{\psi^{2}|\psi\in U(R(A_{\mathfrak{n}}))\}$ and $\langle\psi_{1}, \ldots , \psi_{c(n)}\rangle$ is the abelian
subgroup of $U(R(A_{n}))$ generated by $\psi_{1},$

$\ldots$ $\psi_{c(n)}$ . (See Theorem 3.4 in [10].)
We note that Theorem 1.3 is a direct consequence of Theorem 3.4 in [10].

These results concerning units in $R(A_{n})$ were obtained by making use of the
character table of $A_{n}$ .

In this article we intend to construct units of infinite order in $R(G)$ for a
finite group $G$ , by making use of units in $Z[\omega]$ where $\omega$ is a primitive p-th root
of unity and $p(\geq 5)$ is a prime number.
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2. Preliminaries

We shall keep the notation in Section 1.
Let $\zeta$ be a primitive $|G|$ -th root of unity for a finite group $G$ and $K=Q(\zeta)$

be the smallest subfield of $C$ containing $Q$ and $\zeta$ . We denote by $A$ the ring of
algebraic integers in $K$ . Let $B$ be a subring of $A$ such that $B$ contains all the
values of characters of $G$ . Here we note that $B\ni 1$ and so $B\supseteq Z$ , because for
any element $x\in G,$ $\chi_{1}(x)=1\in B$ by assumption where $\chi_{1}$ is the principal
character of $G$ .

In the above situation we have:

LEMMA 2.1. If $U(B)=U_{f}(B)$ holds, then we have $U(R(G))=U_{f}(R(G))$ .

Proof. $Foranyelementu\in U(R(G))$ , there exists u’ $\in R(G)$ such that uu’ $=\chi_{1}$

(the principal character of $G$). Hence, for any element $x\in G$ we have $(uu^{\prime})(x)=$

$u(x)u^{\prime}(x)=\chi_{1}(x)=1$ . Since $u(x),$ $u^{\prime}(x)\in B$ by assumption, $u(x)$ is a unit
in $B$ . Hence $u(x)$ is a unit of finite order for any element $x$ in $G$ , because
$U(B)=U_{f}(B)$ . Let $\{x_{1}, \ldots x_{g}\}$ be all the elements of $G$ , and $l$ be the least
common multiple of orders of elements $u(x_{i})$ in $B(i=1, \ldots g)$ . Then we have
$u^{\ell}=\chi_{1}$ . That is, $u$ is a unit of finite order in $R(G)$ . Thus the result follows. $\blacksquare$

From now on we assume that $p(\geq 5)$ is a prime number and $\omega$ is a primitive
p-th root of unity. Let $Z[\omega]$ be the smallest subring of $C$ containing $Z$ and $\omega$ .

Let $i$ and $j$ be rational integers such that $1\leq i,$ $j<p,$ $i\neq j$ . Then there is
a rational integer $k$ , which is uniquely determined by $i$ and $j$ , such that $ik\equiv j$

$(mod p)$ , $1\leq k<p$ . For these rational integers $i,j$ , and $k$ , we define several
functions of one variable as follows.

$g_{ij}(x)=\frac{x^{j}+1}{x^{i}+1}g_{k}(x)=\frac{x^{k}+1}{x+1}$

$f_{k}(x)=x^{p+k-1}-x^{p+k-2}+\cdots+(-1)^{m-1}x^{p+k-m}+\cdots+1$ , if $k$ is even,
$f_{k}(x)=x^{k-1}-x^{k-2}+\cdots+(-1)^{m-1}x^{k-m}+\cdots+1$ , if kis odd,
$f_{ij}(x)=f_{k}(x^{i})$ .

Then we have:

THEOREM 2.2. In the above situation let $\epsilon$ be any p-th root of unity. Then we
have:

(i) $\frac{\epsilon^{j}+1}{\epsilon^{i}+1}$ is a unit in $Z[\omega]$

(ii) $g_{ij}(\epsilon)=g_{k}(\epsilon^{i})=f_{k}(\epsilon^{i})=f_{ij}(\epsilon)$

Proof. It is obvious that (i) and (ii) hold for $\epsilon=1$ , and so we may assume that
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$\epsilon\neq 1$ , that is, $\epsilon$ is a primitive p-th root of unity, in order to prove (i) and (ii).

(i) $\frac{1}{\epsilon+1}=\frac{\epsilon-1}{\epsilon^{2}-1}=\frac{\epsilon^{p+1}-1}{\epsilon^{2}-1}=\frac{(\epsilon^{2})^{L+\underline{1}}2-1}{\epsilon^{2}-1}=(\epsilon^{2})^{L_{\frac{-1}{2}}}+(\epsilon^{2})^{\epsilon_{\frac{-3}{2}}}+\cdots+\epsilon^{2}+1$ .

Hence $\frac{1}{\epsilon+1}\in Z[\epsilon]$ . Since $\epsilon$ is a primitive p-th root of unity, $Z[\epsilon]=Z[\omega]$

holds. Hence $\frac{1}{\epsilon+1}\in Z[\omega]$ , and so $\epsilon+1$ is a unit in $Z[\omega]$ .
Since $\epsilon^{i}$ and $\epsilon^{j}(1\leq i,j<p)$ are primitive p-th roots of unity, $\epsilon^{i}+1$ and

$\epsilon^{j}+1$ are units in $Z[\omega]$ , and so $\frac{\epsilon^{j}+1}{\epsilon^{i}+1}$ is a unit in $Z[\omega]$ .

(ii) Since $ik\equiv j(mod p)$ holds, $(\epsilon^{i})^{k}=\epsilon^{j}$ holds. Therefore we have an
equation $\frac{\epsilon^{j}+1}{\epsilon^{i}+1}=\frac{(\epsilon^{i})^{k}+1}{\epsilon^{i}+1}$ and so $g_{ij}(\epsilon)=g_{k}(\epsilon^{i})$ holds.

First we assume that $k$ is even. Then $p+k$ is odd. Since $(\epsilon^{i})^{k}=(\epsilon^{i})^{p+k}$ ,

$g_{k}(\epsilon^{i})=\frac{(\epsilon^{i})^{p+k}+1}{\epsilon^{i}+1}=(\epsilon^{i})^{p+k-1}-(\epsilon^{i})^{p+k-2}+\cdots+(-1)^{m-1}(\epsilon^{i})^{p+k-m}+$

. . . $+1=f_{k}(\epsilon^{i})$ .
Next we assume that $k$ is odd. Then we have

$g_{k}(\epsilon^{i})=\frac{(\epsilon^{i})^{k}+1}{\epsilon^{i}+1}=(\epsilon^{i})^{k-1}-(\epsilon^{i})^{k-2}+\cdots+(-1)^{m-1}(\epsilon^{i})^{k-m}+\cdots+1=f_{k}(\epsilon^{i})$

Therefore we have

$g_{ij}(\epsilon)=g_{k}(\epsilon^{i})=f_{k}(\epsilon^{i})=f_{ij}(\epsilon)$

Thus the result follows. $\blacksquare$

THEOREM 2.3. Let $\epsilon=\pm 1$ and let $\eta,$
$\theta$ , and $\lambda$ be primitive p-th roots of unity.

Suppose $\frac{\theta+1}{\eta+1}=\epsilon$ or $\epsilon\lambda$ holds. Then we have

(i) $\epsilon=1$

(ii) $\eta=\theta$ or $\eta\theta=1$

Proof. We prove (i) and (ii) together. We note that not exceeding 4 $(\leq p-1)$

different p-th roots of unity are linearly independent over $Q$ .
$\theta+1$

Suppose that – $=\epsilon$ holds. Then we have a formula $1+\theta-\epsilon\eta-\epsilon=0$ . If
$\eta+1$

$\epsilon=-1$ , then we get a formula 2 $\cdot 1+\theta+\eta=0$ , which is contrary to the above
note, because 1, $\theta$ , and $\eta$ are p-th roots of unity. Hence we have $\epsilon=1$ and $\theta=\eta$ .

$\theta+1$

Next suppose that $--=\epsilon\lambda$ holds. Then we have $1+\theta-\epsilon\lambda\eta-\epsilon\lambda=0$ .
$\eta+1$

If $\epsilon=-1$ , then we get a formula $1+\theta+\lambda\eta+\lambda=0$ , which is contrary to the
above note, because 1, $\theta,$ $\lambda\eta$ , and $\lambda$ are p-th roots of unity. Hence it follows that
$\epsilon=1$ and $1+\theta-\lambda\eta-\lambda=0$ hold. Now we assume that $\lambda\eta\neq 1$ . Then we have
$\theta\neq\lambda$ and $\lambda\eta\neq\theta$ , because $\lambda\neq 1$ . Since $\eta\neq 1$ , we have $\lambda\eta\neq\lambda$ . Hence 1, $\theta,$ $\lambda\eta$ ,
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and $\lambda$ are 4 different p-th roots of unity, and so are linearly independent over $Q$

by the above note. This contradicts a formula $1+\theta-\lambda\eta-\lambda=0$ . Therefore it
follows that $\lambda\eta=1$ and $\theta=\lambda$ hold. Hence we have $\eta\theta=1$ . This completes the
proof of Theorem 2.3. $\blacksquare$

3. Main theorems

We shall keep the notation of the preceding two sections.
In general, if $f(x)=a_{n}x^{n}+\cdots+a_{1}x+a_{0}\in Z[x]$ and $\psi$ is a character of a

finite group $G$ , then we define a generalized character $f(\psi)$ of $G$ as follows
$f(\psi)=a_{n}\psi^{n}+\cdots+a_{1}\psi+a_{0}1_{G}$

where $1_{G}$ is the principal character of $G$ .
Rom our earlier results [Theorems 2.2 and 2.3] we have:

THEOREM 3.1. Let $\langle a\rangle$ be a cyclic group of order $p$ and let $\psi$ be a linear
character of $\langle a\rangle$ such that $\psi(a)=\omega$ where $p(\geq 5)$ is a prime number and $\omega$ is
a primitive p-th root of unity.

For rational integers $i$ and $j(1\leq i, j<p, i\neq j)$ , we assume that $i+j\neq p$ .
Then we have

(i) $\pm f_{ij}(\psi)$ are not linear characters of $\langle a\rangle$ .
(ii) $\pm f_{ij}(\psi)$ are units of infinite order in $R(\langle a\rangle)$

where $f_{ij}(x)$ is the same polynomial over $Z$ as the one given before Theorem 2.2.

Proof. (i) We assume that $\pm f_{ij}(\psi)$ are linear characters of $\langle a\rangle$ . Since all the
linear characters of $\langle a\rangle$ are given by $\psi^{m}$ $(m=0,1, \cdots , p-1)$ , we can write
$\pm f_{ij}(\psi)=\psi^{m}$ .

If we consider the values of these generalized characters at $ a\in\langle a\rangle$ on both
sides , then we have

$\frac{\omega^{j}+1}{\omega^{i}+1}=\omega^{m}$ or $\frac{\dot{d}+1}{\omega^{i}+1}=-\omega^{m}$ ,

because $f_{ij}(\psi)(a)=f_{ij}(\psi(a))=f_{ij}(\omega)=g_{ij}(\omega)$ by Theorem 2.2 (ii) where
$g_{ij}(x)$ is the same function as the one given before Theorem 2.2.

By Theorem 2.3 (i), the second equation doesn’t hold. Therefore we have an
$\omega^{j}+1$

equation– $=\omega^{m}$ . By Theorem 2.3 (ii) we have $\omega^{i}=\omega^{j}$ or $\omega^{i}\omega^{j}=\omega^{i+j}=$

$\omega^{i}+1$

1. Hence $i=j$ or $i+j=p$ , because $1\leq i,j<p$ . These facts contradict our
assumption that $i\neq j$ and $i+j\neq p$ . $Therefore\pm f_{ij}(\psi)$ are not linear characters
of $\langle a\rangle$ . This completes the proof of (i).
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(ii) For any element $a^{l}\in\langle a\rangle(0\leq l<p)$ , by Theorem 2.2 (ii) we have

$f_{ij}(\psi)(a^{\ell})=f_{ij}(\psi(a^{\ell}))=f_{ij}(\omega^{l})=g_{ij}(\omega^{l})=\frac{(\omega^{l})^{j}+1}{(\omega^{\ell})^{i}+1}$

because $\psi(a)=\omega$ and $\omega^{l}$ is a p-th root of unity. Similarly we get $f_{ji}(\psi)(a^{\ell})=$

$\frac{(\omega^{\ell})^{i}+1}{(\omega^{l})^{j}+1}(0\leq l<p)$ .

Therefore it follows that $(f_{ij}(\psi)f_{ji}(\psi))(x)=(f_{ij}(\psi)(x))(f_{ji}(\psi)(x))=1$ for
any element $ x\in\langle a\rangle$ . This means $f_{ij}(\psi)f_{ji}(\psi)=1_{\langle a\rangle}$ (the principal character of
$\langle a\rangle)$ . Since $f_{ij}(\psi),$ $f_{ji}(\psi)\in R(\langle a\rangle),$ $\pm f_{ij}(\psi)$ are units in $R(\langle a\rangle)$ . By Corollary
1.2 and the statement (i) in this theorem, it follows $that\pm f_{ij}(\psi)$ are of infinite
order. This completes the proof of (ii). $\blacksquare$

EXAMPLE 1. Let $\langle a\rangle$ be a cyclic group of order 5 and let $\psi$ be a linear character
given by $\psi(a)=\omega$ where $\omega$ is a primitive 5-th root of unity.

Since 1 $\cdot 3\equiv 3(mod 5)$ , for $i=1$ and $j=3$ , we have $k=3$ . Hence we get
$f_{13}(\psi)=f_{3}(\psi)=\psi^{2}-\psi+1_{\langle a\rangle}$ where $1_{\langle a\rangle}$ is the principal character of $\langle a\rangle$ .

Since 3 $\cdot 2\equiv 1(mod 5)$ , for $i=3$ and $j=1$ we have $k=2$ and $p+k=7$ .
Hence we get

$f_{31}(\psi)=f_{2}(\psi^{3})=(\psi^{3})^{6}-(\psi^{3})^{5}+(\psi^{3})^{4}-(\psi^{3})^{3}+(\psi^{3})^{2}-\psi^{3}+1_{\langle a\rangle}$

$=-\psi^{4}+\psi^{2}+\psi$ ,

because $\psi^{5}=1_{\langle a\rangle}$ holds. Actually we can see easily that $f_{13}(\psi)f_{31}(\psi)=1_{\langle a)}$

holds, because $\psi^{5}=1_{\langle a\rangle}$ holds.
Thus $\pm(\psi^{2}-\psi+1_{\langle a\rangle})$ and $\pm(-\psi^{4}+\psi^{2}+\psi)$ are ‘units of infinite order in

$R(\langle a))$ .

Hereafter when we consider $f_{ij}(\psi)$ where $i$ and $j$ are rational integers such
that $1\leq i,j<p,$ $i\neq j,$ $i+j\neq p$ , and $p(\geq 5)$ is a prime number, we assume that
$f_{ij}(x)$ is the same polynomial over $Z$ as the one given before Theorem 2.2.

Now we state some results about “tensor induction”, which will be needed
later.

Let $H$ be a subgroup of $G$ and choose a set $T$ of representatives for the right
cosets of $H$ in $G$ . Since $G$ acts on the set of right cosets of $H$ by $(Ht)g=$

Htg $(t\in T, g\in G)$ . We write $t\cdot g\in T$ to denote the representative of the coset
$Htg$ , so that $(tg)(t\cdot g)^{-1}\in H.$ Thus. defines an action of $G$ on $T$ .

Fix $g\in G$ and let $n(t)$ denote the size of the $\langle g\rangle$ -orbit on $T$ containing $t$ .
Then, by the same calculation as is used when developing the transfer map, we
have $tg^{n(t)}t^{-1}\in H$ for $t\in T$ . Let $T_{o}$ be a set of representatives for the $\langle g\rangle$ -orbits
on $T$ .
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Let $\varphi$ be a class function of $H$ . Then we define $\varphi^{\otimes G}$ on $G$ , which is called a
tensor induction of $\varphi$ to $G$ , by the formula

$\varphi^{\otimes G}(g)=\prod_{t\in T_{0}}\varphi(tg^{n(t)}t^{-1})$
for $g\in G$ $(*)$

(see Definition 2.1 in [3]).
Expositions of tensor induction, including the details of the construction can

be found in [2], [3], [5], and [6].
If $\varphi$ is a generalized character of $H$ , then $\varphi^{\otimes G}$ is also a generalized character

of $G$ by Theorem A in [3].
Let $u$ be a unit in $R(H)$ . Then we prove that $u^{\otimes G}$ is also a unit in $R(G)$ .

In fact, since $u$ is a unit in $R(H)$ , there is an element $v$ in $R(H)$ such that
$uv=1_{H}$ (the principal character of $H$ ). By Theorem A in [3], $u^{\otimes G}$ and $v^{\otimes G}$ are
generalized characters of $G$ . For any element $g$ in $G$ , by a formula $(*)$ we have

$(u^{\otimes G}v^{\otimes G})(g)=(u^{\otimes G}(g))(v^{\otimes G}(g))$

$=\prod_{t\in T_{O}}u(tg^{n(t)}t^{-1})\prod_{t\in T_{o}}v(tg^{n(t)}t^{-1})$

$=\prod_{t\in T_{o}}(uv)(tg^{n(t)}t^{-1})=\prod_{t\in T_{0}}(1_{H})(tg^{n(t)}t^{-1})=1$
,

because $uv=1_{H}$ and $tg^{n(t)}t^{-1}\in H$ for $t\in T_{o}$ .
Hence $u^{\otimes G}v^{\otimes G}$ is the principal character of $G$ . Therefore $u^{\otimes G}$ is a unit in

$R(G)$ .
By Theorem 3.1 we have at once:

THEOREM 3.2. Let $H$ be a cyclic subgroup with a generator $a$ of order $p$ in a
finite group $G$ where $p(\geq 5)$ is a prime number. Let $\psi$ be a linear chamcter of
$H$ such that $\psi(a)=\omega$ where $\omega$ is a primitive p-th root of unity. $Then\pm f_{ij}(\psi)^{\otimes G}$

$(1\leq i, j<p, i\neq j, i+j\neq p)$ are units in $R(G)$ .

Remark. In Theorem $3.2,$ $\pm f_{ij}(\psi)^{\otimes G}(1\leq i, j<p, i\neq j, i+j\neq p)$ are not always
units of infinite order. We can give a counterexample. Let $G=S_{n}(n\geq 5)$ be
the symmetric group on $n$ symbols and let $\chi$ be any character of $G$ . Then
$\chi(g)\in Z$ for any element $g\in G$ . Hence any unit of $R(G)$ is of finite order
by Lemma 2.1. Let $H$ be a cyclic subgroup of $G$ with a generator $\sigma$ (a cyclic
permutation of length $p,$ $5\leq p\leq n$ , and $p$ is a prime number). Then $ H=\langle\sigma\rangle$

is a cyclic group of order $p(\geq 5)$ . Let $\psi$ be a linear character of $H$ such that
$\psi(\sigma)=\omega$ where $\omega$ is a primitive $1\succ th$ root of unity. Then by Theorem 3.1,
$\pm f_{ij}(\psi)(1\leq i, j<p, i\neq j, i+j\neq p)$ are units of infinite order in $R(\langle\sigma\rangle)$ , but
$\pm f_{ij}(\psi)^{\otimes G}$ are units of finite order in $R(G)$ . (See Example 2.)
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Let $G^{\prime}$ be the commutator subgroup of $G$ and $p||G/G^{\prime}|$ where $p(\geq 5)$ is a
prime number. Since $G/G^{\prime}$ is an abelian group, there is a normal subgroup $H$

of $G$ containing $G^{\prime}$ such that $ G/H=\langle aH\rangle$ is a cyclic group of order $p(a\in G)$ .
Let $\psi$ be a linear character of $\langle aH\rangle$ such that $\psi(aH)=\omega$ where $\omega$ is a primitive
p-th root of unity. Then $\psi$ can be viewed as a character of $G$ .

In the above situation, by Theorem 3.1 we have:

THEOREM 3.3. $If|G/G^{\prime}|$ has a divisor $p(\geq 5),$ $then\pm f_{ij}(\psi)(1\leq i,$ $j<p,$ $ i\neq$

$j,$ $i+j\neq p$) are units of infinite order in $R(G)$ .

THEOREM 3.4. If $G/G^{\prime}$ is non-trivial (that is, $G\neq G^{\prime}$ ) and $R(G)$ has no unit
of infinite order for a finite group $G$ where $G^{\prime}$ is the commutator subgroup of $G$ ,
then $G/G^{\prime}$ is a {2, 3}-group.

Proof. Suppose that $G/G^{\prime}$ is not a {2, 3}-group. Then $p||G/G^{\prime}|$ for some prime
number $p(\geq 5)$ because $G/G^{\prime}$ is non-trivial. By Theorem 3.3 $R(G)$ has units of
infinite order. This contradicts that $R(G)$ has no unit of infinite order. Hence
$G/G^{\prime}$ is a {2, 3}-group. $\blacksquare$

EXAMPLE 2. Let $G=S_{n}(n\geq 5)$ be a symmetric group on $n$ symbols. Then
$G^{\prime}=A_{n}$ is an alternating group on $n$ symbols and $|G/G^{\prime}|=2$ where $G^{\prime}$ is
the commutator subgroup of $G$ . Therefore $S_{n}$ has two linear characters $\chi_{1},$ $\chi_{2}$

where $\chi_{1}$ is the principal character of $S_{n}$ and $\chi_{2}$ is a linear character of $S_{n}$ such
that $\chi_{2}(\sigma)=1$ if $\sigma$ is an even permutation and $\chi_{2}(\sigma)=-1$ if $\sigma$ is an odd
permutation.

Since the values of characters of $S_{n}$ are rational integers, by Lemma 2.1 the
units in $R(S_{n})$ are of finite order and so we have $U(R(S_{n}))=U_{f}(R(S_{n}))=$

$\{\pm\chi_{1}, \pm\chi_{2}\}$ by Corollary 1.2.

EXAMPLE 3. Let $ G=-\langle a\rangle$ be a cyclic group of order $m(m=3,4,6)$ . Then
$|G/G^{\prime}|=m$ , that is, $G/G^{\prime}$ is a {2, 3}-group where $G^{\prime}$ is the commutator subgroup
of $G$ . Let $A$ and $B$ be the ring of algebraic integers in $Q(i)$ and the ring of alge-
braic integers in $Q(\sqrt{-3})$ , respectively where $i=\sqrt{-1}$ . Then $U(A)=U_{f}(A)=$

$-1+\sqrt{-3}$
$\{\pm 1, \pm i\}$ and $U(B)=U_{f}(B)=\{\pm 1, \pm\rho, \pm\rho^{2}\}$ hold where $\rho=\overline{2}$ . Let
$\psi$ be a linear character of $\langle a\rangle$ such that $\psi(a)=\omega$ where $\omega$ is a primitive m-th
root of unity. Since $\omega\in A$ or $\omega\in B$ , by Lemma 2.1 and Corollary 1.2 we have
$U(R(\langle a\rangle))=U_{f}(R(\langle a\rangle))=\{\pm\psi^{i}|i=0,1, \cdots , m-1\}$ .
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