THE CONSTRUCTION OF UNITS OF INFINITE ORDER IN THE CHARACTER RING OF A FINITE GROUP

By
Kenichi Yamauchi

(Received November 11, 2003; Revised July 2, 2004)

Abstract

The structure of the unit group consisting of units of finite order in the character ring of a finite group is well known (see [8]). We also have studied the unit group in the character ring of an alternating group $A_{n}(n \geq 5)$. In this article our objective is to construct units of infinite order in the character ring of a finite group concretely, by making use of units in $Z[\omega]$ where Z is the ring of rational integers, ω is a primitive p-th root of unity, and $p(\geq 5)$ is a prime number.

1. Introduction

Throughout this article, G denotes always a finite group, Z the ring of rational integers, Q the rational field, and C the complex number field. For a finite set S, we denote by $|S|$ the number of elements in S.

Let $\operatorname{Irr}(G)=\left\{\chi_{1}=1_{G}\right.$ (the principal character), $\left.\ldots, \chi_{h}\right\}$ be the complete set of absolutely irreducible complex characters of G.

Let us set

$$
R(G)=\left\{\sum_{i=1}^{h} a_{i} \chi_{i} \mid a_{i} \in Z \quad(i=1, \ldots, h)\right\}
$$

That is, $R(G)$ is the set of generalized characters of G. It is well known that $R(G)$ forms a commutative ring with an identity element χ_{1}. We call $R(G)$ the character ring of a finite group G.

Let ζ be a primitive $|G|$-th root of unity and $K=Q(\zeta)$ be the smallest subfield of C containing Q and ζ. Then K is a splitting field for G.

We denote by A the ring of algebraic integers in K. In [8] we proved the following theorem and corollary concerning the units of finite order in the character

[^0]ring of a finite group G.
THEOREM 1.1. Any unit of finite order in $A R(G)$ has the form $\epsilon \chi$ for some linear character χ of G and some root ϵ of unity in A where $A R(G)$ is a A algebra spanned by $\operatorname{Irr}(G)=\left\{\chi_{1}, \ldots, \chi_{h}\right\}$, that is, $A R(G)=\left\{\sum_{i=1}^{h} a_{i} \chi_{i} \mid a_{i} \in\right.$ $A(i=1, \ldots, h)\}$.

COROLLARY 1.2. Any unit of finite order in $R(G)$ has the form $\pm \chi$ for some linear character χ of G.

Next we state some results, which have been obtained so far, concerning the units of infinite order in the character ring of a finite group G.

Here we fix the following notation;
Let R be a commutative ring with an identity element.
$U(R)$: = the unit group of R,
$U_{f}(R):=$ the subgroup of $U(R)$ which consists of units of finite order in R,
$S_{n}, A_{n}:=$ a symmetric group and an alternating group on n symbols for a natural number n, respectively.

We assume that $n \geq 5$ for a natural number n.
Since $A_{n}(n \geq 5)$ is a simple group, $A_{n}=D\left(A_{n}\right)$ holds where $D\left(A_{n}\right)$ is the commutator subgroup of A_{n}, and so A_{n} has only one linear character χ_{1} (that is, the principal character of $\left.A_{n}\right)$. By Corollary 1.2 we have $U_{f}\left(R\left(A_{n}\right)\right)=\left\{ \pm \chi_{1}\right\}$ and so we use a notation " $U\left(R\left(A_{n}\right)\right) /\{ \pm 1\}$ " in place of " $U\left(R\left(A_{n}\right)\right) / U_{f}\left(R\left(A_{n}\right)\right)$ " for simplicity, by identifying $\{ \pm 1\}$ with $\left\{ \pm \chi_{1}\right\}$. Let $c(n)$ be the number of selfassociated frames of real type $\left[m_{1}, \ldots, m_{r}\right], m_{1}+\cdots+m_{r}=n$. (See Definition 2.4 in [9] about $c(n)$.)

In [9] we proved the following theorem.
TheOrem 1.3. rank of $U\left(R\left(A_{n}\right)\right) /\{ \pm 1\}=c(n)$.
In [10] we constructed $c(n)$ units of infinite order $\psi_{1}, \ldots, \psi_{c(n)}$ in $R\left(A_{n}\right)$ concretely which are free generators, and showed that $U^{2}\left(R\left(A_{n}\right)\right) \subseteq\left\langle\psi_{1}, \ldots, \psi_{c(n)}\right\rangle$ where $U^{2}\left(R\left(A_{n}\right)\right)=\left\{\psi^{2} \mid \psi \in U\left(R\left(A_{n}\right)\right)\right\}$ and $\left\langle\psi_{1}, \ldots, \psi_{c(n)}\right\rangle$ is the abelian subgroup of $U\left(R\left(A_{n}\right)\right)$ generated by $\psi_{1}, \ldots, \psi_{c(n)}$. (See Theorem 3.4 in [10].)

We note that Theorem 1.3 is a direct consequence of Theorem 3.4 in [10]. These results concerning units in $R\left(A_{n}\right)$ were obtained by making use of the character table of A_{n}.

In this article we intend to construct units of infinite order in $R(G)$ for a finite group G, by making use of units in $Z[\omega]$ where ω is a primitive p-th root of unity and $p(\geq 5)$ is a prime number.

2. Preliminaries

We shall keep the notation in Section 1.
Let ζ be a primitive $|G|$-th root of unity for a finite group G and $K=Q(\zeta)$ be the smallest subfield of C containing Q and ζ. We denote by A the ring of algebraic integers in K. Let B be a subring of A such that B contains all the values of characters of G. Here we note that $B \ni 1$ and so $B \supseteq Z$, because for any element $x \in G, \chi_{1}(x)=1 \in B$ by assumption where χ_{1} is the principal character of G.

In the above situation we have:
LEMMA 2.1. If $U(B)=U_{f}(B)$ holds, then we have $U(R(G))=U_{f}(R(G))$.
Proof. For any element $u \in U(R(G))$, there exists $u^{\prime} \in R(G)$ such that $u u^{\prime}=\chi_{1}$ (the principal character of G). Hence, for any element $x \in G$ we have $\left(u u^{\prime}\right)(x)=$ $u(x) u^{\prime}(x)=\chi_{1}(x)=1$. Since $u(x), u^{\prime}(x) \in B$ by assumption, $u(x)$ is a unit in B. Hence $u(x)$ is a unit of finite order for any element x in G, because $U(B)=U_{f}(B)$. Let $\left\{x_{1}, \ldots, x_{g}\right\}$ be all the elements of G, and l be the least common multiple of orders of elements $u\left(x_{i}\right)$ in $B(i=1, \ldots, g)$. Then we have $u^{l}=\chi_{1}$. That is, u is a unit of finite order in $R(G)$. Thus the result follows.

From now on we assume that $p(\geq 5)$ is a prime number and ω is a primitive p-th root of unity. Let $Z[\omega]$ be the smallest subring of C containing Z and ω.

Let i and j be rational integers such that $1 \leq i, j<p, i \neq j$. Then there is a rational integer k, which is uniquely determined by i and j, such that $i k \equiv j$ $(\bmod p), \quad 1 \leq k<p$. For these rational integers i, j, and k, we define several functions of one variable as follows.

$$
\begin{aligned}
g_{i j}(x) & =\frac{x^{j}+1}{x^{i}+1}, g_{k}(x)=\frac{x^{k}+1}{x+1} \\
f_{k}(x) & =x^{p+k-1}-x^{p+k-2}+\cdots+(-1)^{m-1} x^{p+k-m}+\cdots+1, \text { if } k \text { is even }, \\
f_{k}(x) & =x^{k-1}-x^{k-2}+\cdots+(-1)^{m-1} x^{k-m}+\cdots+1, \text { if } k \text { is odd } \\
f_{i j}(x) & =f_{k}\left(x^{i}\right)
\end{aligned}
$$

Then we have:
THEOREM 2.2. In the above situation let ϵ be any p-th root of unity. Then we have:
(i) $\frac{\epsilon^{j}+1}{\epsilon^{i}+1}$ is a unit in $Z[\omega]$
(ii) $g_{i j}(\epsilon)=g_{k}\left(\epsilon^{i}\right)=f_{k}\left(\epsilon^{i}\right)=f_{i j}(\epsilon)$

Proof. It is obvious that (i) and (ii) hold for $\epsilon=1$, and so we may assume that
$\epsilon \neq 1$, that is, ϵ is a primitive p-th root of unity, in order to prove (i) and (ii).
(i) $\frac{1}{\epsilon+1}=\frac{\epsilon-1}{\epsilon^{2}-1}=\frac{\epsilon^{p+1}-1}{\epsilon^{2}-1}=\frac{\left(\epsilon^{2}\right)^{\frac{p+1}{2}}-1}{\epsilon^{2}-1}=\left(\epsilon^{2}\right)^{\frac{p-1}{2}}+\left(\epsilon^{2}\right)^{\frac{p-3}{2}}+\cdots+\epsilon^{2}+1$.

Hence $\frac{1}{\epsilon+1} \in Z[\epsilon]$. Since ϵ is a primitive p-th root of unity, $Z[\epsilon]=Z[\omega]$ holds. Hence $\frac{1}{\epsilon+1} \in Z[\omega]$, and so $\epsilon+1$ is a unit in $Z[\omega]$.

Since ϵ^{i} and $\epsilon^{j}(1 \leq i, j<p)$ are primitive p-th roots of unity, $\epsilon^{i}+1$ and $\epsilon^{j}+1$ are units in $Z[\omega]$, and so $\frac{\epsilon^{j}+1}{\epsilon^{i}+1}$ is a unit in $Z[\omega]$.
(ii) Since $i k \equiv j(\bmod p)$ holds, $\left(\epsilon^{i}\right)^{k}=\epsilon^{j}$ holds. Therefore we have an equation $\frac{\epsilon^{j}+1}{\epsilon^{i}+1}=\frac{\left(\epsilon^{i}\right)^{k}+1}{\epsilon^{i}+1}$, and so $g_{i j}(\epsilon)=g_{k}\left(\epsilon^{i}\right)$ holds.

First we assume that k is even. Then $p+k$ is odd. Since $\left(\epsilon^{i}\right)^{k}=\left(\epsilon^{i}\right)^{p+k}$,
$g_{k}\left(\epsilon^{i}\right)=\frac{\left(\epsilon^{i}\right)^{p+k}+1}{\epsilon^{i}+1}=\left(\epsilon^{i}\right)^{p+k-1}-\left(\epsilon^{i}\right)^{p+k-2}+\cdots+(-1)^{m-1}\left(\epsilon^{i}\right)^{p+k-m}+$ $\cdots+1=f_{k}\left(\epsilon^{i}\right)$.

Next we assume that k is odd. Then we have
$g_{k}\left(\epsilon^{i}\right)=\frac{\left(\epsilon^{i}\right)^{k}+1}{\epsilon^{i}+1}=\left(\epsilon^{i}\right)^{k-1}-\left(\epsilon^{i}\right)^{k-2}+\cdots+(-1)^{m-1}\left(\epsilon^{i}\right)^{k-m}+\cdots+1=f_{k}\left(\epsilon^{i}\right)$
Therefore we have

$$
g_{i j}(\epsilon)=g_{k}\left(\epsilon^{i}\right)=f_{k}\left(\epsilon^{i}\right)=f_{i j}(\epsilon)
$$

Thus the result follows.
THEOREM 2.3. Let $\epsilon= \pm 1$ and let η, θ, and λ be primitive p-th roots of unity. Suppose $\frac{\theta+1}{\eta+1}=\epsilon$ or $\epsilon \lambda$ holds. Then we have
(i) $\epsilon=1$
(ii) $\eta=\theta$ or $\eta \theta=1$

Proof. We prove (i) and (ii) together. We note that not exceeding 4 ($\leq p-1$) different p-th roots of unity are linearly independent over Q.

Suppose that $\frac{\theta+1}{\eta+1}=\epsilon$ holds. Then we have a formula $1+\theta-\epsilon \eta-\epsilon=0$. If $\epsilon=-1$, then we get a formula $2 \cdot 1+\theta+\eta=0$, which is contrary to the above note, because $1, \theta$, and η are p-th roots of unity. Hence we have $\epsilon=1$ and $\theta=\eta$.

Next suppose that $\frac{\theta+1}{\eta+1}=\epsilon \lambda$ holds. Then we have $1+\theta-\epsilon \lambda \eta-\epsilon \lambda=0$. If $\epsilon=-1$, then we get a formula $1+\theta+\lambda \eta+\lambda=0$, which is contrary to the above note, because $1, \theta, \lambda \eta$, and λ are p-th roots of unity. Hence it follows that $\epsilon=1$ and $1+\theta-\lambda \eta-\lambda=0$ hold. Now we assume that $\lambda \eta \neq 1$. Then we have $\theta \neq \lambda$ and $\lambda \eta \neq \theta$, because $\lambda \neq 1$. Since $\eta \neq 1$, we have $\lambda \eta \neq \lambda$. Hence $1, \theta, \lambda \eta$,
and λ are 4 different p-th roots of unity, and so are linearly independent over Q by the above note. This contradicts a formula $1+\theta-\lambda \eta-\lambda=0$. Therefore it follows that $\lambda \eta=1$ and $\theta=\lambda$ hold. Hence we have $\eta \theta=1$. This completes the proof of Theorem 2.3.

3. Main theorems

We shall keep the notation of the preceding two sections.
In general, if $f(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0} \in Z[x]$ and ψ is a character of a finite group G, then we define a generalized character $f(\psi)$ of G as follows

$$
f(\psi)=a_{n} \psi^{n}+\cdots+a_{1} \psi+a_{0} 1_{G}
$$

where 1_{G} is the principal character of G.
From our earlier results [Theorems 2.2 and 2.3] we have:
Theorem 3.1. Let $\langle a\rangle$ be a cyclic group of order p and let ψ be a linear character of $\langle a\rangle$ such that $\psi(a)=\omega$ where $p(\geq 5)$ is a prime number and ω is a primitive p-th root of unity.

For rational integers i and $j(1 \leq i, j<p, i \neq j)$, we assume that $i+j \neq p$. Then we have
(i) $\pm f_{i j}(\psi)$ are not linear characters of $\langle a\rangle$.
(ii) $\pm f_{i j}(\psi)$ are units of infinite order in $R(\langle a\rangle)$
where $f_{i j}(x)$ is the same polynomial over Z as the one given before Theorem 2.2.
Proof. (i) We assume that $\pm f_{i j}(\psi)$ are linear characters of $\langle a\rangle$. Since all the linear characters of $\langle a\rangle$ are given by $\psi^{m}(m=0,1, \cdots, p-1)$, we can write $\pm f_{i j}(\psi)=\psi^{m}$.

If we consider the values of these generalized characters at $a \in\langle a\rangle$ on both sides, then we have

$$
\frac{\omega^{j}+1}{\omega^{i}+1}=\omega^{m} \quad \text { or } \quad \frac{\omega^{j}+1}{\omega^{i}+1}=-\omega^{m}
$$

because $f_{i j}(\psi)(a)=f_{i j}(\psi(a))=f_{i j}(\omega)=g_{i j}(\omega)$ by Theorem 2.2 (ii) where $g_{i j}(x)$ is the same function as the one given before Theorem 2.2.

By Theorem 2.3 (i), the second equation doesn't hold. Therefore we have an equation $\frac{\omega^{j}+1}{\omega^{i}+1}=\omega^{m}$. By Theorem 2.3 (ii) we have $\omega^{i}=\omega^{j}$ or $\omega^{i} \omega^{j}=\omega^{i+j}=$ 1. Hence $i=j$ or $i+j=p$, because $1 \leq i, j<p$. These facts contradict our assumption that $i \neq j$ and $i+j \neq p$. Therefore $\pm f_{i j}(\psi)$ are not linear characters of $\langle a\rangle$. This completes the proof of (i).
(ii) For any element $a^{l} \in\langle a\rangle(0 \leq l<p)$, by Theorem 2.2 (ii) we have

$$
f_{i j}(\psi)\left(a^{l}\right)=f_{i j}\left(\psi\left(a^{l}\right)\right)=f_{i j}\left(\omega^{l}\right)=g_{i j}\left(\omega^{l}\right)=\frac{\left(\omega^{l}\right)^{j}+1}{\left(\omega^{l}\right)^{i}+1}
$$

because $\psi(a)=\omega$ and ω^{l} is a p-th root of unity. Similarly we get $f_{j i}(\psi)\left(a^{l}\right)=$ $\frac{\left(\omega^{l}\right)^{i}+1}{\left(\omega^{l}\right)^{j}+1}(0 \leq l<p)$.

Therefore it follows that $\left(f_{i j}(\psi) f_{j i}(\psi)\right)(x)=\left(f_{i j}(\psi)(x)\right)\left(f_{j i}(\psi)(x)\right)=1$ for any element $x \in\langle a\rangle$. This means $f_{i j}(\psi) f_{j i}(\psi)=1_{\langle a\rangle}$ (the principal character of $\langle a\rangle)$. Since $f_{i j}(\psi), f_{j i}(\psi) \in R(\langle a\rangle), \pm f_{i j}(\psi)$ are units in $R(\langle a\rangle)$. By Corollary 1.2 and the statement (i) in this theorem, it follows that $\pm f_{i j}(\psi)$ are of infinite order. This completes the proof of (ii).

EXAMPLE 1. Let $\langle a\rangle$ be a cyclic group of order 5 and let ψ be a linear character given by $\psi(a)=\omega$ where ω is a primitive 5 -th root of unity.

Since $1 \cdot 3 \equiv 3(\bmod 5)$, for $i=1$ and $j=3$, we have $k=3$. Hence we get $f_{13}(\psi)=f_{3}(\psi)=\psi^{2}-\psi+1_{\langle a\rangle}$ where $1_{\langle a\rangle}$ is the principal character of $\langle a\rangle$.

Since $3 \cdot 2 \equiv 1(\bmod 5)$, for $i=3$ and $j=1$ we have $k=2$ and $p+k=7$. Hence we get

$$
\begin{aligned}
f_{31}(\psi) & =f_{2}\left(\psi^{3}\right)=\left(\psi^{3}\right)^{6}-\left(\psi^{3}\right)^{5}+\left(\psi^{3}\right)^{4}-\left(\psi^{3}\right)^{3}+\left(\psi^{3}\right)^{2}-\psi^{3}+1_{\langle a\rangle} \\
& =-\psi^{4}+\psi^{2}+\psi
\end{aligned}
$$

because $\psi^{5}=1_{\langle a\rangle}$ holds. Actually we can see easily that $f_{13}(\psi) f_{31}(\psi)=1_{\langle a\rangle}$ holds, because $\psi^{5}=1_{\langle a\rangle}$ holds.

Thus $\pm\left(\psi^{2}-\psi+1_{\langle a\rangle}\right)$ and $\pm\left(-\psi^{4}+\psi^{2}+\psi\right)$ are units of infinite order in $R(\langle a\rangle)$.

Hereafter when we consider $f_{i j}(\psi)$ where i and j are rational integers such that $1 \leq i, j<p, i \neq j, i+j \neq p$, and $p(\geq 5)$ is a prime number, we assume that $f_{i j}(x)$ is the same polynomial over Z as the one given before Theorem 2.2.

Now we state some results about "tensor induction", which will be needed later.

Let H be a subgroup of G and choose a set T of representatives for the right cosets of H in G. Since G acts on the set of right cosets of H by $(H t) g=$ $H t g(t \in T, g \in G)$. We write $t \cdot g \in T$ to denote the representative of the coset $H t g$, so that $(t g)(t \cdot g)^{-1} \in H$. Thus - defines an action of G on T.

Fix $g \in G$ and let $n(t)$ denote the size of the $\langle g\rangle$-orbit on T containing t. Then, by the same calculation as is used when developing the transfer map, we have $\operatorname{tg}^{n(t)} t^{-1} \in H$ for $t \in T$. Let T_{\circ} be a set of representatives for the $\langle g\rangle$-orbits on T.

Let φ be a class function of H. Then we define $\varphi^{\otimes G}$ on G, which is called a tensor induction of φ to G, by the formula

$$
\begin{equation*}
\varphi^{\otimes G}(g)=\prod_{t \in T_{\circ}} \varphi\left(t g^{n(t)} t^{-1}\right) \text { for } g \in G \tag{*}
\end{equation*}
$$

(see Definition 2.1 in [3]).
Expositions of tensor induction, including the details of the construction can be found in [2], [3], [5], and [6].

If φ is a generalized character of H, then $\varphi^{\otimes G}$ is also a generalized character of G by Theorem A in [3].

Let u be a unit in $R(H)$. Then we prove that $u^{\otimes G}$ is also a unit in $R(G)$. In fact, since u is a unit in $R(H)$, there is an element v in $R(H)$ such that $u v=1_{H}$ (the principal character of H). By Theorem A in [3], $u^{\otimes G}$ and $v^{\otimes G}$ are generalized characters of G. For any element g in G, by a formula (*) we have

$$
\begin{aligned}
\left(u^{\otimes G} v^{\otimes G}\right)(g) & =\left(u^{\otimes G}(g)\right)\left(v^{\otimes G}(g)\right) \\
& =\prod_{t \in T_{\circ}} u\left(t g^{n(t)} t^{-1}\right) \prod_{t \in T_{\circ}} v\left(t g^{n(t)} t^{-1}\right) \\
& =\prod_{t \in T_{\circ}}(u v)\left(t g^{n(t)} t^{-1}\right)=\prod_{t \in T_{\circ}}\left(1_{H}\right)\left(t g^{n(t)} t^{-1}\right)=1
\end{aligned}
$$

because $u v=1_{H}$ and $t g^{n(t)} t^{-1} \in H$ for $t \in T_{0}$.
Hence $u^{\otimes G} v^{\otimes G}$ is the principal character of G. Therefore $u^{\otimes G}$ is a unit in $R(G)$.

By Theorem 3.1 we have at once:
THEOREM 3.2. Let H be a cyclic subgroup with a generator a of order p in a finite group G where $p(\geq 5)$ is a prime number. Let ψ be a linear character of H such that $\psi(a)=\omega$ where ω is a primitive p-th root of unity. Then $\pm f_{i j}(\psi)^{\otimes G}$ $(1 \leq i, j<p, i \neq j, i+j \neq p)$ are units in $R(G)$.

Remark. In Theorem 3.2, $\pm f_{i j}(\psi)^{\otimes G}(1 \leq i, j<p, i \neq j, i+j \neq p)$ are not always units of infinite order. We can give a counterexample. Let $G=S_{n}(n \geq 5)$ be the symmetric group on n symbols and let χ be any character of G. Then $\chi(g) \in Z$ for any element $g \in G$. Hence any unit of $R(G)$ is of finite order by Lemma 2.1. Let H be a cyclic subgroup of G with a generator σ (a cyclic permutation of length $p, 5 \leq p \leq n$, and p is a prime number). Then $H=\langle\sigma\rangle$ is a cyclic group of order $p(\geq 5)$. Let ψ be a linear character of H such that $\psi(\sigma)=\omega$ where ω is a primitive p-th root of unity. Then by Theorem 3.1, $\pm f_{i j}(\psi)(1 \leq i, j<p, i \neq j, i+j \neq p)$ are units of infinite order in $R(\langle\sigma\rangle)$, but $\pm f_{i j}(\psi)^{\otimes G}$ are units of finite order in $R(G)$. (See Example 2.)

Let G^{\prime} be the commutator subgroup of G and $p\left|\left|G / G^{\prime}\right|\right.$ where $p(\geq 5)$ is a prime number. Since G / G^{\prime} is an abelian group, there is a normal subgroup H of G containing G^{\prime} such that $G / H=\langle a H\rangle$ is a cyclic group of order $p(a \in G)$. Let ψ be a linear character of $\langle a H\rangle$ such that $\psi(a H)=\omega$ where ω is a primitive p-th root of unity. Then ψ can be viewed as a character of G.

In the above situation, by Theorem 3.1 we have:
THEOREM 3.3. If $\left|G / G^{\prime}\right|$ has a divisor $p(\geq 5)$, then $\pm f_{i j}(\psi)(1 \leq i, j<p, i \neq$ $j, i+j \neq p$) are units of infinite order in $R(G)$.

THEOREM 3.4. If G / G^{\prime} is non-trivial (that is, $G \neq G^{\prime}$) and $R(G)$ has no unit of infinite order for a finite group G where G^{\prime} is the commutator subgroup of G, then G / G^{\prime} is a $\{2,3\}$-group.

Proof. Suppose that G / G^{\prime} is not a $\{2,3\}$-group. Then $p\left|\left|G / G^{\prime}\right|\right.$ for some prime number $p(\geq 5)$ because G / G^{\prime} is non-trivial. By Theorem $3.3 R(G)$ has units of infinite order. This contradicts that $R(G)$ has no unit of infinite order. Hence G / G^{\prime} is a $\{2,3\}$-group.

EXAMPLE 2. Let $G=S_{n}(n \geq 5)$ be a symmetric group on n symbols. Then $G^{\prime}=A_{n}$ is an alternating group on n symbols and $\left|G / G^{\prime}\right|=2$ where G^{\prime} is the commutator subgroup of G. Therefore S_{n} has two linear characters χ_{1}, χ_{2} where χ_{1} is the principal character of S_{n} and χ_{2} is a linear character of S_{n} such that $\chi_{2}(\sigma)=1$ if σ is an even permutation and $\chi_{2}(\sigma)=-1$ if σ is an odd permutation.

Since the values of characters of S_{n} are rational integers, by Lemma 2.1 the units in $R\left(S_{n}\right)$ are of finite order and so we have $U\left(R\left(S_{n}\right)\right)=U_{f}\left(R\left(S_{n}\right)\right)=$ $\left\{ \pm \chi_{1}, \pm \chi_{2}\right\}$ by Corollary 1.2.

EXAMPle 3. Let $G \doteq\langle a\rangle$ be a cyclic group of order $m(m=3,4,6)$. Then $\left|G / G^{\prime}\right|=m$, that is, G / G^{\prime} is a $\{2,3\}$-group where G^{\prime} is the commutator subgroup of G. Let A and B be the ring of algebraic integers in $Q(i)$ and the ring of algebraic integers in $Q(\sqrt{-3})$, respectively where $i=\sqrt{-1}$. Then $U(A)=U_{f}(A)=$ $\{ \pm 1, \pm i\}$ and $U(B)=U_{f}(B)=\left\{ \pm 1, \pm \rho, \pm \rho^{2}\right\}$ hold where $\rho=\frac{-1+\sqrt{-3}}{2}$. Let ψ be a linear character of $\langle a\rangle$ such that $\psi(a)=\omega$ where ω is a primitive m-th root of unity. Since $\omega \in A$ or $\omega \in B$, by Lemma 2.1 and Corollary 1.2 we have $U(R(\langle a\rangle))=U_{f}(R(\langle a\rangle))=\left\{ \pm \psi^{i} \mid i=0,1, \cdots, m-1\right\}$.

Acknowledgments. When I visited the University of Birmingham in UK in January 2002, I received useful suggestions and encouragement from Professor G.R. Robinson of the University of Birmingham. I also thank Professor I.M.

Isaacs for his valuable comments and I visited him at the University of Wisconsin (Madison, Wisconsin) in USA in December 2002.

I thank the referee who read my article carefully and gave me valuable comments, especially about Theorem 2.3.

References

[1] C.W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Interscience, New York, 1962.
[2] C.W. Curtis and I. Reiner, Methods of Representation Theory with Applications to Finite Groups and Orders, Vol.1, John Wiley and Sons, New York, 1981.
[3] D. Gluck and I.M. Isaacs, Tensor induction of generalized characters and permutation characters, Illinois Journal of Mathematics Vol.27, No. 3 (1983), 514-518.
[4] I.M. Isaacs, Character Theory of Finite Groups, Academic Press, New York, 1976.
[5] I.M. Isaacs, Character correspondences in solvable groups, Advances in Mathematics Vol. 43 (1982), 284-306.
[6] R. Knörr, On the number of characters in a p-block of a p-solvable group, Illinois Journal of Mathematics Vol. 28 No. 2 (1984), 181-210.
[7] A.I. Saksonov, The integral ring of characters of a finite group, (Russian) Vesci Akad. Navuk BSSR Ser.Fiz.-Mat. Navuk No. 3 (1966), 69-76.
[8] K. Yamauchi, On the units in a character ring, Hokkaido Mathematical Journal Vol. 20 No. 3 (1991), 477-479.
[9] K. Yamauchi, A unit group in a character ring of an alternating group, Hokkaido Mathematical Journal Vol. 20 No. 3 (1991), 549-558.
[10] K. Yamauchi, A unit group in a character ring of an alternating group,II, Hokkaido Mathematical Journal Vol. 22 No. 1 (1993), 13-23.

Department of Mathematics, Faculty of Education, Chiba University, Chiba 263-8522, Japan
E-mail: yamauchik@faculty.chiba-u.jp

[^0]: 2000 Mathematics Subject Classification: 20C15
 Key words and phrases: irreducible character, character ring, unit
 This article was supported by the JSPS (Japan Society for Promotion of Science) Grant-in-Aid for Scientific Research (c) (2) 13640008, 2001-2003.

