YOKOHAMA MATHEMATICAL JOURNAL VOL. 51, 2005

THE CONSTRUCTION OF UNITS OF INFINITE ORDER IN THE CHARACTER RING OF A FINITE GROUP

By

KENICHI YAMAUCHI

(Received November 11, 2003; Revised July 2, 2004)

Abstract. The structure of the unit group consisting of units of finite order in the character ring of a finite group is well known (see [8]). We also have studied the unit group in the character ring of an alternating group A_n $(n \ge 5)$. In this article our objective is to construct units of infinite order in the character ring of a finite group concretely, by making use of units in $Z[\omega]$ where Z is the ring of rational integers, ω is a primitive p-th root of unity, and p (≥ 5) is a prime number.

1. Introduction

Throughout this article, G denotes always a finite group, Z the ring of rational integers, Q the rational field, and C the complex number field. For a finite set S, we denote by |S| the number of elements in S.

Let $Irr(G) = \{\chi_1 = 1_G \text{ (the principal character)}, \ldots, \chi_h\}$ be the complete set of absolutely irreducible complex characters of G.

Let us set

$$R(G) = \left\{ \sum_{i=1}^{h} a_i \chi_i \mid a_i \in Z \ (i = 1, \dots, h) \right\}.$$

That is, R(G) is the set of generalized characters of G. It is well known that R(G) forms a commutative ring with an identity element χ_1 . We call R(G) the character ring of a finite group G.

Let ζ be a primitive |G|-th root of unity and $K = Q(\zeta)$ be the smallest subfield of C containing Q and ζ . Then K is a splitting field for G.

We denote by A the ring of algebraic integers in K. In [8] we proved the following theorem and corollary concerning the units of finite order in the character

²⁰⁰⁰ Mathematics Subject Classification: 20C15

Key words and phrases: irreducible character, character ring, unit

This article was supported by the JSPS (Japan Society for Promotion of Science) Grant-in-Aid for Scientific Research (c) (2) 13640008, 2001–2003.

ring of a finite group G.

THEOREM 1.1. Any unit of finite order in AR(G) has the form $\epsilon \chi$ for some linear character χ of G and some root ϵ of unity in A where AR(G) is a A-algebra spanned by $Irr(G) = \{\chi_1, \ldots, \chi_h\}$, that is, $AR(G) = \{\sum_{i=1}^h a_i \chi_i \mid a_i \in A \ (i = 1, \ldots, h)\}.$

COROLLARY 1.2. Any unit of finite order in R(G) has the form $\pm \chi$ for some linear character χ of G.

Next we state some results, which have been obtained so far, concerning the units of infinite order in the character ring of a finite group G.

Here we fix the following notation;

Let R be a commutative ring with an identity element.

U(R): = the unit group of R,

 $U_f(R)$: = the subgroup of U(R) which consists of units of finite order in R, S_n, A_n : = a symmetric group and an alternating group on n symbols for a

natural number n, respectively.

We assume that $n \geq 5$ for a natural number n.

Since A_n $(n \ge 5)$ is a simple group, $A_n = D(A_n)$ holds where $D(A_n)$ is the commutator subgroup of A_n , and so A_n has only one linear character χ_1 (that is, the principal character of A_n). By Corollary 1.2 we have $U_f(R(A_n)) = \{\pm \chi_1\}$ and so we use a notation " $U(R(A_n))/\{\pm 1\}$ " in place of " $U(R(A_n))/U_f(R(A_n))$ " for simplicity, by identifying $\{\pm 1\}$ with $\{\pm \chi_1\}$. Let c(n) be the number of self-associated frames of real type $[m_1, \ldots, m_r], m_1 + \cdots + m_r = n$. (See Definition 2.4 in [9] about c(n).)

In [9] we proved the following theorem.

THEOREM 1.3. rank of $U(R(A_n))/\{\pm 1\} = c(n)$.

In [10] we constructed c(n) units of infinite order $\psi_1, \ldots, \psi_{c(n)}$ in $R(A_n)$ concretely which are free generators, and showed that $U^2(R(A_n)) \subseteq \langle \psi_1, \ldots, \psi_{c(n)} \rangle$ where $U^2(R(A_n)) = \{\psi^2 \mid \psi \in U(R(A_n))\}$ and $\langle \psi_1, \ldots, \psi_{c(n)} \rangle$ is the abelian subgroup of $U(R(A_n))$ generated by $\psi_1, \ldots, \psi_{c(n)}$. (See Theorem 3.4 in [10].)

We note that Theorem 1.3 is a direct consequence of Theorem 3.4 in [10]. These results concerning units in $R(A_n)$ were obtained by making use of the character table of A_n .

In this article we intend to construct units of infinite order in R(G) for a finite group G, by making use of units in $Z[\omega]$ where ω is a primitive p-th root of unity and $p (\geq 5)$ is a prime number.

90

2. Preliminaries

We shall keep the notation in Section 1.

Let ζ be a primitive |G|-th root of unity for a finite group G and $K = Q(\zeta)$ be the smallest subfield of C containing Q and ζ . We denote by A the ring of algebraic integers in K. Let B be a subring of A such that B contains all the values of characters of G. Here we note that $B \ni 1$ and so $B \supseteq Z$, because for any element $x \in G$, $\chi_1(x) = 1 \in B$ by assumption where χ_1 is the principal character of G.

In the above situation we have:

LEMMA 2.1. If $U(B) = U_f(B)$ holds, then we have $U(R(G)) = U_f(R(G))$.

Proof. For any element $u \in U(R(G))$, there exists $u' \in R(G)$ such that $uu' = \chi_1$ (the principal character of G). Hence, for any element $x \in G$ we have $(uu')(x) = u(x)u'(x) = \chi_1(x) = 1$. Since $u(x), u'(x) \in B$ by assumption, u(x) is a unit in B. Hence u(x) is a unit of finite order for any element x in G, because $U(B) = U_f(B)$. Let $\{x_1, \ldots, x_g\}$ be all the elements of G, and l be the least common multiple of orders of elements $u(x_i)$ in B $(i = 1, \ldots, g)$. Then we have $u^l = \chi_1$. That is, u is a unit of finite order in R(G). Thus the result follows.

From now on we assume that $p (\geq 5)$ is a prime number and ω is a primitive *p*-th root of unity. Let $Z[\omega]$ be the smallest subring of *C* containing *Z* and ω .

Let *i* and *j* be rational integers such that $1 \le i, j < p, i \ne j$. Then there is a rational integer *k*, which is uniquely determined by *i* and *j*, such that $ik \equiv j \pmod{p}$, $1 \le k < p$. For these rational integers *i*, *j*, and *k*, we define several functions of one variable as follows.

$$g_{ij}(x) = \frac{x^j + 1}{x^i + 1}, \ g_k(x) = \frac{x^k + 1}{x + 1},$$

$$f_k(x) = x^{p+k-1} - x^{p+k-2} + \dots + (-1)^{m-1} x^{p+k-m} + \dots + 1, \ \text{if } k \text{ is even},$$

$$f_k(x) = x^{k-1} - x^{k-2} + \dots + (-1)^{m-1} x^{k-m} + \dots + 1, \ \text{if } k \text{ is odd},$$

$$f_{ij}(x) = f_k(x^i).$$

Then we have:

THEOREM 2.2. In the above situation let ϵ be any p-th root of unity. Then we have:

(i)
$$\frac{\epsilon^{j}+1}{\epsilon^{i}+1}$$
 is a unit in $Z[\omega]$
(ii) $g_{ij}(\epsilon) = g_{k}(\epsilon^{i}) = f_{k}(\epsilon^{i}) = f_{ij}(\epsilon)$

Proof. It is obvious that (i) and (ii) hold for $\epsilon = 1$, and so we may assume that

 $\epsilon \neq 1, \text{ that is, } \epsilon \text{ is a primitive } p\text{-th root of unity, in order to prove (i) and (ii).}$ (i) $\frac{1}{\epsilon+1} = \frac{\epsilon - 1}{\epsilon^2 - 1} = \frac{\epsilon^{p+1} - 1}{\epsilon^2 - 1} = \frac{(\epsilon^2)^{\frac{p+1}{2}} - 1}{\epsilon^2 - 1} = (\epsilon^2)^{\frac{p-1}{2}} + (\epsilon^2)^{\frac{p-3}{2}} + \dots + \epsilon^2 + 1.$ Hence $\frac{1}{\epsilon+1} \in Z[\epsilon]$. Since ϵ is a primitive $p\text{-th root of unity, } Z[\epsilon] = Z[\omega]$ holds. Hence $\frac{1}{\epsilon+1} \in Z[\omega]$, and so $\epsilon+1$ is a unit in $Z[\omega]$.
Since ϵ^i and ϵ^j $(1 \leq i, j < p)$ are primitive $p\text{-th roots of unity, } \epsilon^i + 1$ and $\epsilon^j + 1$ are units in $Z[\omega]$, and so $\frac{\epsilon^j + 1}{\epsilon^i + 1}$ is a unit in $Z[\omega]$.
(ii) Since $ik \equiv j \pmod{p}$ holds, $(\epsilon^i)^k = \epsilon^j$ holds. Therefore we have an
equation $\frac{\epsilon^j + 1}{\epsilon^i + 1} = \frac{(\epsilon^i)^k + 1}{\epsilon^i + 1}$, and so $g_{ij}(\epsilon) = g_k(\epsilon^i)$ holds.
First we assume that k is even. Then p + k is odd. Since $(\epsilon^i)^k = (\epsilon^i)^{p+k}$, $a_i(\epsilon^i) = \frac{(\epsilon^i)^{p+k} + 1}{\epsilon^i + 1} - (\epsilon^i)^{p+k-1} - (\epsilon^i)^{p+k-2} + \dots + (-1)^{m-1}(\epsilon^i)^{p+k-m} + \dots$

$$g_k(\epsilon^i) = \frac{(\epsilon^i)^{p+k} + 1}{\epsilon^i + 1} = (\epsilon^i)^{p+k-1} - (\epsilon^i)^{p+k-2} + \dots + (-1)^{m-1}(\epsilon^i)^{p+k-m} + \dots + 1 = f_k(\epsilon^i).$$

Next we assume that k is odd. Then we have

$$g_k(\epsilon^i) = \frac{(\epsilon^i)^k + 1}{\epsilon^i + 1} = (\epsilon^i)^{k-1} - (\epsilon^i)^{k-2} + \dots + (-1)^{m-1}(\epsilon^i)^{k-m} + \dots + 1 = f_k(\epsilon^i)$$

Therefore we have

$$g_{ij}(\epsilon) = g_k(\epsilon^i) = f_k(\epsilon^i) = f_{ij}(\epsilon)$$

Thus the result follows.

THEOREM 2.3. Let $\epsilon = \pm 1$ and let η , θ , and λ be primitive p-th roots of unity. Suppose $\frac{\theta+1}{\eta+1} = \epsilon$ or $\epsilon \lambda$ holds. Then we have (i) $\epsilon = 1$ (ii) $\eta = \theta$ or $\eta \theta = 1$

Proof. We prove (i) and (ii) together. We note that not exceeding $4 (\leq p-1)$ different *p*-th roots of unity are linearly independent over Q.

Suppose that $\frac{\theta+1}{\eta+1} = \epsilon$ holds. Then we have a formula $1 + \theta - \epsilon \eta - \epsilon = 0$. If $\epsilon = -1$, then we get a formula $2 \cdot 1 + \theta + \eta = 0$, which is contrary to the above note, because $1, \theta$, and η are *p*-th roots of unity. Hence we have $\epsilon = 1$ and $\theta = \eta$.

Next suppose that $\frac{\theta+1}{\eta+1} = \epsilon \lambda$ holds. Then we have $1 + \theta - \epsilon \lambda \eta - \epsilon \lambda = 0$. If $\epsilon = -1$, then we get a formula $1 + \theta + \lambda \eta + \lambda = 0$, which is contrary to the above note, because $1, \theta, \lambda \eta$, and λ are *p*-th roots of unity. Hence it follows that $\epsilon = 1$ and $1 + \theta - \lambda \eta - \lambda = 0$ hold. Now we assume that $\lambda \eta \neq 1$. Then we have $\theta \neq \lambda$ and $\lambda \eta \neq \theta$, because $\lambda \neq 1$. Since $\eta \neq 1$, we have $\lambda \eta \neq \lambda$. Hence $1, \theta, \lambda \eta$, and λ are 4 different *p*-th roots of unity, and so are linearly independent over Q by the above note. This contradicts a formula $1 + \theta - \lambda \eta - \lambda = 0$. Therefore it follows that $\lambda \eta = 1$ and $\theta = \lambda$ hold. Hence we have $\eta \theta = 1$. This completes the proof of Theorem 2.3.

3. Main theorems

We shall keep the notation of the preceding two sections.

In general, if $f(x) = a_n x^n + \cdots + a_1 x + a_0 \in \mathbb{Z}[x]$ and ψ is a character of a finite group G, then we define a generalized character $f(\psi)$ of G as follows

$$f(\psi) = a_n \psi^n + \dots + a_1 \psi + a_0 1_G$$

where 1_G is the principal character of G.

From our earlier results [Theorems 2.2 and 2.3] we have:

THEOREM 3.1. Let $\langle a \rangle$ be a cyclic group of order p and let ψ be a linear character of $\langle a \rangle$ such that $\psi(a) = \omega$ where $p (\geq 5)$ is a prime number and ω is a primitive p-th root of unity.

For rational integers i and $j (1 \le i, j < p, i \ne j)$, we assume that $i + j \ne p$. Then we have

(i) $\pm f_{ij}(\psi)$ are not linear characters of $\langle a \rangle$.

(ii) $\pm f_{ij}(\psi)$ are units of infinite order in $R(\langle a \rangle)$

where $f_{ij}(x)$ is the same polynomial over Z as the one given before Theorem 2.2.

Proof. (i) We assume that $\pm f_{ij}(\psi)$ are linear characters of $\langle a \rangle$. Since all the linear characters of $\langle a \rangle$ are given by ψ^m $(m = 0, 1, \dots, p-1)$, we can write $\pm f_{ij}(\psi) = \psi^m$.

If we consider the values of these generalized characters at $a \in \langle a \rangle$ on both sides , then we have

$$\frac{\omega^j + 1}{\omega^i + 1} = \omega^m \quad \text{or} \quad \frac{\omega^j + 1}{\omega^i + 1} = -\omega^m,$$

because $f_{ij}(\psi)(a) = f_{ij}(\psi(a)) = f_{ij}(\omega) = g_{ij}(\omega)$ by Theorem 2.2 (ii) where $g_{ij}(x)$ is the same function as the one given before Theorem 2.2.

By Theorem 2.3 (i), the second equation doesn't hold. Therefore we have an equation $\frac{\omega^j + 1}{\omega^i + 1} = \omega^m$. By Theorem 2.3 (ii) we have $\omega^i = \omega^j$ or $\omega^i \omega^j = \omega^{i+j} = 1$. Hence i = j or i + j = p, because $1 \le i, j < p$. These facts contradict our assumption that $i \ne j$ and $i + j \ne p$. Therefore $\pm f_{ij}(\psi)$ are not linear characters of $\langle a \rangle$. This completes the proof of (i).

(ii) For any element $a^l \in \langle a \rangle$ $(0 \le l < p)$, by Theorem 2.2 (ii) we have

$$f_{ij}(\psi)(a^l) = f_{ij}(\psi(a^l)) = f_{ij}(\omega^l) = g_{ij}(\omega^l) = \frac{(\omega^l)^j + 1}{(\omega^l)^i + 1},$$

because $\psi(a) = \omega$ and ω^l is a *p*-th root of unity. Similarly we get $f_{ji}(\psi)(a^l) = \frac{(\omega^l)^i + 1}{(\omega^l)^j + 1}$ $(0 \le l < p)$.

Therefore it follows that $(f_{ij}(\psi)f_{ji}(\psi))(x) = (f_{ij}(\psi)(x))(f_{ji}(\psi)(x)) = 1$ for any element $x \in \langle a \rangle$. This means $f_{ij}(\psi)f_{ji}(\psi) = 1_{\langle a \rangle}$ (the principal character of $\langle a \rangle$). Since $f_{ij}(\psi), f_{ji}(\psi) \in R(\langle a \rangle), \pm f_{ij}(\psi)$ are units in $R(\langle a \rangle)$. By Corollary 1.2 and the statement (i) in this theorem, it follows that $\pm f_{ij}(\psi)$ are of infinite order. This completes the proof of (ii).

EXAMPLE 1. Let $\langle a \rangle$ be a cyclic group of order 5 and let ψ be a linear character given by $\psi(a) = \omega$ where ω is a primitive 5-th root of unity.

Since $1 \cdot 3 \equiv 3 \pmod{5}$, for i = 1 and j = 3, we have k = 3. Hence we get $f_{13}(\psi) = f_3(\psi) = \psi^2 - \psi + 1_{\langle a \rangle}$ where $1_{\langle a \rangle}$ is the principal character of $\langle a \rangle$.

Since $3 \cdot 2 \equiv 1 \pmod{5}$, for i = 3 and j = 1 we have k = 2 and p + k = 7. Hence we get

$$f_{31}(\psi) = f_2(\psi^3) = (\psi^3)^6 - (\psi^3)^5 + (\psi^3)^4 - (\psi^3)^3 + (\psi^3)^2 - \psi^3 + 1_{\langle a \rangle}$$

= $-\psi^4 + \psi^2 + \psi$,

because $\psi^5 = 1_{\langle a \rangle}$ holds. Actually we can see easily that $f_{13}(\psi)f_{31}(\psi) = 1_{\langle a \rangle}$ holds, because $\psi^5 = 1_{\langle a \rangle}$ holds.

Thus $\pm(\psi^2 - \psi + 1_{\langle a \rangle})$ and $\pm(-\psi^4 + \psi^2 + \psi)$ are units of infinite order in $R(\langle a \rangle)$.

Hereafter when we consider $f_{ij}(\psi)$ where *i* and *j* are rational integers such that $1 \leq i, j < p, i \neq j, i+j \neq p$, and $p \geq 5$ is a prime number, we assume that $f_{ij}(x)$ is the same polynomial over Z as the one given before Theorem 2.2.

Now we state some results about "tensor induction", which will be needed later.

Let *H* be a subgroup of *G* and choose a set *T* of representatives for the right cosets of *H* in *G*. Since *G* acts on the set of right cosets of *H* by (Ht)g = Htg $(t \in T, g \in G)$. We write $t \cdot g \in T$ to denote the representative of the coset Htg, so that $(tg)(t \cdot g)^{-1} \in H$. Thus \cdot defines an action of *G* on *T*.

Fix $g \in G$ and let n(t) denote the size of the $\langle g \rangle$ -orbit on T containing t. Then, by the same calculation as is used when developing the transfer map, we have $tg^{n(t)}t^{-1} \in H$ for $t \in T$. Let T_{\circ} be a set of representatives for the $\langle g \rangle$ -orbits on T.

94

Let φ be a class function of H. Then we define $\varphi^{\otimes G}$ on G, which is called a tensor induction of φ to G, by the formula

$$\varphi^{\otimes G}(g) = \prod_{t \in T_{\circ}} \varphi(tg^{n(t)}t^{-1}) \text{ for } g \in G$$
 (*)

(see Definition 2.1 in [3]).

Expositions of tensor induction, including the details of the construction can be found in [2], [3], [5], and [6].

If φ is a generalized character of H, then $\varphi^{\otimes G}$ is also a generalized character of G by Theorem A in [3].

Let u be a unit in R(H). Then we prove that $u^{\otimes G}$ is also a unit in R(G). In fact, since u is a unit in R(H), there is an element v in R(H) such that $uv = 1_H$ (the principal character of H). By Theorem A in [3], $u^{\otimes G}$ and $v^{\otimes G}$ are generalized characters of G. For any element g in G, by a formula (*) we have

$$\begin{aligned} (u^{\otimes G}v^{\otimes G})(g) &= (u^{\otimes G}(g))(v^{\otimes G}(g)) \\ &= \prod_{t \in T_{\circ}} u(tg^{n(t)}t^{-1}) \prod_{t \in T_{\circ}} v(tg^{n(t)}t^{-1}) \\ &= \prod_{t \in T_{\circ}} (uv)(tg^{n(t)}t^{-1}) = \prod_{t \in T_{\circ}} (1_{H})(tg^{n(t)}t^{-1}) = 1, \end{aligned}$$

because $uv = 1_H$ and $tg^{n(t)}t^{-1} \in H$ for $t \in T_{\circ}$.

Hence $u^{\otimes G}v^{\otimes G}$ is the principal character of G. Therefore $u^{\otimes G}$ is a unit in R(G).

By Theorem 3.1 we have at once:

THEOREM 3.2. Let H be a cyclic subgroup with a generator a of order p in a finite group G where $p (\geq 5)$ is a prime number. Let ψ be a linear character of H such that $\psi(a) = \omega$ where ω is a primitive p-th root of unity. Then $\pm f_{ij}(\psi)^{\otimes G}$ $(1 \leq i, j < p, i \neq j, i + j \neq p)$ are units in R(G).

Remark. In Theorem 3.2, $\pm f_{ij}(\psi)^{\otimes G}$ $(1 \leq i, j < p, i \neq j, i+j \neq p)$ are not always units of infinite order. We can give a counterexample. Let $G = S_n$ $(n \geq 5)$ be the symmetric group on n symbols and let χ be any character of G. Then $\chi(g) \in Z$ for any element $g \in G$. Hence any unit of R(G) is of finite order by Lemma 2.1. Let H be a cyclic subgroup of G with a generator σ (a cyclic permutation of length $p, 5 \leq p \leq n$, and p is a prime number). Then $H = \langle \sigma \rangle$ is a cyclic group of order $p \geq 5$. Let ψ be a linear character of H such that $\psi(\sigma) = \omega$ where ω is a primitive p-th root of unity. Then by Theorem 3.1, $\pm f_{ij}(\psi)$ $(1 \leq i, j < p, i \neq j, i+j \neq p)$ are units of infinite order in $R(\langle \sigma \rangle)$, but $\pm f_{ij}(\psi)^{\otimes G}$ are units of finite order in R(G). (See Example 2.)

Let G' be the commutator subgroup of G and $p \mid |G/G'|$ where $p \geq 5$ is a prime number. Since G/G' is an abelian group, there is a normal subgroup H of G containing G' such that $G/H = \langle aH \rangle$ is a cyclic group of order $p \mid (a \in G)$. Let ψ be a linear character of $\langle aH \rangle$ such that $\psi(aH) = \omega$ where ω is a primitive p-th root of unity. Then ψ can be viewed as a character of G.

In the above situation, by Theorem 3.1 we have:

THEOREM 3.3. If |G/G'| has a divisor $p (\geq 5)$, then $\pm f_{ij}(\psi)$ $(1 \leq i, j < p, i \neq j, i + j \neq p)$ are units of infinite order in R(G).

THEOREM 3.4. If G/G' is non-trivial (that is, $G \neq G'$) and R(G) has no unit of infinite order for a finite group G where G' is the commutator subgroup of G, then G/G' is a $\{2,3\}$ -group.

Proof. Suppose that G/G' is not a $\{2,3\}$ -group. Then $p \mid |G/G'|$ for some prime number $p \geq 5$ because G/G' is non-trivial. By Theorem 3.3 R(G) has units of infinite order. This contradicts that R(G) has no unit of infinite order. Hence G/G' is a $\{2,3\}$ -group.

EXAMPLE 2. Let $G = S_n$ $(n \ge 5)$ be a symmetric group on n symbols. Then $G' = A_n$ is an alternating group on n symbols and |G/G'| = 2 where G' is the commutator subgroup of G. Therefore S_n has two linear characters χ_1, χ_2 where χ_1 is the principal character of S_n and χ_2 is a linear character of S_n such that $\chi_2(\sigma) = 1$ if σ is an even permutation and $\chi_2(\sigma) = -1$ if σ is an odd permutation.

Since the values of characters of S_n are rational integers, by Lemma 2.1 the units in $R(S_n)$ are of finite order and so we have $U(R(S_n)) = U_f(R(S_n)) = \{\pm \chi_1, \pm \chi_2\}$ by Corollary 1.2.

EXAMPLE 3. Let $G = \langle a \rangle$ be a cyclic group of order m (m = 3, 4, 6). Then |G/G'| = m, that is, G/G' is a $\{2, 3\}$ -group where G' is the commutator subgroup of G. Let A and B be the ring of algebraic integers in Q(i) and the ring of algebraic integers in $Q(\sqrt{-3})$, respectively where $i = \sqrt{-1}$. Then $U(A) = U_f(A) = \{\pm 1, \pm i\}$ and $U(B) = U_f(B) = \{\pm 1, \pm \rho, \pm \rho^2\}$ hold where $\rho = \frac{-1 + \sqrt{-3}}{2}$. Let ψ be a linear character of $\langle a \rangle$ such that $\psi(a) = \omega$ where ω is a primitive m-th root of unity. Since $\omega \in A$ or $\omega \in B$, by Lemma 2.1 and Corollary 1.2 we have $U(R(\langle a \rangle)) = U_f(R(\langle a \rangle)) = \{\pm \psi^i \mid i = 0, 1, \cdots, m-1\}$.

Acknowledgments. When I visited the University of Birmingham in UK in January 2002, I received useful suggestions and encouragement from Professor G.R. Robinson of the University of Birmingham. I also thank Professor I.M.

Isaacs for his valuable comments and I visited him at the University of Wisconsin (Madison, Wisconsin) in USA in December 2002.

I thank the referee who read my article carefully and gave me valuable comments, especially about Theorem 2.3.

References

- [1] C.W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Interscience, New York, 1962.
- [2] C.W. Curtis and I. Reiner, Methods of Representation Theory with Applications to Finite Groups and Orders, Vol.1, John Wiley and Sons, New York, 1981.
- [3] D. Gluck and I.M. Isaacs, Tensor induction of generalized characters and permutation characters, Illinois Journal of Mathematics Vol.27, No.3 (1983), 514-518.
- [4] I.M. Isaacs, Character Theory of Finite Groups, Academic Press, New York, 1976.
- [5] I.M. Isaacs, Character correspondences in solvable groups, Advances in Mathematics Vol.43 (1982), 284-306.
- [6] R. Knörr, On the number of characters in a p-block of a p-solvable group, Illinois Journal of Mathematics Vol.28 No.2 (1984), 181-210.
- [7] A.I. Saksonov, The integral ring of characters of a finite group, (Russian) Vesci Akad. Navuk BSSR Ser.Fiz.-Mat. Navuk No.3 (1966), 69-76.
- [8] K. Yamauchi, On the units in a character ring, Hokkaido Mathematical Journal Vol.20 No.3 (1991), 477-479.
- [9] K. Yamauchi, A unit group in a character ring of an alternating group, Hokkaido Mathematical Journal Vol.20 No.3 (1991), 549-558.
- [10] K. Yamauchi, A unit group in a character ring of an alternating group, II, Hokkaido Mathematical Journal Vol.22 No.1 (1993), 13-23.

Department of Mathematics, Faculty of Education, Chiba University, Chiba 263-8522, Japan E-mail: yamauchik@faculty.chiba-u.jp