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Abstract. By definition any stable distribution is semistable. For the con-
verse relation we will show that certain logarithmic mixtures of semistable laws
belong to the domain of normal attraction of a stable law. The mixtures them-
selves appear as limits for normalized sums of certain random numbers of random
variables belonging to the domain of normal attraction of a semistable law. Com-
bining the corresponding limit theorems, we observe a stable limit when starting
in the domain of attraction of a semistable distribution. The results are given in
a multivariate setting with operator normings and extend to the corresponding
semi-selfsimilar respectively selfsimilar L\’evy processes.

1. Introduction

This work is motivated by the following three observations concerning self-
similar and semi-selfsimilar processes. Partly deviating from the original state-
ments, we rather prefer to give a multivariate formulation with operator instead
of scalar normings.

Let $\{X_{t}\}_{t\geq 0}$ be a stochastie process on $\mathbb{R}^{d}$ , further let $c>1$ and $Q$ be a
linear operator on $\mathbb{R}^{d}$ . We say that $\{X_{t}\}_{t\geq 0}$ is $(c^{Q}, c)$ -semi-selfsimilar if for
some drift-function $d_{c}$ : $[0, \infty$ ) $\rightarrow \mathbb{R}^{d}$ the process obeys the space-time scaling

(1.1) $\{c^{Q}X_{t}+d_{c}(t)\}_{t\geq 0^{f}}=^{d}\{X_{ct}\}_{t\geq 0}$ ,

where $c^{Q}=e^{Q\log c}=\sum_{k=0}^{\infty}(k!)^{-1}(\log c)^{k}Q^{k}$ and $fd=$ denotes equality of all
finite dimensional marginal distributions. In case $d_{c}\equiv 0$ we call $\{X_{t}\}_{t\geq 0}$ strictly
$(c^{Q}, c)$ -semi-selfsimilar. Moreover, if (1.1) even holds for every $c>0$ we say that
$\{X_{t}\}_{t\geq 0}$ is (strictly) operator-selfsimilar with exponent $Q$ . For further details on
(semi)-selfsimilar processes and existence of exponents we refer to [9], [13], [14],
[15], and [18].
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We call the process $\{Y_{t}\}_{t\in \mathbb{R}}$ defined by $Y_{t}=e^{-tQ}X_{e^{t}}$ , as introduced by Lamperti
[11], the Lamperti tmnsform of $\{X_{t}\}_{t\geq 0}$ .

1.) As shown by Maejima and Sato [13], Theorem 13, the Lamperti trans-
form of the $(c^{Q}, c)$-semi-selfsimilar process $\{X_{t}\}_{t\geq 0}$ is periodically station-
ary with period log $c>0$ , i.e.

$\{Y_{t+\log c}\}_{t\in \mathbb{R}}^{f}=^{d}\{Y_{t}\}_{t\in \mathbb{R}}$ .

2.) Hurd [10], Theorem 1, provides a method to stationarize the periodically
stationary process $\{Y_{t}\}_{t\in \mathbb{R}}$ by random time-shifting, as follows. Let $\theta$ be a
random variable which is independent of $\{Y_{t}\}_{t\in \mathbb{R}}$ and uniformly distributed
on the period interval [ $0$ , log $c$]. Further define $Z_{t}(\omega)=Y_{t+\theta(\{v)}(\acute{\omega})$ , which
in case of Borel measurability defines a stationary process $\{Z_{t}\}_{t\in \mathbb{R}}$ in the
sense that

$\{Z_{t+s}\}_{t\in \mathbb{R}}^{f}=^{d}\{Z_{t}\}_{t\in \mathbb{R}}$ for any $s>0$ .

Hurd assumes joint measurability in $t$ and $\omega$ to ensure that $\{Z_{t}\}_{t\in \mathbb{R}}$ is a
well-defined stochastic process. For $t_{1}<\cdots<t_{m}$ the finite dimensional
marginal distributions are then given by

$P_{(Z_{\iota_{i}}:1\leq i\leq m)}=\frac{l}{\log c}\int_{0}^{\log c}P_{(Y_{t_{i+S}}:1\leq i\leq m)}ds$ .

3.) Inverting the Lamperti transform, the stationary process $\{Z_{t}\}_{t\in \mathbb{R}}$ turns
into an operator-selfsimilar process $\{U_{t}\}_{t\geq 0}$ by $U_{0}=0$ and $U_{t}=t^{Q}Z_{\log t}$

for $t>0$ , as has already been observed by Lamperti [11]; see also [5]. It is
even possible to arbitrarily change the exponent in this step, but this will
be of no further interest for us.

Combining these three results, presupposed we have measurability in the second
step, the strictly $(c^{Q}, c)$ -semi-selfsimilar process $\{X_{t}\}_{t\geq 0}$ can be transformed
into a strictly operator-selfsimilar process $\{U_{t}\}_{t\geq 0}$ with exponent $Q$ . The finite
dimensional marginal distributions of the operator-selfsimilar process $\{U_{t}\}_{t\geq 0}$

are then given by

$P_{(U_{t_{i}}:1\leq i\leq m)}=P_{(t^{Q}Z_{\log t_{i}}:1\leq i\leq m)}$

$=\frac{l}{\log c}\int_{0}^{\log c}P_{(t^{Q}Y_{s+:}\log t:1\leq i\leq m)}ds$

$=\frac{l}{\log c}\int_{0}^{\log c}P_{(e^{-sQ}X_{\epsilon^{S}t}:1\leq i\leq m)}ds$

$=\frac{l}{\log c}\int_{1}^{c}P_{(r^{-Q}X_{rt_{i}}:1\leq i\leq m)^{\frac{dr}{r}}}$ .
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Equivalently, for some random variable $\Theta$ which is independent of $\{X_{t}\}_{t\geq 0}$ and
logarithmically distributed with probability density $ x\leftrightarrow$ $(x$ log $c)^{-1}1_{[1,c]}(x)$ we
can write

(1.2) $U_{t}(\omega)=\Theta(\omega)^{-Q}X_{\Theta(\omega)t}(\omega)$ for any $t>0$

such that $\{U_{t}\}_{t\geq 0}fd=\{\Theta^{-Q}X_{\Theta t}\}_{t\geq 0}$ . Thus taking logarithmic mixtures as in
(1.2) equals out differences in scaling that might occur between two successive
integer powers of $c$ according to (1.1) such that the weaker semi-selfsimilarity
turns into the stronger selfsimilarity property. It is easy to see that if the semi-
selfsimilar process $\{X_{t}\}_{t\geq 0}$ has stationary increments, then so has the resulting
selfsimilar process $\{U_{t}\}_{t\geq 0}$ . Unfortunately, this is in general not true for indepen-
dent increments, which will be our focus now. The aim of the paper is to show
that independence of the increments is preserved by considering an approprite
limit theorem.

Rom now on we will assume that the strictly $(c^{Q}, c)$-semi-selfsimilar process
$\{X_{t}\}_{t\geq 0}$ has stationary and independent increments and is continuous in law,
meaning that $t\vdash\rightarrow P_{X_{t}}$ is continuous with respect to weak topology. Hence
$\{X_{t}\}_{t\geq 0}$ is a L\’evy process and thus there exists a version with c\‘adl\‘ag paths
(continuous from the right with left limits) that guarantees measurability in the
second step. We will prove in section 2 that an appropriately normalized and
centered partial sum process of independent copies of $\{U_{t}\}_{t\geq 0}$ defined by (1.2)
converges to an operator-selfsimilar L\’evy process with exponent $Q$ in the sense of
convergence of all finite dimensional marginal distributions. Since $\{U_{t}\}_{t\geq 0}$ itself
appears as a limit process of a normalized partial sum process with random
sample size, we will further combine these two limiting procedures in section 3.
As a consequence for the one-dimensional marginals of the processes, we observe
an operator-stable limit when starting in the domain of normal attraction of an
arbitrary strictly operator-semistable law.

2. Stabilizing Semistability

It is well known that the Fourier transform of an infinitely divisible proba-
bility measure $\rho$ on $\mathbb{R}^{d}$ has the form $\exp(l(y))$ for $y\in \mathbb{R}^{d}$ with

$l(y)=i\langle a, y\rangle-\frac{1}{2}q(y)+\int_{\mathbb{R}^{d}\backslash \{0\}}(e^{i\langle y,x\rangle}-1-\frac{i\langle y,x\rangle}{1+||x||^{2}})d\phi(x)$ ,

where $a\in \mathbb{R}^{d},$
$q$ is a nonnegative definite quadratic form on $\mathbb{R}^{d},$

$\langle\cdot, \cdot\rangle$ denotes
the Euclidean inner product on $\mathbb{R}^{d}$ and $\phi$ is a $\sigma- finite$ Borel measure on $\mathbb{R}^{d}\backslash \{0\}$
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called the L\’evy measure such that

$\int_{\mathbb{R}^{d}\backslash \{0\}}$ min $(1, |x||^{2})$ $ d\phi(x)<\infty$ .

The unique triple $[a, q, \phi]$ is called the L\’evy representation and for short we will
write $\rho\sim[a, q, \phi]$ ; see, e.g., Theorem 3.1.11 in [16].

Let $c>1$ and $Q$ be alinear operator on $\mathbb{R}^{d}$ . An infinitely divisible probability
measure $\nu$ is called operator-semistable or more precisely $(c^{Q}, c)$ -semistable if

(2.1) $c^{Q}\nu=\nu^{c}*\epsilon_{-d}$

for some $d\in \mathbb{R}^{d}$ , where $\nu^{c}$ denotes the c-fold convolution power of $\nu$ and $\epsilon_{x}$

denotes Dirac measure in $x\in \mathbb{R}^{d}$ . In case $d=0$ we call $\nu$ strictly $(c^{Q}, c)-$

semistable. A probability measure $\eta$ on $\mathbb{R}^{d}$ is said to belong to the domain of
normal attraction of $\nu$ if

(2.2) $ c^{-nQ}\eta^{\lfloor c^{n}\rfloor}*\epsilon_{-d_{n}}\rightarrow\nu$ weakly as $ n\rightarrow\infty$

for some $d_{n}\in \mathbb{R}^{d}$ . In case $d_{n}=0$ for all $n\in N$ we say that $\eta$ belongs to the
strict domain of normal attraction of $\nu$ .
An infinitely divisible probability measure $\rho$ is calIed opemtor-stable with expo-
nent $Q$ if

(2.3) $t^{Q}\rho=\rho^{t}*\epsilon_{-d(t)}$ for all $t>0$

and some drift-function $d:(0, \infty)\rightarrow \mathbb{R}^{d}$ . In case $d\equiv 0$ we call $\rho$ strictly operator-
stable. A probability measure $\mu$ on $\mathbb{R}^{d}$ is said to belong to the domain of normal
attmction of $\rho$ if

(2.4) $ n^{-Q}\mu^{n}*\epsilon_{-a_{n}}\rightarrow\rho$ weakly as $ n\rightarrow\infty$

for some $a_{n}\in \mathbb{R}^{d}$ . In case $a_{n}=0$ for all $n\in \mathbb{N}$ we say that $\mu$ belongs to the strict
domain of normal attraction of $\rho$ . For further details on operator-(semi-)stable
distributions and their domains of attraction we refer to [16] and the literature
cited therein.

We start with recalling the structure of a strictly $(c^{Q}, c)$ -semi-selfsimilar L\’evy
process. Let $\{X_{t}\}_{t\geq 0}$ be strictly $(c^{Q}, c)$ -semi-selfsimilar as in (1.1) (with $ d_{c}\equiv$

$0)$ for some $c>1$ and some linear operator $Q$ on $\mathbb{R}^{d}$ , and let $\{X_{t}\}_{t\geq 0}$ have
stationary and independent increments. Further assume that $\{X_{t}\}_{t\geq 0}$ is proper
(meaning that for $t>0$ the distribution of $X_{t}$ is full, i.e. not concentrated on
any lower dimensional hyperplane of $\mathbb{R}^{d}$ ) and continuous in law. Then, following
the arguments given by Hudson and Mason [9], Theorem 7, (1.1) with $d_{c}\equiv 0$ is
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equivalent to the fact that $\nu=P_{X_{1}}$ is strictly $(c^{Q}, c)$ -semistable. Especially $\nu$ is
full and necessarily any eigenvalue of $Q$ belongs to the halfplane $\{{\rm Re}(z)\geq 1/2\}$ .

Now let $\nu$ be a full strictly $(c^{Q}, c)$ -semistable law for some $c>1$ and some
linear operator $Q\in GL(\mathbb{R}^{d})$ and assume that $\nu$ is not operator-stable in which
case we call $\nu$ purely semistable. Since the (multivariate) normal distribution is
operator-stable, due to Theorem 7.1.10 of [16] we may and will assume through-
out this section, that $\nu$ has no Gaussian component and hence has L\’evy repre-
sentation $\nu\sim[b, 0, \phi]$ for some $b\in \mathbb{R}^{d}$ and some L\’evy measure $\phi$ and further the
real part of any eigenvalue of the exponent $Q$ exceeds 1/2. Then (2.1) implies
$ c^{Q}\phi=c\cdot\phi$ ; see Lemma 7.1.6 of [16]. Note that $ c\cdot\phi$ denotes multiplication,
whereas $ c^{Q}\phi$ denotes the image measure. Fix $0=t_{0}<t_{1}<$ . . . $<t_{m}$ and
consider

$\xi_{m}=(X_{t_{1}}, X_{t_{2}}-X_{t_{1}}, \ldots X_{t_{m}}-X_{t_{m-1}})$ .

Since $\{X_{t}\}_{t\geq 0}$ has stationary and independent increments and the L\’evy measure
of $P_{X_{t}}=\nu^{t}$ is given by $ t\cdot\phi$ , the $(\mathbb{R}^{d})^{m}$-valued random vector $\xi_{m}$ has a full strictly
$(c^{Q_{m}}, c)$ -semistable distribution on $(\mathbb{R}^{d})^{m}$ with exponent $Q_{m}=diag(Q, \ldots , Q)$

and L\’evy measure

$\overline{\Phi}_{t_{1},\ldots,t_{m}}=\sum_{i=1}^{m}(t_{i}-t_{i-1})\cdot\phi_{i}$ ,

where $\phi_{i}=\epsilon_{0}\otimes\cdots\epsilon_{0}\otimes\phi\otimes\epsilon_{0}\otimes\cdots\otimes\epsilon_{0}$ is the product measure with $\phi$ in the i-th
component and Dirac measure $\epsilon_{0}$ (at the origin $0\in \mathbb{R}^{d}$ ) in all other components.
Especially we have

(2.5) $c^{Q_{m}}\overline{\Phi}_{t_{1},\ldots,t_{m}}=c\cdot\tilde{\Phi}_{t_{1},\ldots,t_{m}}$ .

Further let $T_{m}$ : $(\mathbb{R}^{d})^{m}\rightarrow(\mathbb{R}^{d})^{m}$ be defined by

$T_{m}(x_{1}, \ldots x_{m})=(x_{1}, x_{1}+x_{2}, \ldots x_{1}+\cdots+x_{m})$ .

Then $T_{m}$ is an isomorphism of $(\mathbb{R}^{d})^{m}$ and $T_{m}\circ t^{Q_{m}}=t^{Q_{m}}\circ T_{m}$ for all $t>0$ .
Hence the finite dimensional marginals of $\{X_{t}\}_{t\geq 0}$ can be written as

$(X_{t_{1}}, X_{t_{2}}, \ldots x_{t_{m}})=T_{m}(\xi_{m})$ ,

which has a full strictly $(c^{Q_{m}}, c)$-semistable distribution with L\’evy measure

(2.6) $\Phi_{t_{1,}t_{m}}=T_{m}(\tilde{\Phi}_{t_{1},\ldots,t_{m}})=\sum_{i=1}^{m}(t_{i}-t_{i-1})\cdot T_{m}(\phi_{i})$ .
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Note that for any $s>0$ we have

(2.7) $\Phi_{s\cdot t_{1},\ldots,s\cdot t_{m}}=s\cdot\Phi_{t_{1},\ldots,t_{m}}$ .

Now let $\{X_{t}^{(n)}\}_{t\geq 0},$ $n\in N$ , be independent copies of $\{X_{t}\}_{t\geq 0}$ . Then it follows
from above, that whenever $0<t_{1}^{(n)}<\cdots<t_{m}^{(n)}$ with $t_{j}^{(n)}\rightarrow t_{j}$ as $ n\rightarrow\infty$ we
have

$c^{-nQ_{m}}\sum_{i=1}^{\lfloor c^{n}\rfloor}(x_{t_{j}^{(n)}}^{(i)} : 1\leq j\leq m)=dc^{-nQ_{m}}(X_{\lfloor c^{n}\rfloor t_{j}^{(n)}} : 1\leq j\leq m)$

$\Rightarrow(X_{t_{j}} : 1\leq j\leq m)$ ,

$where\Rightarrow denotes$ convergence in distribution. Hence by Corollary 8.2.11 of [16]
we have

(2.8) $c^{n}\cdot P_{(c^{-nQ}X_{t_{j}}:1\leq j\leq m)}\rightarrow\Phi_{t_{1},\ldots,t_{m}}$

uniformly on compact subsets of $\{0<t_{1}<\cdots<t_{m}\}$ , where convergence to a
L\’evy measure $\phi$ is understood to hold for any $\phi$-continuity set bounded away
from the origin.

Further let $\Theta_{n},$ $n\in N$ , be i.i. $d$ . as $\Theta$ , logarithmically distributed with prob-
ability density $ x\leftrightarrow$ $(x$ log $c)^{-1}1_{[1,c]}(x)$ on $\mathbb{R}$ , and assume that ( $\{X_{t}^{(n)}\}_{t\geq 0},$ $\Theta_{n}$ :
$n\in N)$ are independent.

THEOREM 2.1. With the above assumptions and notations there exists a se-
quence of functions $a_{n}$ : $[0, \infty$ ) $\rightarrow \mathbb{R}^{d}$ with $a_{n}(0)=0$ such that

(2.9) $\{n^{-Q}\sum_{i=1}^{n}\Theta_{i}^{-Q}X_{\Theta\dot{.}t}^{(i)}-a_{n}(t)\}_{t\geq 0}\Rightarrow\{R_{t}\}_{t\geq 0}f\cdot d$

.

$where\Rightarrow^{f_{.}.d.}$ denotes convergence of all finite dimensional marginal distributions
and $\{R_{t}\}_{t\geq 0}$ is a L\’evy process generated by a full operator-stable distribution
$ P_{R_{1}}=\rho$ with exponent $Q$ and L\’evy representation $\rho\sim[a, 0, \psi]$ for some $a\in \mathbb{R}^{d}$

and L\’evy measure

(2.10) $\psi=\frac{l}{\log c}\int_{1}^{c}S^{-Q}\phi ds$ .

Proof Fix any $0=t_{0}<t_{1}<\cdots<t_{m}$ and note that, since $\rho$ is full by Proposi-
tion 3.1.20 of [16], $(R_{t_{1}}, \ldots R_{t_{m}})$ is full on $(\mathbb{R}^{d})^{m}$ and has L\’evy measure

(2.11) $\Psi_{t_{1},\ldots,t_{m}}=\sum_{i=1}^{m}(t_{i}-t_{i-1})\cdot T_{m}(\psi_{i})$ ,
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where $\psi_{i}=\epsilon_{0}\otimes\cdots\otimes\epsilon_{0}\otimes\psi\otimes\epsilon_{0}\otimes\cdots\otimes\epsilon_{0}$ as above.
Now write $n=c^{m_{n}}r_{n}$ with $m_{n}\in \mathbb{N}_{0}$ and $r_{n}\in[1, c$) and let $r\in[1, c]$ be an
arbitrary limit point of $(r_{n})$ along some subsequence $(n^{\prime})$ . Using (2.8) and (2.7)
we obtain along the subsequence $(n^{\prime})$

$n\cdot(n^{-Q_{m}}P_{(\Theta^{-Q}X_{\Theta t_{j}}:1\leq j\leq m)})$

$=\frac{1}{\log c}\int_{1}^{c}c^{m_{n}}r_{n}\cdot P_{(c^{-m_{n}Q}(r_{n}s)^{-Q}X_{s\ell_{j}}:1\leq j\leq m)^{\frac{ds}{s}}}$

$=\frac{1}{\log c}\int_{1}^{c}c^{m_{n}}r_{n}\cdot((r_{n}s)^{-Q_{m}}P_{(c^{-m_{n}Q}X_{st_{j}}:1\leq j\leq m)})\frac{ds}{s}$

$\rightarrow\frac{l}{\log c}\int_{1}^{c}r\cdot((rs)^{-Q_{m}}\Phi_{s\cdot t_{1},\ldots,s\cdot t_{m}})\frac{ds}{s}$

$=\frac{1}{\log c}\int_{1}^{c}(rs)\cdot((rs)^{-Q_{m}}\Phi_{t_{1},\ldots,t_{m}})\frac{ds}{s}$

$=\frac{l}{\log c}\int_{r}^{rc}s^{-Q_{m}}\Phi_{t_{1},\ldots,t_{m}}ds$

$=\frac{l}{\log c}\int^{c}s^{-Q_{m}}\Phi_{t_{1},\ldots,t_{m}}ds+\frac{l}{\log c}\int_{1}^{r}c\cdot((cs)^{-Q_{m}}\Phi_{t_{1},\ldots,t_{m}})ds$

$=\frac{1}{\log c}\int_{1}^{c}s^{-Q_{m}}\Phi_{t_{1},\ldots,t_{m}}ds$ ,

where the last identity holds in view of $c\cdot(c^{-Q_{m}}\Phi_{t_{1},\ldots,t_{m}})=\Phi_{t_{1},\ldots,t_{m}}$ , which
easily follows from (2.5) and (2.6). Moreover, the limit does not depend on $r$

and hence we have convergence as $ n\rightarrow\infty$ to the L\’evy measure

$\frac{l}{\log c}\int_{1}^{c}s^{-Q_{m}}\Phi_{t_{1},\ldots,t_{m}}ds=\sum_{i=1}^{m}(t_{i}-t_{i-1})\cdot\frac{l}{\log c}\int_{1}^{c}s^{-Q_{m}}T_{m}(\phi_{i})ds$

$=\sum_{i=1}^{m}(t_{i}-t_{i-1})\cdot T_{m}(\frac{l}{\log c}\int_{1}^{c}s^{-Q_{m}}\phi_{i}ds)$

$=\sum_{i=1}^{m}(t_{i}-t_{i-1})\cdot T_{m}(\psi_{i})=\Psi_{t_{1},\ldots,t_{m}}$ .

Hence by Corollary 8.2.11 of [16] there exist $a_{n}^{(m)}(t_{1}$ , , . . $t_{m})\in(\mathbb{R}^{d})^{m}$ such that

(2.12)

$n^{-Q_{m}}\sum_{i=1}^{n}(\Theta_{i}^{-Q}X_{\Theta\dot{.}t_{j}}^{(i)} : 1\leq j\leq m)-a_{n}^{(m)}(t_{1}, \ldots t_{m})\Rightarrow(R_{t_{1}}, \ldots R_{t_{m}})$ .

For $m=1$ write $a_{n}^{(1)}(t)=a_{n}(t)$ , then projecting (2.12) onto the j-th $\mathbb{R}^{d_{-}}$

component via $\pi_{j}$ : $(\mathbb{R}^{d})^{m}\rightarrow \mathbb{R}^{d},$ $\pi_{j}(x_{1}, \ldots x_{m})=x_{j}$ shows that we can choose
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$\pi_{j}$
$(a_{n}^{(m)} (t_{1}, \ldots , t_{m}))$ as $a_{n}(t_{j})$ so that $a_{n}^{(m)}(t_{1}, \ldots t_{m})=(a_{n}(t_{1}), \ldots a_{n}(t_{m}))$

completing the proof, $\square $

Remark 2.2. The limiting process $\{R_{t}\}_{t\geq 0}$ in Theorem 2.1 is operator-selfsimilar
with exponent $Q$ and has stationary and independent increments. It is frequently
called an opemtor L\’evy motion and defines an operator-stable process with ex-
ponent $Q$ in the sense of Maejima [12], i.e. for any $0<t_{1}<\cdots<t_{m}$ the
distribution of the random vector $(R_{t_{1}}, \ldots R_{t_{m}})$ is operator-stable in $(\mathbb{R}^{d})^{m}$

with exponent $Q_{m}=diag(Q, \ldots , Q)$ .

Remark 2.3. Let $\mathbb{R}^{d}=W_{1}\oplus W_{2}\oplus W_{3}$ be a direct sum decomposition of $\mathbb{R}^{d}$ into
Q-invariant subspaces (possibly empty) such that the real part of any eigenvalue
of the exponent $Q$ is less than 1 on $W_{1}$ , is equal to 1 on $W_{2}$ and exceeds 1
on $W_{3}$ . Then by Corollary 8.2.15 of [16] the expectation $E\langle\Theta^{-Q}X_{\Theta t}, w_{1}\rangle$ ex-
ists for all $w_{1}\in W_{1}$ so that we can center to zero expectation on $W_{1}$ . Further
$E|\langle\Theta^{-Q}X_{\Theta t}, w_{3}\rangle|=\infty$ for all $w_{3}\in W_{3}$ and by Theorem 8.2.16 in [16] no cen-
tering is required on $W_{3}$ . If we further assume that $\langle X_{1}, w_{2}\rangle$ is symmetric for
all $w_{2}\in W_{2}$ , meaning that $P_{\langle X_{1},w_{2}\rangle}=P_{\langle-X_{1},w_{2}\rangle}$ , we can choose $a_{n}(t)=0$

for all $n\in \mathbb{N}$ and $t\geq 0$ in (2.9), which remains true for the stronger symme-
try condition $P_{X_{1}}=P_{-X_{1}}$ in. which case $a=0$ in the L\’evy representation of
$\rho=P_{R_{1}}\sim[0,0, \psi]$ .

Especially for the one-dimensional marginal distribution $\mu$ of $U_{1}$ given in
(1.2), by Theorem 2.1 we obtain:

COROLLARY 2.4. Let $\nu=P_{X_{1}}$ be as above. Then the distribution

(2.13) $\mu=\frac{l}{\log c}\int_{1}^{c}r^{-Q}\nu^{r}\frac{dr}{r}$

belongs to the domain of normal attraction of a full operator-stable law $\rho$ with
exponent $Q$ and L\’evy representation $\rho\sim[a, 0, \psi]$ for some $a\in \mathbb{R}^{d}$ and L\’evy
measure $\psi$ given by (2.10).

Remark 2.5. Corollary 2.4 shows that transforming the purely $(c^{Q}, c)$-semistable
law $\nu$ into the logarithmic mixture $\mu$ in (2.13) is smoothing the tails in the sense
that the R-O varying measure $\nu\in ROV_{\infty}(Q, c)$ is transformed into a regularly
varying measure $\mu\in RVM_{\infty}(Q)$ ; see chapter 6 of [16] for notation and details.
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3. Transitivity

A special logarithmic mixture (2.13) first appeared as an almost sure limit
in [3] and in its general one-dimensional form has been obtained the same way
in [4]. Furthermore, the logarithmic mixture $\mu$ in (2.13) also appears as a limit
distribution for normalized sums of certain random numbers of i.i. $d$ . random
vectors belonging to the strict domain of normal attraction of the semistable
law $\nu$ . Numerous choices of sequences of random numbers $\Theta_{n}$ converging in
some sense to a logarithmically distributed $\Theta$ are possible to establish this result
(see Remark 3.2 below). We will concentrate on the simple choice $\Theta_{n}=\lfloor n\Theta\rfloor$

that easily allows to combine this limit theorem with Theorem 2.1 in the sense
of transitivity of Gnedenko; see [7] or, more generally, Theorem 9 in [6] for
the semistable situation. Finally, we will observe a limit theorem with a stable
limit when starting in the domain of normal attraction of a purely semistable
law. Note that this is no contradiction, since we consider normalized sums of a
random number of random variables. Again, we will give more general versions of
the above mentioned results in the sense of convergence of all finite dimensional
marginal distributions of the corresponding processes.

Now let $Y_{1},$ $Y_{2},$
$\ldots$ be i.i. $d$ . random vectors on $\mathbb{R}^{d}$ with distribution $\eta=$

$P_{Y_{1}}$ belonging to the strict domain of normal attraction of the strictly $(c^{Q}, c)-$

semistable law $\nu$ and write

$\{S_{t}=\sum_{k=1}^{\lfloor t\rfloor}Y_{k}\}_{t\geq 0}$

for the corresponding partial sum process. Further let $\Theta$ be independent of
$(Y_{n})_{n\in N}$ with logarithmic distribution as above.

LEMMA 3.1. With the above assumptions and notations we have as $ n\rightarrow\infty$

$\{(n\Theta)^{-Q}S_{n}e_{t}\}_{t\geq 0}\Rightarrow^{f_{.}.d.}\{\Theta^{-Q}X_{\Theta t}\}_{t\geq 0}=\{U_{t}\}_{t\geq 0}$ .

Proof. Fix $0<t_{1}<\ldots<t_{m}$ . Since by (2.2) we have $c^{-nQ}S_{c^{n}t}\Rightarrow X_{t}$ uniformly
on compact subsets of $\{t>0\}$ , it follows by a standard argument considering
independent increments that

(3.1) $(c^{-nQ}S_{c^{n}t_{j}} : 1\leq j\leq m)\Rightarrow(X_{t_{j}} : 1\leq j\leq m)$

uniformly on compact subsets of $\{0<t_{1}<\ldots<t_{m}\}$ . Now write $n=c^{m_{n}}r_{n}$

with $m_{n}\in N_{0}$ and $r_{n}\in[1, c$) and let $r\in[1, c]$ be an arbitrary limit point of
$(r_{n})$ along some subsequence $(n^{\prime})$ . Using (3.1) and (1.1) we obtain along the
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subsequence $(n^{\prime})$

$P_{((e)^{-Q}S_{n\Theta t_{j}}:1\leq j\leq m)}n$

$=\frac{l}{\log c}\int_{1}^{c}P_{((nx)S_{nxt_{j}}:1\leq j\leq m)^{\frac{dx}{x}}}-Q$

$=\frac{l}{\log c}\int_{1}^{c_{P_{((r_{n}x)^{-Q_{C}-m_{n}Q}S_{c^{m}nr_{n}x\ell_{j}}:1\leq j\leq m)}}}\frac{dx}{x}$

$\Rightarrow\frac{1}{\log c}\int_{1}^{c}P_{((rx)^{-Q}X_{rxt_{j}}:1\leq j\leq m)^{\frac{dx}{x}}}$

$=\frac{l}{\log c}\int_{r}^{rc}P_{(s^{-Q}X_{st_{j}}:1\leq j\leq m)^{\frac{ds}{s}}}$

$=\frac{l}{\log c}\int^{c}P_{(s^{-Q}X_{st_{j}}:1\leq J\leq m)^{\frac{ds}{s}+\frac{l}{\log c}}}\int_{1}^{r}P_{((c\epsilon)^{-Q}X_{cst_{j}}:1\leq j\leq m)^{\frac{ds}{s}}}$

$=\frac{l}{\log c}\int_{1}^{c}P_{(s^{-Q}X_{st_{j}}:1\leq j\leq m)^{\frac{ds}{s}}}$

$=P_{(\ominus-QX_{\Theta t_{j}}:1\leq j\leq m)}$ .

Since the limit does not depend on $r$ , we have convergence as $ n\rightarrow\infty$ which
completes the proof. $\square $

Remark 3.2. Altematively, Lemma 3.1 can also be proven as an application to
one of the following limit theorems. It can be shown that the distribution of
mantissas $\mathcal{M}_{c}(\lfloor n\Theta\rfloor)$ converges weakly to the logarithmic distribution, where
the mantissa to base $c>1$ is defined by $\mathcal{M}_{c}(x)=c^{\log_{c}x-\lfloor\log_{c}x\rfloor}\in[1, c)$ for
$x>0$ . In other words, if we uniquely write $x=c^{m}r$ with $m\in \mathbb{N}_{0}$ and $r\in[1, c$)
then $\mathcal{M}_{c}(x)=r$ . Note that we implicitely used mantissas of the positive integers
in the proofs of Theorem 2.1 and Lemma 3.1. With this knowledge, Lemma 3.1
follows from Theorem 2.4 in [2] considering independent increments. Moreover,
since $\lfloor n\Theta\rfloor/n$ converges almost surely to $\Theta$ , Lemma 3.1 can be seen as an appli-
cation to Gnedenko’s transfer theorem [8]. Note that in general the transfer the-
orem for semistable laws only shows that the distributions of $((n\Theta)^{-Q}S_{n\Theta t})_{n\in N}$

are relatively compact, but due to the logarithmic distribution of $\Theta$ all distribu-
tional limit points coincide as is the case in the proofs of Theorem 2.1 and Lemma
3.1. This shows that the logarithmic distribution is essential for our purposes.
Note further that it is also possible to drop the assumption of independence of
$\Theta$ and $(Y_{n})_{n\in N}$ in Lemma 3.1 by means of results given in [1].

We will now combine Theorem 2.1 and Lemma 3.1 to a single limit theo-
rem. Recall that $Y_{1},$ $Y_{2},$

$\ldots$ is an i.i. $d$ . sequence of random vectors on $\mathbb{R}^{d}$ with
distribution $\eta=P_{Y_{1}}$ belonging to the strict domain of normal attraction of the
strictly $(c^{Q}, c)$-semistable law $\nu$ . For $i\in N$ let $(Y_{n}^{(i)})_{n\in N}$ be i.i. $d$ . as $(Y_{n})_{n\in N}$ and



HOW TO FIND STABILITY IN A PURELY SEMISTABLE CONTEXT 85

write

$\{S_{t}^{(i)}=\sum_{k=1}^{\lfloor t\rfloor}Y_{k}^{(i)}\}_{t\geq 0}$ respectively $\{S_{t}=\sum_{k=1}^{\lfloor t\rfloor}Y_{k}\}_{t\geq 0}$

for the corresponding partial sum processes. Further let $\Theta_{i},$ $i\in \mathbb{N}$ , be i.i. $d$ . as
$\Theta$ , logarithmically distributed with probability density $ x\leftrightarrow$ $(x$ log $c)^{-1}1_{[1,c]}(x)$

on $\mathbb{R}$ , and assume that $((Y_{n}^{(i)})_{n\in N}, \Theta_{i} : i\in \mathbb{N})$ are independent.

THEOREM 3.3. With the above assumptions and notations there exists a se-
quence of functions $b_{n}$ : $[0, \infty$ ) $\rightarrow \mathbb{R}^{d}$ with $b_{n}(0)=0$ such that

(3.2) $\{n^{-Q}\sum_{i=1}^{n}(n\Theta_{i})^{-Q}S_{n\Theta:t}^{(i)}-b_{n}(t)\}_{t\geq 0}\Rightarrow^{f_{.}.d.}\{R_{t}\}_{t\geq 0}$ ,

where $\{R_{t}\}_{t\geq 0}$ is the opemtor-selfsimilar L\’evy process appearing in Theorem 2.1

Proof. Let $0=t_{0}<t_{1}<\cdots<t_{m}$ be arbitrary and recall that the distribution of
$(R_{t_{j}} : 1\leq j\leq m)$ has L\’evy measure $\Psi_{t_{1},\ldots,t_{m}}$ given by (2.11). Further, as before
let $Q_{m}=$ diag $(Q, \ldots , Q)$ , then $x_{n,i}^{(m)}=n^{-Q_{m}}((n\Theta_{i})^{-Q}S_{n\ominus t_{j}}^{(i)}: : 1 \leq j\leq m)$ ,
1 $\leq i\leq n$ , defines an infinitesimal array of rowwise i.i. $d$ . random vectors on
$(\mathbb{R}^{d})^{m}$ by Lemma 3.1 and the fact that $n^{-Q_{m}}\rightarrow 0$ as $ n\rightarrow\infty$ , since the real part
of any eigenvalue of $Q_{m}$ exceeds 1/2. Now let $\eta_{n}^{(m)}=P_{x_{n,1}^{(m)}’}$ then we will first
prove that

(3.3) $n\cdot\eta_{n}^{(m)}\rightarrow\Psi_{t_{1},\ldots,t_{m}}$

and

(3.4) $\lim_{\epsilon\downarrow 0}\lim_{n\rightarrow}\sup_{\infty}n\cdot[\int_{\{||y||<\epsilon\}}\langle y, z\rangle^{2}d\eta_{n}^{(m)}(y)-(\int_{\{||||<\epsilon\}}y\langle y, z\rangle d\eta_{n}^{(m)}(y))^{2}]$

$=0$

for any $z\in(\mathbb{R}^{d})^{m}$ , where $\langle\cdot, \cdot\rangle$ denotes some inner product on $(\mathbb{R}^{d})^{m}$ .
Now write $n=c^{m_{n}}r_{n}$ with $m_{n}\in \mathbb{N}_{0}$ and $r_{n}\in[1, c$) and let $r\in[1, c]$ be an

arbitrary limit point of $(r_{n})$ along some subsequence $(n^{\prime})$ . Then if $x_{n}\rightarrow x>0$

by (3.1) we get along the subsequence $(n^{\prime})$

$n^{-Q_{m}}\sum_{i=1}^{n}((nx_{n})^{-Q}S_{nx_{n}t_{j}}^{(i)} : 1\leq j\leq m)$

$=n^{-Q_{m}}((nx_{n})^{-Q}S_{n^{2}x_{n}t_{j}}d : 1\leq j\leq m)$
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$=((r_{n}^{2}x_{n})^{-Q}c^{-2m_{n}Q}S_{c^{2m_{n}}r_{n}^{2}x_{n}t_{j}} : 1\leq j\leq m)$

$\Rightarrow((r^{2}x)^{-Q}X_{r^{2}xt_{g}} : 1\leq j\leq m)$ .

The limit distribution has no normal component and L\’evy measure
$(r^{2}x)^{-Q_{m}}\Phi_{r^{2}xt_{1},\ldots,r^{2}xt_{m}}=(r^{2}x)\cdot((r^{2}x)^{-Q_{m}}\Phi_{t_{1},\ldots,t_{m}})$ ,

where $\Phi_{t_{1},\ldots,t_{m}}$ is as in (2.6) and the above equality holds by (2.7). Hence, by
convergence criteria for infinitesimal triangular arrays of random vectors due to
Rva\v{c}eva [17] (see also Theorem 3.2.2 in [16]), we get along the subsequence $(n^{\prime})$

(3.5) $n\cdot(n^{-Q_{m}}P_{((nx_{n})^{-Q}S_{nx_{n}t_{j}}:1\leq j\leq m)})\rightarrow(r^{2}x)\cdot((r^{2}x)^{-Q_{m}}\Phi_{t_{1},\ldots,t_{m}})$

and

$\lim_{\epsilon\downarrow 0}\lim_{(n}\sup_{)}n\cdot[\int_{\{||y||<\epsilon\}}\langle y, z\rangle^{2}dn^{-Q_{m}}P_{((nx_{n})^{-Q}S_{nx_{n}t_{j}}:1\underline{4}_{j\leq}m)}(y)$

(3.6)
$-(\int_{\{||y||<\epsilon\}}\langle y, z\rangle dn^{-Q_{m}}P_{((nx_{n})^{-Q}S_{nx_{n}\ell_{j}}:1\leq j\leq m)}(y))^{2}]=0$

for all $z\in(\mathbb{R}^{d})^{m}$ . Then by (3.5) we obtain along the subsequence $(n^{\prime})$

$n\cdot\eta_{n}^{(m)}=\frac{l}{\log c}\int_{1}^{c}n\cdot(n^{-Q_{m}}P_{((nx)^{-Q}S_{ngt_{j}}:1\leq j\leq m)})\frac{dx}{x}$

$\rightarrow\frac{1}{\log c}\int_{1}^{c}(r^{2}x)\cdot((r^{2}x)^{-Q_{m}}\Phi_{t_{1},\ldots,t_{m}})\frac{dx}{x}=\Psi_{t_{1},\ldots,t_{m}}$ ,

where the last identity follows as in the proof of Theorem 2.1. Since the limit
does not depend on $r$ we get (3.3). Moreover, since we have

$n\cdot[\int_{\{||y||<\epsilon\}}\langle y, z\rangle^{2}d\eta_{n}^{(m)}(y)-(\int_{\{||y||<\epsilon\}}\langle y, z\rangle d\eta_{n}^{(m)}(y))^{2}]$

$=\frac{l}{\log c}\int_{1}^{c}n\cdot[\int_{\{||y||<\epsilon\}}\langle y, z\rangle^{2}dn^{-Q_{m}}P_{((nx)S_{nxt_{j}}:1\leq j\leq m)}-Q(y)$

$-(\int_{\{||y||<\epsilon\}}\langle y, z\rangle dn^{-Q_{m}}P_{((nx)S_{nxt_{j}}:1\leq j\leq m)}-Q(y))^{2}]\frac{dx}{x}$

(3.4) follows directly from (3.6).
Again, by convergence criteria in [17], (3.3) and (3.4) are equivalent to

$n^{-Q_{m}}\sum_{i=1}^{n}$ $((n\Theta_{i})^{-Q}S_{n\Theta:t_{J}}^{(i)} : 1\leq j\leq m)-b_{n}^{(m)}(t_{1}, \ldots t_{m})\Rightarrow(R_{\ell_{1}}, \ldots R_{t_{m}}-,)$

for some $b_{n}^{(m)}(t_{1}, \ldots t_{m})\in(\mathbb{R}^{d})^{m}$ . As in the proof of Theorem 2.1, we can
choose $b_{n}^{(m)}(t_{1}, \ldots t_{m})=(b_{n}(t_{1}), \ldots b_{n}(t_{m}))$ for some sequence of functions
$b_{n}$ : $[0, \infty$ ) $\rightarrow \mathbb{R}^{d}$ , which completes the proof. $\square $
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Remark 3.4. It is known by [17] (see also Theorem 3.2.2 in [16]) that the cen-
terings in Theorem 3.3 can be chosen as truncated moments

$b_{n}(t)=n\cdot E(-Q$

for some $R>0$ such that $\psi\{||x||=R\}=0$ in which case $a=0$ in the L\’evy rep-
resentation of $\rho=P_{R_{1}}\sim[0,0, \psi]$ . Especially, if we assume that $Y_{1}$ is symmetric,
i.e. $\eta=P_{Y_{1}}=P_{-Y_{1}}$ , no centering is needed in (3.2).

To summarize our procedure, we start with a partial sum process $\{S_{t}\}_{t\geq 0}$ of
i.i. $d$ . random vectors in some domain of attraction of a semistable law, which
naturally has stationary and independent increments. Then the subordinated
processes $\{(n\Theta)^{-Q}S_{n\Theta t}\}_{t\geq 0}$ for independent logarithmically distributed $\Theta$ have
stationary increments that are no longer independent. By Lemma 3.1, their
process limit as $ n\rightarrow\infty$ is an operator-selfsimilar process $\{\Theta^{-Q}X_{\Theta t}\}_{t\geq 0}$ again
with stationary but not independent increments. But taking independent copies
of either of these processes leads via (2.9) respectively (3.2) to an operator-
selfsimilar process with stationary and independent increments.

Especially, considering (3.2) for the one-dimensional marginal distributions
of the processes involved in Theorem 3.3, we obtain an answer to the present
title:

COROLLARY 3.5. Let $\eta$ be a probability measure on $\mathbb{R}^{d}$ belonging to the strict
domain of normal attraction of a full strictly $(c^{Q}, c)$ -semistable law $\nu\sim[b, 0, \phi]$ .
Then the normalized convolution powers of logarithmic mixtures

(3.7) $n^{-Q}(\frac{l}{\log c}\int_{1}^{c}(ns)^{-Q}\eta^{\lfloor ns\rfloor}\frac{ds}{s})^{n}$

appropriately centered, converge weakly to a full operator-stable law $\rho\sim[a, 0, \psi]$

with exponent $Q$ and L\’evy measure $\psi$ given by (2.10).

Note that since $\nu$ belongs to its own strict domain of normal attraction and
since the logarithmic mixtures for $\eta=\nu$ in (3.7) coincide as in the proof of
Lemma 3.1, we recover the result of Corollary 2.4.

ACKNOWLEDGEMENT. We would like to thank Professor S\’andor Cs\"org\’o for
some helpful remarks, particularly for suggesting to combine Theorem 2.1 with
Lemma 3.1 in the sense of transitivity, leading to Theorem 3.3.
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