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Abstract. The purpOse Of the present paper is tO prOve that a Kaehler hyper-
surface with recurrent Ricci tensOr is lOcally symmetric

1. Introduction

Let $\tilde{M}_{n+1}(\tilde{c})$ be a cOmplex $(n+1)$ -dimensiOnal cOmplex space fOrm Of cOn-

stant hOlOmOrphic sectiOnal curvature $\tilde{c}$ (i.e. cOmplete, simply cOnnected Kaehler
manifOld with cOnstant hOlOmOrphic sectiOnal curvature, say, $\tilde{c}$). FOr each real
number $\tilde{c}$ , there is (up tO hOlOmOrphic isOmetry) exactly One cOmplex space fOrm
in every dimensiOn with hOlOmOrphic sectiOnal curvature $\tilde{c}$ . The cOmplex space
fOrms Of hOlOmOrphic sectiOnal curvature $\tilde{c}$ are denOted by $P_{n+1}(C),$ $C_{n+1}$ and
$D_{n+1}$ depending On whether $\tilde{c}$ is pOsitive, zero Or negative, respectively. $P_{n+1}(C)$

is the cOmplex prOjective space with Fubini-Study metric Of cOnstant hOlOmOr-
phic sectiOnal curvature $\tilde{c}$ . $C_{n+1}$ is the cOmplex Euclidean space. $D_{n+1}$ is the
Open unit ball in $C_{n+1}$ endOwed with Bergman metric Of cOnstant hOlomOrphic
sectiOnal curvature $\tilde{c}$ .

Let $M_{n}$ be a cOmplex hypersurface in a cOmplex space fOrm $\tilde{M}_{n+1}(\tilde{c})$ . FrOm
nOw On we call such a hypersurface $M_{n}$ a Kaehler hypersurface. Let $\nabla$ and $S$

be the cOvariant differentiatiOn On $M_{n}$ and the Ricci tensOr Of $M_{n}$ , respectively.
K. NOmizu and B. Smyth [3] classified these Kaehler hypersurfaces with regard
tO the parallel Ricci tensOr, i.e., $\nabla S=0$ . They prOved that if the Ricci tensOr $S$

Of $M_{n}$ is parallel, then $M_{n}$ is lOcally symmetric, that is, $\nabla R=0$ and either $M_{n}$

is tOtally geOdesic in $\tilde{M}_{n+1}(\tilde{c})$ Or $M_{n}$ is lOcally the cOmplex quadric, the latter
case arising Only when $\tilde{c}>0$ , where $R$ denOtes the curvature tensOr Of $M_{n}$ (see
Theorem C).

The Ricci tensOr $S$ is called the recurrent Ricci tensor if there exists a l-fOrm
$\alpha$ such that $(\nabla_{X}S)Y=\alpha(X)SY$ fOr any $X$ and $Y$ tangent tO $M_{n}$ . And the
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Ricci tensor $S$ is called the birecurrent Ricci tensor if there exists a covariant
tensor field $\alpha$ of order 2 such that $(\nabla_{X}\nabla_{Y}S-\nabla_{\nabla_{X}Y}S)Z=\alpha(X, Y)SZ$ for any
$X,$ $Y$ and $Z$ tangent to $M_{n}$ (See [6]).

The purpose of this paper is to classify Kaehler hypersurfaces with recurrent
Ricci tensor in a complex space form. We note that this condition is weaker
than $\nabla S=0$ . We prove the following theorem:

THEOREM. Let $M_{n}$ be a Kaehler hypersurface of complex dimension $n\geq 2$

with recurrent Ricci tensor in a complex space form $\tilde{M}_{n+1}(\overline{c})$ . Then the Ricci
tensor of $M_{n}$ is parallel.

Remark. If $M_{n}$ is a Kaehler hypersurface with recurrent curvature tensor, then
$M_{n}$ is called the recurrent hypersurface (See [6]). The above theorem shows that
the recurrent hypersurface is locally symmetric.

2. Preliminaries

Let $M_{n}$ be a Kaehler hypersurface of complex dimension $n$ in a complex space
form $\tilde{M}_{n+1}(\overline{c})$ of constant holomorphic sectional curvature $\tilde{c}$ . For each point
$x_{0}\in M_{n}$ , we choose an unit normal vector field $\xi$ defined in a neighborhood
$U(x_{0})$ of $x_{0}$ . Denoting the complex structure on $\tilde{M}_{n+1}(\tilde{c})$ by $J,$ $ J\xi$ is also a
normal vector field on $U(x_{0})$ . Let $\tilde{\nabla}$ (resp. $\nabla$ ) be the covariant differentiation
on $\tilde{M}_{n+1}(\tilde{c})$ (resp. $M_{n}$ ). Then, for any vector fields $X,$ $Y$ tangent to $M_{n}$ on
$U(x_{0})$ , we have

$\tilde{\nabla}_{X}Y=\nabla_{X}Y+g(AX, Y)\xi+g(JAX, Y)J\xi$ , (1)

$\tilde{\nabla}_{X}\xi=-AX+s(X)J\xi$ , (2)

where $g,$ $s$ and $A$ are the induced Kaehler metric on $M_{n}$ , the tensor field of type
$(0,1)$ and the $(1, 1)$ -type symmetric tensor field called the second fundamental
form, respectively. It is easy to show that $AJ=-JA$ .

Let $R$ be the curvature tensor of $M_{n}$ . Then, for any vector fields $X,$ $Y$ and
$Z$ on $U(x_{0})$ , we have the following (see [1], [3] and [5]):

$R(X, Y)Z=\tilde{R}(X, Y)Z+g(AY, Z)AX-g(AX, Z)AY$ (3)

$+g(JAY, Z)JAX-g(JAX, Z)JAY$,

–Gauss equation

$(\nabla_{X}A)Y-s(X)JAY=(\nabla_{Y}A)X-s(Y)JAX$ , (4)

–Codazzi equation
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where $\tilde{R}$ is the curvature tensor of $\tilde{M}_{n+1}(\overline{c})$ . Since $\tilde{M}_{n+1}(\tilde{c})$ is of constant
holomorphic sectional curvature $\overline{c},\tilde{R}(X, Y)Z$ can be written as

$\tilde{R}(X, Y)Z=\frac{\tilde{c}}{4}\{g(Y, Z)X-9(X, Z)Y+g(JY, Z)JX$ (5)

$-g(JX, Z)JY+2g(X, JY)JZ\}$ .

In particular, if Codazzi equation (4) satisfies

$(\nabla_{X}A)Y=s(X)JAY$ (6)

on a neighborhood of every point in $M_{n}$ , then we say that Codazzi equation
reduces (See [2] and [5]).

Next, we also denote the $(1, 1)$ -type Ricci tensor of $M_{n}$ by $S$ . For any point
$x$ of $U(x_{0}),$ $S$ is defined by

$SX=\sum_{i=1}^{n}R(X, e_{i})e_{i}+\sum_{i=1}^{n}R(X, Je_{i})Je_{i}$ , (7)

where $\{e_{1}, \ldots, e_{n}, Je_{1}, \ldots, Je_{n}\}$ is an orthonormal basis of the tangent space
$T_{x}M_{n}$ . Using Gauss equation (3) and the equation (5), we obtain

$SX=\frac{n+1}{2}\tilde{c}X-2A^{2}X$ (8)

for any $X$ tangent to $M_{n}$ on $U(x_{0})$ .
We here recall the definitions of the recurrent Ricci tensor, the birecurrent

Ricci tensor and the parallel Ricci tensor, again:
The Ricci tensor $S$ is called the recurrent Ricci tensor if there exists a l-form

$\alpha$ such that $(\nabla_{X}S)Y=\alpha(X)SY$ for any $X$ and $Y$ tangent to $M_{n}$ . And the
Ricci tensor $S$ is called the birecurrent Ricci tensor if there exists a covariant
tensor field $\alpha$ of order 2 such that $(\nabla_{X}\nabla_{Y}S-\nabla_{\nabla_{X}Y}S)Z=\alpha(X, Y)SZ$ for any
$X,$ $Y$ and $Z$ tangent to $M_{n}$ . If $S$ satisfies $(\nabla_{X}S)Y=0$ for any $X$ and $Y$ tangent
to $M_{n}$ , then the Ricci tensor $S$ is said to be parallel.

Now, we prepare the following results without proof.

THEOREM A. (Ryan [4]). Let $M_{n}$ be a Kaehler hypersurface in a space of
constant holomorphic sectional curvature $\tilde{c}$ . Then $(R(X, Y)S)Z=0$ on $M_{n}$ if
and only if one of the following is true:

1. $\overline{c}\neq 0$ and $A^{2}$ is a multiple of $I$ ,
2. $\overline{c}=0$ and the nonzero eigenvalues of $A^{2}$ are equal,

where I is the identity tmnsformation on $TM_{n}$ .
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THEOREM B. (Nomizu and Smyth [3]). If $M_{n}$ is a Kaehler hypersurface in
a complex space form $\tilde{M}_{n+1}(\tilde{c})$ , then the following conditions are equivalent on
$M_{n}$ :

1. Codazzi equation reduces,
2. The Ricci tensor of $M_{n}$ is pamllel, that is, $\nabla S=0$ ,
3. $M_{n}$ is locally symmetric.

THEOREM C. (Nomizu and Smyth [3]). Let $M_{n}$ be a Kaehler hypersurface of
complex dimension $n\geq 1$ in a complex space form $\tilde{M}_{n+1}(\tilde{c})$ of constant holo-
morphic sectional curvature $\tilde{c}$ . If the Ricci tensor of $M_{n}$ is pamllel, then $M_{n}$ is
locally symmetric and either $M_{n}$ is of constant holomorphic sectional curvature

$\tilde{c}$ and totally geodesic in $\tilde{M}_{n+1}(\tilde{c})$ or $M_{n}$ is locally holomorphically isometric to
the complex quadric $Q_{n}$ in the complex projective space $P_{n+1}(C)$ , the latter case
arising only when $\tilde{c}>0$ .

3. Lemmas

In this section, we show that if $M_{n}$ is a Kaehler hypersurface with recurrent
Ricci tensor $S$ in $\tilde{M}_{n+1}(\tilde{c})$ , then $S$ satisfies $(R(X, Y)S)Z=0$ (i.e. $R(X, Y)(SZ)-$

$SR(X, Y)Z=0foranyX,$ $YandZtangenttoM_{n}$ ). Consequently, we can get
some information on the second fundamental form $A$ of $M_{n}$ (see Preliminaries,
TheoremA).

LEMMA 1. If $M_{n}$ is a Kaehler hypersurface with recurrent Ricci tensor in
$\tilde{M}_{n+1}(\tilde{c})$ , then $M_{n}$ has the birecurrent Ricci tensor.

Proof. Suppose that $M_{n}$ has the recurrent Ricci tensor. For any $X,$ $Y$ and $Z$

tangent to $M_{n}$ , we have

$(\nabla_{X}(\nabla_{Y}S))Z-(\nabla_{\nabla_{X}Y}S)Z$

$=\nabla_{X}((\nabla_{Y}S)Z)-(\nabla_{Y}S)\nabla_{X}Z-(\nabla_{\nabla_{X}Y}S)Z$ .

We use the assumption that $S$ is the recurrent Ricci tensor and we obtain

$(\nabla_{X}(\nabla_{Y}S))Z-(\nabla_{\nabla_{X}Y}S)Z$

$=\nabla_{X}(\alpha(Y)SZ)-\alpha(Y)S(\nabla_{X}Z)-\alpha(\nabla_{X}Y)SZ$

$=X(\alpha(Y))SZ+\alpha(Y)(\nabla_{X}S)Z+\alpha(Y)S(\nabla_{X}Z)$

$-\alpha(Y)S(\nabla_{X}Z)-\alpha(\nabla_{X}Y)SZ$

$=X(\alpha(Y))SZ+\alpha(Y)\alpha(X)SZ-\alpha(\nabla_{X}Y)SZ$

$=(X(\alpha(Y))+\alpha(Y)\alpha(X)-\alpha(\nabla_{X}Y))SZ.$ .
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This equation implies that $S$ is the birecurrent Ricci tensor.

LEMMA 2. If $M_{n}$ is a Kaehler hypersurface with birecurrent Ricci tensor $S$ in
$\tilde{M}_{n+1}(\tilde{c})$ , then $S$ satisfies $(R(X, Y)S)Z=0$ .

Proof. We suppose that $M_{n}$ is a Kaehler hypersurface with birecurrent Ricci
tensor in $\tilde{M}_{n+1}(\tilde{c})$ . In order to prove this lemma, we use the equation

$\nabla_{Y}S^{2}=(\nabla_{Y}S)S+S(\nabla_{Y}S)$ (9)

and consider the equation

$(\nabla_{X}(\nabla_{Y}S^{2}))Z-(\nabla_{\nabla_{X}Y}S^{2})Z$

$=\nabla_{X}((\nabla_{Y}S^{2})Z)-(\nabla_{Y}S^{2})\nabla_{X}Z-(\nabla_{\nabla_{X}Y}S^{2})Z$

for any $X,$ $Y$ and $Z$ tangent to $M_{n}$ . From the equation (9), the above equation
becomes

$(\nabla_{X}(\nabla_{Y}S^{2}))Z-(\nabla_{\nabla_{X}Y}S^{2})Z$

$=\nabla_{X}((\nabla_{Y}S)SZ+S(\nabla_{Y}S)Z)-((\nabla_{Y}S)S)\nabla_{X}Z-(S\nabla_{Y}S)\nabla_{X}Z$

$-(\nabla_{\nabla_{X}Y}S)SZ-S(\nabla_{\nabla_{X}Y}S)Z$

$=(\nabla_{X}\nabla_{Y}S)SZ+(\nabla_{Y}S)(\nabla_{X}S)Z+(\nabla_{Y}S)S\nabla_{X}Z$

$+(\nabla_{X}S)(\nabla_{Y}S)Z+S(\nabla_{X}\nabla_{Y}S)Z+S(\nabla_{Y}S)\nabla_{X}Z$

$-(\nabla_{Y}S)S\nabla_{X}Z-(S\nabla_{Y}S)\nabla_{X}Z-(\nabla_{\nabla_{X}Y}S)SZ-S(\nabla_{\nabla_{X}Y}S)Z$

$=(\nabla x\nabla_{Y}S-\nabla_{\nabla_{X}Y}S)SZ+S(\nabla_{X}\nabla_{Y}S-\nabla_{\nabla_{X}Y}S)Z$

$+(\nabla_{Y}S)(\nabla_{X}S)Z+(\nabla_{X}S)(\nabla_{Y}S)Z$ .

We now use the assumption that $S$ is the birecurrent Ricci tensor, and it follows
that

$(\nabla_{X}(\nabla_{Y}S^{2}))Z-(\nabla_{\nabla_{X}Y}S^{2})Z$

$=(\alpha(X, Y)S)SZ+S(\alpha(X, Y)S)Z+(\nabla_{Y}S)(\nabla_{X}S)Z+(\nabla_{X}S)(\nabla_{Y}S)Z$

$=2\alpha(X, Y)S^{2}Z+(\nabla_{Y}S)(\nabla_{X}S)Z+(\nabla_{X}S)(\nabla_{Y}S)Z$ .

A similar calculation shows that

$(\nabla_{Y}(\nabla_{X}S^{2}))Z-(\nabla_{\nabla_{Y}X}S^{2})Z$

$=2\alpha(Y, X)S^{2}Z+(\nabla_{X}S)(\nabla_{Y}S)Z+(\nabla_{Y}S)(\nabla_{X}S)Z$ .
Hence we obtain

$(\nabla_{X}(\nabla_{Y}S^{2})-\nabla_{\nabla_{X}Y}S^{2})Z-(\nabla_{Y}(\nabla_{X}S^{2})-\nabla_{\nabla_{Y}X}S^{2})Z$

$=(\nabla_{X}\nabla_{Y}S^{2}-\nabla_{Y}\nabla_{X}S^{2}-\nabla_{[X,Y]}S^{2})Z$

$=2(\alpha(X, Y)-\alpha(Y, X))S^{2}Z$ .
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From this equation and the commutativity of the trace and the derivation, we
have

$(\nabla_{X}\nabla_{Y}-\nabla_{Y}\nabla_{X}-\nabla_{[X,Y]})$ trace $S^{2}=2(\alpha(X, Y)-\alpha(Y, X))$ trace $S^{2}$ .

Since trace $S^{2}$ is a differentiable function on $M_{n}$ , the left side of this equation
equals to zero. Therefore we get $\alpha(X, Y)=\alpha(Y, X)$ or trace $S^{2}=0$ . If trace
$S^{2}=0$ , then we deduce that $S=0$ . Hence we can see that $(R(X, Y)S)Z=0$ .
If $\alpha(X, Y)=\alpha(Y, X)$ , then we have

$(R(X, Y)S)Z=(\nabla_{X}\nabla_{Y}S-\nabla_{Y}\nabla_{X}S-\nabla_{[X,Y]}S)Z$

$=(\nabla_{X}\nabla_{Y}S-\nabla_{Y}\nabla_{X}S-\nabla_{\nabla_{X}Y}S+\nabla_{\nabla_{Y}}xS)Z$

$=(\alpha(X, Y)-\alpha(Y, X))SZ$

$=0$ .

Therefore we conclude that $(R(X, Y)S)Z=0$ for any vector fields $X,$ $Y$ and $Z$

tangent to $M_{n}$ .

4. Proof of Theorem

Now, we prove the following theorem:

THEOREM. Let $M_{n}$ be a Kaehler hypersurface of complex dimension $n\geq 2$

with recurrent Ricci tensor in a complex space form $\tilde{M}_{n+1}(\tilde{c})$ . Then the Ricci
tensor of $M_{n}$ is pamllel.

Proof. For each point $x$ of $U(x_{0})$ , we choose an orthonormal basis of $T_{x}M_{n}$

{ $e_{1},$
$\ldots,$

$e_{n}$ , Je1, $\ldots,$
$Je_{n}$ } for which the matrix of $A$ is of the form

$\left\{\begin{array}{llll}\lambda_{1} & & & \\ & \lambda_{n} & & \\ & & -\lambda_{1} & \\ & & & -\lambda_{n}\end{array}\right\}$ ,

i.e.,

$Ae_{i}=\lambda_{i}e_{i},$ $AJe_{i}=-\lambda_{i}Je_{i}$ and $\lambda_{i}\geq 0$ for $1\leq i\leq n$ (see [5], lemma 1).
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Since $M_{n}$ has the recurrent Ricci tensor $S$ , it follows that $(R(X, Y)S)Z=0$ for
any $X,$ $Y$ and $Z$ on $U(x_{0})$ from Lemma 1 and Lemma 2. Therefore, by using
(3), (5) and (8), we have

$(R(e_{i}, e_{j})S)e_{j}=R(e_{i}, e_{j})(Se_{j})-S(R(e_{i}, e_{j})e_{j})$

$=(\frac{\tilde{c}}{4}+\lambda_{i}\lambda_{j})(\frac{n+1}{2}\tilde{c}-2\lambda_{j}^{2})e_{i}-(\frac{\tilde{c}}{4}+\lambda_{i}\lambda_{j})(\frac{n+1}{2}\tilde{c}-2\lambda_{i}^{2})e_{i}$

$=(\frac{\tilde{c}}{4}+\lambda_{i}\lambda_{j})(2\lambda_{i}^{2}-2\lambda_{j}^{2})e_{i}$

$=0$

for $\dot{i}\neq j$ .
Similarly, we get

$(R(e_{i}, Je_{j})S)e_{j}=R(e_{i}, Je_{j})(Se_{j})-S(R(e_{i}, Je_{j})e_{j})$

$=-(\frac{\tilde{c}}{4}-\lambda_{i}\lambda_{j})(\frac{n+1}{2}\tilde{c}-2\lambda_{j}^{2})Je_{i}$

$+(\frac{\tilde{c}}{4}-\lambda_{i}\lambda_{j})(\frac{n+1}{2}\tilde{c}-2\lambda_{i}^{2})Je_{i}$

$=(\frac{\tilde{c}}{4}-\lambda_{i}\lambda_{j})(2\lambda_{j}^{2}-2\lambda_{i}^{2})Je_{i}$

$=0$ .

Hence it follows that

$(\frac{\tilde{c}}{4}+\lambda_{i}\lambda_{j})(\lambda_{i}^{2}-\lambda_{j}^{2})=0$ and $(\frac{\tilde{c}}{4}-\lambda_{i}\lambda_{j})(\lambda_{i}^{2}-\lambda_{j}^{2})=0$ (10)

for $1\leq i,j\leq n$ (for details, see [4]).
We first consider the case of $\tilde{c}\neq 0$ . It is easy to see that (10) is equivalent to

$\lambda_{i}^{2}-\lambda_{j}^{2}=0$ . Hence we have $\lambda_{i}=\lambda_{j}=\lambda$ . Then by the assumption of $n\geq 2$ we
can choose linearly independent vector fields $X,$ $Y$ on $U(x_{0})$ such that $AX=\lambda X$

and $AY=\lambda Y$ . From Codazzi equation

$(\nabla_{X}A)Y-s(X)JAY=(\nabla_{Y}A)X-s(Y)JAX$ ,

we have

$(X\lambda)Y+(\lambda I-A)\nabla_{X}Y-\lambda s(X)JY$

$=(Y\lambda)X+(\lambda I-A)\nabla_{Y}X-\lambda s(Y)JX$ .

Therefore we know that $\lambda=$ constant on $U(x_{0})$ . From the equation (8), we
obtain

$S=(\frac{n+1}{2}\tilde{c}-2\lambda^{2})I$ .
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Hence we find that $\nabla S=0$ .
Next, we consider the case of $\tilde{c}=0$ . From the equation (10), we see that

$\lambda_{i}\lambda_{j}(\lambda_{i}^{2}-\lambda_{j}^{2})=0$ . Thus we have two subcases of $\lambda_{i}=\lambda_{j}=\lambda$ at $x\in U(x_{0})$

and $\lambda_{i}=\lambda\neq\lambda_{j}=0$ at $x\in U(x_{0})$ . The set of points such that $\lambda_{i}=\lambda_{j}=\lambda$

is an open set in $U(x_{0})$ , since $\lambda=$ constant as above. Since it is obviously a
closed set and we may assume that $U(x_{0})$ is connected set, either $U(x_{0})$ satisfies
$\lambda_{i}=\lambda_{j}=\lambda$ or $U(x_{0})$ so $\lambda_{i}=\lambda\neq\lambda_{j}=0$ . We show that the second case cannot
occur. In order to proceed with the argument, we consider three distributions
on $U(x_{0})$ defined by

$T_{\lambda}(x)=\{X\in T_{x}M_{n}|AX=\lambda X\}$ ,
$T_{-\lambda}(x)=\{X\in T_{x}M_{n}|AX=-\lambda X\}$ ,
$T_{0}(x)=\{X\in T_{x}M_{n}|AX=0\}$ .

The tangent space $T_{x}M_{n}$ satisfies $T_{x}M_{n}=T_{\lambda}(x)\oplus T_{-\lambda}(x)\oplus T_{0}(x)$ . We here
suppose that dim $T_{\lambda}(x)\geq 2$ . Then we can choose a neighborhood $U$ of $x\in U(x_{0})$

such that dim $T_{\lambda}\geq 2$ on $U$ . Since $S$ is the recurrent Ricci tensor, it follows that
$(\nabla_{X}S)Y=\alpha(X)SY$ for any $X$ and $Y$ tangent to $M_{n}$ . From (8) this equation
becomes

$(\nabla_{X}A)AY+A(\nabla_{X}A)Y=\alpha(X)A^{2}Y$. (11)

First, we take vector fields $X_{1},$ $X_{2}\in T_{\lambda}$ so that $X_{1}$ and $X_{2}$ are linearly
independent. From the equation (11), we have

$(\lambda I+A)(\nabla_{X_{1}}A)X_{2}=\lambda^{2}\alpha(X_{1})X_{2}$ .

Taking the $T_{0}$-component of the above equation, we get

$\lambda((\nabla_{X_{1}}A)X_{2})_{0}=0$ ,
i.e.,

$((\nabla_{X_{1}}A)X_{2})_{0}=0$ .

This means that $(\nabla_{X_{1}}A)X_{2}\in T_{\lambda}\oplus T_{-\lambda}$ . On the other hand, the equation

$(\nabla_{X_{1}}A)X_{2}=\nabla_{X_{1}}(AX_{2})-A\nabla_{X_{1}}X_{2}$

$=(X_{1}\lambda)X_{2}+(\lambda I-A)\nabla_{X_{1}}X_{2}$

and Codazzi equation (4) lead us to

$(X_{1}\lambda)X_{2}+(\lambda I-A)\nabla_{X_{1}}X_{2}-\lambda s(X_{1})JX_{2}$

$=(X_{2}\lambda)X_{1}+(\lambda I-A)\nabla_{X_{2}}X_{1}-\lambda s(X_{2})JX_{1}$ .
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We take the $T_{\lambda}$ -component of this equation. Then we obtain $X_{1}\lambda=X_{2}\lambda=0$ .
This implies that $X\lambda=0$ for any $X\in T_{\lambda}$ . Similarly, if $Y_{1}$ and $Y_{2}$ are vector
fields in $\tau_{-\lambda}$ , then we can see that $Y\lambda=0$ for any $Y\in\tau_{-\lambda}$ .

Next, we consider $X\in T_{\lambda}$ and $Y\in T_{-\lambda}$ . Using (11), we have

$(-\lambda I+A)(\nabla_{X}A)Y=\lambda^{2}\alpha(X)Y$.

We take the $T_{0}$-component of this equation. Hence we get

$-\lambda((\nabla_{X}A)Y)_{0}=0$ ,
i.e.,

$((\nabla_{X}A)Y)_{0}=0$ .

Therefore we have $(\nabla_{X}A)Y\in T_{\lambda}\oplus T_{-\lambda}$ . On the other hand, since $X\lambda=0$ for
$X\in T_{\lambda},$ $(\nabla_{X}A)Y$ is written as

$(\nabla_{X}A)Y=\nabla_{X}(AY)-A\nabla_{X}Y$

$=-(X\lambda)Y+(-\lambda I-A)\nabla_{X}Y$

$=(-\lambda I-A)\nabla_{X}Y$.

Hence we have $(\nabla_{X}A)Y\in T_{\lambda}$ . Similarly, from (11) we can consider the equation

$(\lambda I+A)(\nabla_{Y}A)X=\lambda^{2}\alpha(Y)X$ .

Taking the $T_{0}$-component of above equation, we have

i.e.,
$\lambda((\nabla_{Y}A)X)_{0}=0$ ,

$((\nabla_{Y}A)X)_{0}=0$ .

Hence we obtain $(\nabla_{Y}A)X\in T_{\lambda}\oplus T_{-\lambda}$ . Using the fact that $Y\lambda=0$ for $Y\in\tau_{-\lambda}$ ,
we have

$(\nabla_{Y}A)X=\nabla_{Y}(AX)-A\nabla_{Y}X$

$=(Y\lambda)X+(\lambda I-A)\nabla_{Y}X$

$=(\lambda I-A)\nabla_{Y}X$ .

Thus we get $(\nabla_{Y}A)X\in T_{-\lambda}$ . Then Codazzi equation (4) can be written as

$(-\lambda I-A)\nabla_{X}Y+\lambda s(X)JY=(\lambda I-A)\nabla_{Y}X-\lambda s(Y)JX$ .
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Since the left side of this equation is in $T_{\lambda}$ and the right side is in $T_{-\lambda}$ , we
conclude that $(\nabla_{X}A)Y=s(X)JAY$ and $(\nabla_{Y}A)X=s(Y)JAX$ for $X\in T_{\lambda}$ ,
$Y\in\tau_{-\lambda}$ . Thus if $X_{1},$ $X_{2}\in T_{\lambda}$ , then we find

$(\nabla_{X_{1}}A)X_{2}=-(\nabla_{X_{1}}A)JJX_{2}$

$=J(\nabla_{X_{1}}A)JX_{2}$

$=Js(X_{1})JAJX_{2}$

$=s(X_{1})JAX_{2}$ .

Similarly, we have

$(\nabla_{Y_{1}}A)Y_{2}=-(\nabla_{Y_{1}}A)JJY_{2}$

$=J(\nabla_{Y_{1}}A)JY_{2}$

$=Js(Y_{1})JAJY_{2}$

$=s(Y_{1})JAY_{2}$

for any $Y_{1},$ $Y_{2}\in T_{-\lambda}$ .
Finally, if $X$ is any tangent vector field on $U$ and $Z\in T_{0}$ , then we obtain

$A(\nabla_{X}A)Z=0$ from (11). Therefore we see that $(\nabla_{X}A)Z\in T_{0}$ . By using the
equation

$(\nabla_{X}A)Z=\nabla_{X}(AZ)-A\nabla_{X}Z$

$=-A\nabla_{X}Z$

and the fact that $(\nabla_{X}A)Z\in T_{0}$ and the $T_{0}$-component of $A\nabla_{X}Z$ is zero, we have
$(\nabla_{X}A)Z=0$ . On the other hand, it is easy to see that $s(X)JAZ=0$ . Hence
we get $(\nabla_{X}A)Z=s(X)JAZ$ . Then Codazzi equation (4) gives $(\nabla_{Z}A)X=$

$s(Z)JAX$ . We conclude that $(\nabla_{X}A)Y=s(X)JAY$ for any $X$ and $Y$ on $U$ ,
that is, Codazzi equation reduces. Therefore, the Ricci tensor is parallel from
Theorem B. Hence $U$ must satisfies $\lambda_{i}=\lambda_{j}=\lambda$ , which is a contradiction.

It remains that the case of dim $T_{\lambda}=$ dim $T_{-\lambda}=1$ on $U(x_{0})$ . For $X\in T_{\lambda}$

and $Y\in T_{0}$ from (11) we have

$g(\nabla_{X}Y, X)=g(\nabla_{X}Y, JX)=g(\nabla_{JX}Y, X)=g(\nabla_{JX}Y, JX)=0$ .

Moreover, for $X\in T_{\lambda}$ from (11)

$2\lambda(X\lambda)JX+(-\lambda I-A)\nabla_{X}JX=\lambda^{2}\alpha(X)JX$ .

Hence we get

$g(\nabla_{X}JX, X)=0$ .
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Similarly, we have

$g(\nabla_{JX}JX, X)=g(\nabla_{JX}X, JX)=g(\nabla_{X}X, JX)=0$ .

Therefore for a unit vector $X$ we obatin

$\nabla_{X}X=\nabla_{X}JX=\nabla_{JX}X=\nabla_{JX}JX=0$ .

Then we get

$g(R(X, JX)JX,$ $X$ )
$=g(\nabla_{X}\nabla_{JX}JX-\nabla_{JX}\nabla_{X}JX-\nabla_{[X,JX]}JX, X)$

$=0$ .

On the other hand, from (3) we have

$g(R(X, JX)JX,$ $X$ ) $=-\lambda^{2}$ ,

which is a contradiction. This completes the proof of Theorem.
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