YOKOHAMA MATHEMATICAL
JourNaAL VoL. 51, 2005

ON THE LOCAL SYMMETRY OF KAEHLER
HYPERSURFACES

By
RyoTAa AIKAWA AND YOSHIO MATSUYAMA

(Received May 1, 2003; Revised March 23, 2004)

- Abstract. The purpose of the present paper is to prove that a Kaehler hyper-
surface with recurrent Ricci tensor is locally symmetric

1. Introduction

Let M,.1(¢) be a complex (n 4+ 1)-dimensional complex space form of con-
stant holomorphic sectional curvature ¢ (i.e. complete, simply connected Kaehler
manifold with constant holomorphic sectional curvature, say, ¢). For each real
number ¢, there is (up to holomorphic isometry) exactly one complex space form
in every dimension with holomorphic sectional curvature é. The complex space
forms of holomorphic sectional curvature é are denoted by P,;1(C), Cnt1 and
‘D, 11 depending on whether ¢ is positive, zero or negative, respectively. P,,1(C)
is the complex projective space with Fubini-Study metric of constant holomor-
phic sectional curvature é. C,4; is the complex Euclidean space. D, ; is the
open unit ball in C,4; endowed with Bergman metric of constant holomorphic
sectional curvature é. ' /

Let M, be a complex hypersurface in a complex space form M, ,(&). From
now on we call such a hypersurface M, a Kaehler hypersurface. Let V and S
be the covariant differentiation on M,, and the Ricci tensor of M,,, respectively.
K. Nomizu and B. Smyth classified these Kaehler hypersurfaces with regard
to the parallel Ricci tensor, i.e., VS = 0. They proved that if the Ricci tensor S
of M, is parallel, then M, is locally symmetric, that is, VR = 0 and either M,
is totally geodesic in M1 (¢) or M, is locally the complex quadric, the latter
case arising only when é > 0, where R denotes the curvature tensor of M, (see
Theoreml C). ‘

The Ricci tensor S is called the recurrent Ricci tensor if there exists a 1-form
a such that (VxS)Y = o(X)SY for any X and Y tangent to M,. And the
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Ricci tensor S is called the birecurrent Ricci tensor if there exists a covariant
tensor field a of order 2 such that (VxVyS —Vy,yS)Z = a(X,Y)SZ for any
X,Y and Z tangent to M, (See [6]).

The purpose of this paper is to classify Kaehler hypersurfaces with recurrent
Ricci tensor in a complex space form. We note that this condition is weaker
than VS = 0. We prove the following theorem:

THEOREM. Let M, be a Kaehler hypersurface of complex dimension n > 2
with recurrent Ricci tensor in a complex space form M,.1(¢). Then the Ricci
tensor of M, is parallel.

Remark. If M, is a Kaehler hypersurface with recurrent curvature tensor, then
M., is called the recurrent hypersurface (See [6]). The above theorem shows that
the recurrent hypersurface is locally symmetric.

2. Preliminaries

Let M,, be a Kaehler hypersurface of complex dimension n in a complex space
form M, (&) of constant holomorphic sectional curvature & For each point -
zo € M,, we choose an unit normal vector field £ defined in a neighborhood
U(zo) of zo. Denoting the complex structure on M, 1(¢) by J, J¢ is also a
normal vector field on U(zo). Let V (resp. V) be the covariant differentiation
on M,1(¢) (resp. M,). Then, for any vector fields X,Y tangent to M, on
U(zo), we have '

VxY =VxY + g(AX,Y)¢ + g(JAX,Y)JE, (D

Vx€=-AX +5(X)JE, (2

- where g, s and A are the induced Kaehler metric on M,,, the tensor field of type

(0, 1) and the (1, 1)-type symmetric tensor field called the second fundamental
form, respectively. It is easy to show that AJ = —JA.
Let R be the curvature tensor of M,,. Then, for any vector fields X,Y and

Z on U(zo), we have the following (see [1], [3] and [5]):
R(X,Y)Z = R(X,Y)Z + g(AY, 2)AX — g(AX,Z)AY  (3)
-+ g(JAY, Z)JAX - g(JAX, Z)JAY,
—— Gauss equation
(VxA)Y — s(X)JAY = (Vy A)X — s(Y)JAX, (4)

—— Codazzi equation
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where R is the curvature tensor of M,41(¢). Since M, 1(¢) is of constant
holomorphic sectional curvature & R(X,Y)Z can be written as
R(X,Y)Z = L{g(Y, 2)X - 9(X, 2)Y +g(JY, Z)JX (5)
-9(JX,2)JY +29(X,JY)JZ}.

In particular, if Codazzi equation (4) satisfies
(VxA)Y =s(X)JAY (6)

on a neighborhood of every point in M, then we say that Codazzi equation

reduces (See [2] and [5]).

Next, we also denote the (1, 1)-type Ricci tensor of M,, by S. For any point
x of U(zp), S is defined by

SX = ZR(X, €;)e; + Z R(X, Je;)Je;, (7)
i=1 i=1 '
where {e1,...,en,Je1,...,Je,} is an orthonormal basis of the tangent space

T.M,. Using Gauss equation (3) and the equation (5), we obtain
n+1

SX = X —2A%X (8)
for any X tangent to M, on U(zy).

We here recall the definitions of the recurrent Ricci tensor, the birecurrent
Ricci tensor and the parallel Ricci tensor, again:

The Ricci tensor S is called the recurrent Ricci tensor if there exists a 1-form
a such that (VxS)Y = a(X)SY for any X and Y tangent to M,,. And the
Ricci tensor S is called the birecurrent Ricci tensor if there exists a covariant
tensor field a of order 2 such that (VxVyS — Vy,yS)Z = a(X,Y)SZ for any
X,Y and Z tangent to M,,. If S satisfies (VxS)Y = 0 for any X and Y tangent
to My, then the Ricci tensor S is said to be parallel. ' '

Now, we prepare the following results without proof.

THEOREM A. (Ryan [4]). Let M, be a Kaehler hypersurface in a space of
constant holomorphic sectional curvature é. Then (R(X,Y)S)Z = 0 on M, if
and only if one of the following is true:

1. é# 0 and A? is a multiple of I,
2. ¢ = 0 and the nonzero eigenvalues of A? are equal,

where I is the identity transformation on T M,,.
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THEOREM B. (Nomizu and Smyth [3]). If M, is a Kaehler hypersurface in
a complex space form My, 1(¢), then the following conditions are equivalent on
M,:

1. Codazzi equation reduces,
2. The Ricci tensor of M, is parallel, that is, VS =0,
3. M, is locally symmetric.

THEOREM C. (Nomizu and Smyth [3]). Let M,, be a Kaehler hypersurface of
complex dimension n > 1 in a complex space form Mn_,_l(é) of constant holo-
morphic sectional curvature ¢. If the Ricci tensor of M, is parallel, then M, is
locally symmetric and either M, is of constant holomorphic sectional curvature
& and totally geodesic in M, (&) or M, is locally holomorphically isometric to
the complex quadric Q, in the complex projective space P,.1(C), the latter case
arising only when ¢ > 0.

3. Lemmas

In this section, we show that if M, is a Kaehler hypersurface with recurrent
Ricci tensor S in M1 (&), then S satisfies (R(X,Y)S)Z =0 (i.e. R(X,Y)(SZ)—
SR(X,Y)Z =0 for any X,Y and Z tangent to M,). Consequently, we can get
some information on the second fundamental form A of M, (see Preliminaries,
TheoremA).

LEMMA 1. If M, is a Kaehler hypersurface with recurrent Ricci tensor in

Mp+1(¢), then M, has the birecurrent Ricci tensor.

Proof. Suppose that M, has the recurrent Ricci tensor. Fdr any X,Y and Z
tangent to M,,, we have ’
(Vx(VyS)Z — (Vy,vS)Z :
=Vx((VyS)Z) — (VyS)VxZ — (Vv,vS)Z.

We use the assumption that S is the recurrent Ricci tensor and we obtain

(Vx(VyS))Z - (VuyxyS)Z
=Vx(a(Y)SZ) —a(Y)S(VxZ) —a(VxY)SZ
= X(a(Y))SZ + a(Y)(VxS)Z + a(Y)S(Vx Z)
— a(Y)S(VxZ) — a(VxY)SZ
= X(a(Y))SZ + a(Y)a(X)SZ — a(VxY)SZ
= (X(a})) + a(Y)a(X) - a(VxY))SZ..
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This equation implies that S is the birecurrent Ricci tensor.

LEMMA 2. If M, is a Kaehler hypersurface with birecurrent Ricci tensor S in

M, 11(8), then S satisfies (R(X,Y)S)Z = 0.

Proof. We suppose that M, is a Kaehler hypersurface with birecurrent Ricci
tensor in M,41(€). In order to prove this lemma, we use the equation

VyS? = (VyS)S + S(VyS) | (9)
and consider the equation

(Vx(VyS%)Z — (Vy,yS?)Z
- =Vx((VyS8)2) - (VySH)VxZ — (VvyySH)Z
for any X,Y and Z tangent to M,,. From the equation (9), the above equation
becomes
(Vx(VyS?)Z — (Vv,yS?Z
=Vx((VyS)SZ + S(VyS)Z) — (VyS)S)VxZ — (SVyS)VxZ
= (VexyS)SZ - S(Vy,yS)Z
= (VxVyS)SZ + (VyS)(VxS)Z + (VyS)SVxZ
+(VxS)(VyS)Z + S(VxVyS)Z + S(VyS)VxZ
~(Vy8)SVXxZ — (SVyS)VxZ — (VyyvS)SZ — S(Vv,vS)Z
=(VxVyS —Vv,vyS)SZ + S(VxVyS —Vvy,yS)Z
+ (VyS)(VxS)Z + (VxS)(VyS)Z.
We now use the assumption that S is the birecurrent Ricci tensor, and it follows
that
(Vx(VyS®)Z — (Vv,ySHZ
= (a(X,Y)S)SZ + S(a(X,Y)S)Z + (VyS)(VxS)Z + (VxS VyS)Z
=20(X,Y)S?’Z + (VyS)(VxS)Z + (VxS)(VyS)Z.

A similar calculation shows that
(Vy(Vst))Z - (Vvyxs2)Z ,
' =2a(Y,X)S?Z + (VxS)(VyS)Z + (VyS)(VxS)Z.
Hence we obtain '
(VX(Vysz) - vayS2)Z - (Vy(VXSZ) - Vv,,xsz)Z
= (VxVyS® - VyVxS? - Vixv)S?)Z
=2(a(X,Y) - a(Y, X))S2Z.
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From this equation and the commutativity of the trace and the derivation, we
have

(VxVy = VyVx — V(x,y]) trace S* = 2(a(X,Y) — (Y, X)) trace S°.

Since trace S? is a differentiable function on M,, the left side of this equation
equals to zero. Therefore we get a(X,Y) = a(Y, X) or trace S2 = 0. If trace
S? = 0, then we deduce that S = 0. Hence we can see that (R(X,Y)S)Z = 0.
If a(X,Y) = a(Y, X), then we have

(R(X,Y)S)Z = (VxVyS — VyVxS - Vix.v|S)Z
=(VxVyS—-VyVxS— Vv‘xysl-l— VvyxS)Z
= (a(X,Y) - a(¥, X))SZ
= 0.

Therefore we conclude that (R(X,Y)S)Z = 0 for any vector fields X,Y and VA
tangent to M,.

4. Proof of Theorem
Now, we prove the following theorem:

THEOREM. Let M, be a Kaehler hypersurface of complex dimension n > 2
with recurrent Ricci tensor in a complex space form M,1(¢). Then the Ricci
tensor of M, is parallel. :

Proof. For each point z of U(zg), we choose an orthonormal basis of T, M,
{e1,...,en, Jey, ..., Jep} for which the matrix of A is of the form

- -

A1

-1 ’

ie.,

Ae; = \ie;, AJe; = —X\;Je; and X; >0 for 1 <4 < n(see[5], lemma 1).
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Since M,, has the recurrent Ricci tensor S, it follows that (R(X,Y)S)Z = 0 for
any X,Y and Z on U(zg) from [Lemma 1l and [Lemma 2. Therefore, by using
(3), (5) and (8), we have

(R(ei, €5)S)e; = Rei,e5)(Se;) — S(R(es, e5)e;)
= (é + )\i)\j) (n + 15 - 2)\?)&' - (é + )\i/\j) (n —2’- 15 - 2/\?)65

1 3. 1
= (5 +2%) (23 - 222)e;
=0

for 1 # j.
Similarly, we get

(R(e;, Je;)S)e; = R(e;, Je;)(Se;) — S(R(es, Jej)e;)

= = (5 -a0) (e - 22 e
+ (4—‘; — ;) ("; P 228)Jer

Hence it follows that
(+24)(2-22) =0 and (5-20)0I-a) =0 (0

for 1 < 4,5 < n (for details, see [4]).

We first consider the case of & # 0. It is easy to see that (10) is equivalent to
A — A2 = 0. Hence we have A; = A; = . Then by the assumption of n > 2 we
can choose linearly independent vector fields X,Y on U(z) such that AX = AX

and AY = AY. From Codazzi equation

(VxA)Y — s(X)JAY = (VyA)X —s(Y)JAX,
we have

(XA)Y + (A — A)VxY — As(X)JY
= (YNX + (M — A)VyX - As(Y)JIX.

Therefore we know that A = constant on U(zo). From the equation (8), we
obtain

S = (";15—2)\2)1.
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Hence we find that V.S = 0.

Next, we consider the case of ¢ = 0. From the equation (10), we see that
AiXj(A? — X%) = 0. Thus we have two subcases of \; = \; = X at € U(zo)
and A\; = A # A; = 0 at € U(xo). The set of points such that A; = \; = A
is an open set in U(zg), since A = constant as above. Since it is obviously a
closed set and we may assume that U(zg) is connected set, either U(zg) satisfies
Ai = Aj = Aor U(zg) so A; = A # A; = 0. We show that the second case cannot
occur. In order to proceed with the argument, we consider three distributions
on U(zg) defined by

Ta(z) = {X € T,M,|AX = \X},
Tox(z) ={X € T, M,|AX = -)\X},
To(z) ={X € T,M,|AX = 0}.
The tangent space T, M, satisfies T, M, = T)(z) & T_x(z) ® To(z). We here
suppose that dim T\ (z) > 2. Then we can choose a neighborhood U of z € U(xy)
such that dim T > 2 on U. Since S is the recurrent Ricci tensor, it follows that

(VxS)Y = a(X)SY for any X and Y tangent to M,,. From (8) this equation
becomes

(VxA)AY + A(VxA)Y = o(X)A%Y. (11)

First, we take vector fields X;,X, € T\ so that X; and X, are linearly
independent. From the equation [(11), we have

M+ A)(Vx,A)X, = )\206(X1)X2.

Taking the Tp-component of the above equation, we get

AM(Vx,A)X3)0 =0,
ie., '

((Vx,A)X3)o = 0.
This means that (Vx, A) X, € T\ @ T—x. On the other hand, the equation

(Vx,A) X, =Vx,(AX,) — AV x, X,
= (X1A)Xo + (M - A)Vx, X,
and Codazzi equation (4) lead us to

(X1N) Xz + (A — A)Vx, Xz — As(X1)J X;
= (Xz)\)Xl + ()\I - A)VX2X1 - )\S(Xz)JXl.
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We take the Th-component of this equation. Then we obtain X3\ = X2\ = 0.
This implies that X\ = 0 for any X € T). Similarly, if Y7 and Y3 are vector
fields in 7, then we can see that YA =0 for any Y € T_,.

Next, we consider X € T, and Y € T_,. Using [11}, we have

(—)\I + A)(VxA)Y = Aza(X)Y.

We take the Tp-component of this equation. Hence we get

-A((VxA)Y)o =0,
ie.,
(VxA)Y)o =0.

Therefore we have (VxA)Y € T\ & T_,. On the other hand, since X\ = 0 for
X €Ty, (VxA)Y is written as

(VxA)Y = Vx(AY) — AVxY
—(XAN)Y + (=X — A)VxY
= (=M — A)VxY.

Hence we have (Vx A)Y € T,. Similarly, from we can consider the equation
(AT + A)(VyA)X = Na(Y)X.
Taking the Tp-component of above equation, we have

M(VyA)X)o =0,
ie.,

(VyA)X)o =0.

Hence we obtain (Vy A)X € T\ @T_,. Using the fact that YA =0for Y € T_,,
we have |

(VyA)X = Vy(AX) - AVyX
=YANX+(A[-A)VyX
= (M -A)VyX.

Thus we get (VyA)X € T_,. Then Codazzi equation (4) can be written as

(=M = A)VxY + As(X)JY = A\ — A)Vy X — As(Y)JX.
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Since the left side of this equation is in Ty and the right side is in T_,, we
conclude that (VxA)Y = s(X)JAY and (VyA)X = s(Y)JAX for X € T\,
Y € T_,. Thus if X;, X, € T, then we find

(Vx, 4)Xs = —(Vx,A)JJ X,
= J(Vx,A)J X,
= Js(X1)JAJX,

= s(X1)JAX,.

Similarly, we have

(VriA)Y2 = —(Vy, A)JJY,
= J(Vy, A)JY;
= Js(Y1)JAJY,
= s(Y1)JAY,

forany Y7,Y> € T_,.

Finally, if X is any tangent vector field on U and Z € Ty, then we obtain
A(VxA)Z = 0 from [1T). Therefore we see that (VxA)Z € Tp. By using the
equation .

(VxA)Z = Vx(AZ) — AVxZ
= *AVXZ

and the fact that (Vx A)Z € T; and the Tp-component of AV x Z is zero, we have
(VxA)Z = 0. On the other hand, it is easy to see that s(X)JAZ = 0. Hence
we get (VxA)Z = s(X)JAZ. Then Codazzi equation (4) gives (VzA)X =
s(Z)JAX. We conclude that (VxA)Y = s(X)JAY for any X and Y on U,
that is, Codazzi equation reduces. Therefore, the Ricci tensor is parallel from
[Theorem B. Hence U must satisfies \; = A\; = A, which is a contradiction.

It remains that the case of dim T\ = dim T_, = 1 on U(zg). For X € T
and Y € Tp from we have '

9(VxY, X) =g(VxY,JX) = g(VixY,X) = g(VsxY,JX) = 0.
Moreover, for X € T from
2AMXAN)JIX + (=2 - A)VxJX = Na(X)JX.

Hence we get

9(VxJX,X)=0.
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Similarly, we have

9(VixJX,X)=9(VsxX,JX) =g(VxX,JX) =0.

Therefore for a unit vector X we obatin

Vxx = VxJX = ijX ZVJXJX = 0.

Then we get

g(R(X,JX)JX, X)
=9(VxVixJX -V ;xVxJX - Vix sx1J X, X)
=0. ‘

On the other hand, from (3) we have

9(R(X,JX)JX,X) = -)%,

which is a contradiction. This completes the proof of [Theoreml

References

S. Kobayashi and K. Nomizu, Foundations of differential geometry, Vol.II, Interscience
Tracts, John Wiley and Sons, New York, 1963.

Y. Matsuyama, Minimal Submanifolds in S¥ and RY, Mathematische Zeitschrift, 175
(1980), 275-282. ‘ :
K. Nomizu and B. Smyth, Differential geometry of complex hypersurfaces II, J. Math.
Soc. Japan, 20 (1968), 498-521.

P.J. Ryan, A class of complex hypersurfaces, Colloquium Mathematicum, 26 (1972),
177-182.

B. Smyth, Differential geometry of complex hypersurfaces, Ann. of Math., 885 (1967),
246-266.

H. Wakakuwa, Non existence of irreducible birecurrent Riemannian manifold of dimen-
sion > 3, J. Math. Soc. Japan, 33 (1981), 23-29.

Department of Mathematics,

Chuo University

1-13-27 Kasuga, Bunkyo-ku -

Tokyo 112-8551, Japan

E-mail: matuyama®@math.chuo-u.ac.jp



	1. Introduction
	THEOREM. Let ...

	2. Preliminaries
	THEOREM A. ...
	THEOREM B. ...
	THEOREM C. ...

	3. Lemmas
	4. Proof of Theorem
	References

