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Abstract. In the present paper, we investigate the existence and the global
attractivity of positive periodic solutions of a system of m-species prey and n-
species predators.

1. Introduction

On the fields of mathematical biology and mathematical economics, Lotka-
Volterra type equations have been extensively studied by many authors. In
recent years, the theoretical analyses of the existence and the global stability
of equilibria or periodic solutions for a multi-species population dynamics with
time delays are especially vigorous subjects. Concerning the basic results, we
refer the readers to Gopalsamy [5], Hofbauer & Sigmund [6], Kuang [7] and their
lists of references.

Our purpose in this paper is to show the existence and the global attrac-
tivity of positive periodic solutions of the predator-prey system with periodic
parameters and periodic delays of the form

(LV)

4

wi(t) = wit) | ai(t) = ) ai;(t)u;(t — 03;(1) — D bir (D)ot — 7 (1)) ),
j=1 k=1

Uk (t) = vi(2) <—ﬂk(t) + i cri(Bui(t — pri(t)) — i dit(t)vi(t — Vi (t))),
i=1 =1

L teR, i=1,....,m, k=1,...,n,

where a;, Bi € C(R) and a;j, bik, Cks, drt, 04j, Tiks Bkis Vit € C(R; [0, 00)) are peri-
odic functions of ¢t with period T'> Ofor alli,5 =1,...,mandall k,l =1,...,n.
System (LV) is modeling a food web of m-species prey and n-species predators.
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Variables u; and v represent the population densities of ith prey and kth preda-
tor respectively. Function «; is the reproduction rate of ith prey and S8j is the
natural mortality rate of kth predator, where these parameters may be either
positive or negative according to the periodic environmental factors. Function a;;
is the competitive coefficient between ith and jth prey, dy; kth and Ith predator,
then these parameters represent intra-specific competition for 1 = j or k = [,
inter-specific competition ¢ # j or k # [l. One prey and one predator do not
compete with each other for common resources. Function b;; is the uptake rate
of ith prey by kth predator. Function c; is the yield rate, which converts the
uptake of ith prey into growth of kth predator. System (LV) has timelags o;;
and vy in the processes of competition, 7;x uptake, ux; yield.

As for this type of nonautonomous systems, the sufficient conditions for peri-
odic solutions to exist are often given by either way of using the supremum and
the infimun or the average value of each periodic parameter. Our main result
adopts the latter. In case that (LV) has no delays, applying Brouwer’s fixed
point theorem, Pinghua & Rui have given an existence result in the former
way. Fan et al [1] have examined the existence of periodic solutions in the latter
way and the global stability for the periodic n-species competition system with
periodic delays of the form

wi(t) = u;(t) | i(t) — iaij(t)uj(t —-a;(t)) ], teR, i=1,...,n,
Jj=1 '

where a; € C(R) and a;j,0:; € C(R;[0,00)) are periodic functions of ¢t with
period T'> O for all 4,5 = 1,...,n. The results of [1] motivate the present paper.
Gai et al have established an existence result of periodic solutions for the
periodic delay difference system corresponding to (LV), however, the conditions
assumed in @ includes an improper point from a biological perspective.

On the other hand, most of the authors, e.g. [1, 3, 11], have constructed a
suitable Lyapunov function for the considering system in order to show that the
solution guaranteed by the existence theorem is unique and globally attractive
or that the system attains even the weaker concept of stability — permanence
defined in Section 3.

Throughout this paper, we shall use the following notation. Let R, = (0, 00),
and Jy = {i € Z:1<i< N}. We denote an element of RV by column vector
t = (z1,%2,...,2n)T. We also denote by B,(a) an open ball centered at a
with radius 7 > 0 of a suitable space. For a given set (2, its closure is written
by Q, its boundary of. For a given T-periodic function f € C(R), we put
F=4%J) f(s)ds and f= % [T |£(s)| ds.
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2. Existence of Positive Periodic Solutions

In this section, we establish an existence result for periodic solutions of (LV).
In order to prove our result, we shall make use of the continuation theorem in
coincidence degree theory due to Mawhin et al. See [4] or [10].

Let X and Z be Banach spaces. A linear operator £ : D(L) C X —» Z
is called a Fredholm operator if its kernel K(£) = {z € D(L) : Lz = 0} has
finite dimension and its range R(L) = {Lz : ¢ € D(L)} is closed and has finite

. codimension. The index of L is defined by the integer dimK (£) — codimR(L). If

L is a Fredholm operator with index 0, then there exists continuous projections
P:X = X and Q : Z — Z such that R(P) = K(£) and K(Q) = R(L).
Then L|pcynk(p) : D(L) N K(P) = R(L) is bijective, and its inverse operator
is denoted by Kp : R(L) — D(L) N K(P). Since K(L) is isomorphic to R(Q),
there exists a bijection J : K(£) — R(Q). Let Q be a bounded open subset
of X and let A : X — Z be a continuous operator. If QN (Q) is bounded and
Kp(Z — Q)N : @ = X is compact, then N is called £-compact on Q, where T
is the identity. g

Let £ be a Fredholm linear operator with index 0 and let A/ be a £L-compact
mapping on Q. Define mapping F : D(L)NQ = Zby F=L—-N.If Lz # Nz
for all z € D(L) N8N, then by using P, Q,Kp, T defined above, the coincidence
degree of F in Q with respect to £ is defined by

D (F,Q)=deg(Z-P- (T 'Q+Kp(T-Q)N,0,0),

where deg(G, D, p) is the Leray-Schauder degree of G at p relative to D.
And then the following lemma holds.

LEMMA 2.1 (Continuation theorem). Let £ be a Fredholm operator with indezx
0 and let N be L-compact on Q. Assume that the following conditions hold:

(i) Lz # Mz for all X € (0,1] and all z € D(L) N 09,
(i) QNz #0 for all z € K(L£) N ON.

Then
Dc (F,) = deg (—j—IQN|K(£),K(£) N Q,O) .
And if Dg (F,Q) #0, then Lz = Nz has at least one solution € D(L) N Q.

- To state our main result, we need some preliminaries. Throughout the present
paper, the initial conditions for (LV) are arbitrarily given as follows:

(C1)

{¢,~ € C([—k,0);Ry), u;i(s) = ¢i(s) for all s € [—x,0] and each i € J,,,
Y € C([—k,0; Ry), vi(s) = ¢ (s) for all s € [—k,0] and each k € J,,
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where & = max{o;;(t), s (t), uri(t), vii(t) : t € [0,T], 3,j € Im, k,l € Jpn}.
Furthermore, we consider the case where the following condition is satisfied:

(C2) a;, >0 foreachieJ,, and Ek >0 foreachke€lJ,.

REMARK 2.2. Condition means that the population density of one prey
and one predator must increase and decrease exponentially in the long run re-
spectively if any other species does not participate in the food web.

QOur main result is as follows.

THEOREM 2.3. Suppose that the followiny conditions (2.1) and (2.2) hold:

(2.1) a; >0 and @; > Zd,-jCj + ZEika for each i € Jp,,
) | :;:1- k=1 )
(2.2) die >0 and ch,]E > B + de,ml for each k € J,,
=1 l#k
’ where ,
(2.3) Ci = % exp{(@ + &)T},
i
(2.9) Dy = '&_ zcsz exp { <Ek - B + 22651'@,-) T} )
kk j—1 , i=1
1
2. i = — i b.,' D i i T
(2.5) E 0 szlaJC‘ Z Dx | exp{—(a@; +a;)T}.
J#i

Then problem (LV) has at least one positive T -periodic solution.

REMARK 2.4. Conditions @;; > 0 of (2 1) and dpx > 0 of (2.2) indicate
that any species has the intra-specific competition, which does not let its own
population density explode. Roughly speaking, the others of (2.1) and (2.2)
describe the conditions for all species of the food web to be survivable eternally.
In fact, when we set T = 0, (2.1) and (2.2) give a sufficient condition for the
autonomous system corresponding to (LV) replaced all of the periodic parameters
and delays by nonnegative constants to have a positive equilibrium. We will

mention this problem in [Corollary 2.8
The proof of follows after some lemmata.
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LEMMA 2.5. Let (u(t),v(t)) be a solution of (LV) satisfying condition (C1).
Then (u(t),v(t)) € R for all t € [0, 00).

Proof. Integrating (LV) over [0, ¢] for ¢ > 0, we have

| /0 :ZEZ; ds = /0 {ai(S) - ;-ai,’ (s)uj(s - O'ij(S)BL | |
- Z bir(s)vr(s — Tik(s))}ds

for each i € J,,,. That is

u;(t) = u;(0) exp {/0 {a,-(s) - Zaij(S)Uj (s —04;(8))
— Z bir(s)vr(s — Tik(s))}ds}
k=1

for all t € [0,00) and each i € J,,. Since u;(0) € Ry from (C1), the above
equality implies u;(t) € Ry for all ¢ € [0,00). We have the same estimate for
vk (t) and each k € J,,. Therefore, the assertion holds. O

and (C1) enable us to change variables u;(t) = exp{z;(t)} and
vi(t) = exp{yk(t)} for t € [-k,0), each i € J,,, and each k € J, respectively.
Then (LV) is equivalent to

(LV")
z;(t) = a;(t) — Z a;;(t) exp{z;(t — 0;;(t))} — Z bix () exp{yr(t — T (t))},
J=1 k=1

{ Gr(t) = =Br(t)+ ) crilt) exp{z;(t - pei ()} =D da(t) exp{ui(t — v (1))},
=1

=1

. t€e0,00), 1€ Jm, kE€Jn
Here, we put
2(8) = (1 (t), - -y 2mtn ()T = @105 -, T (), 91 (8)s -, Yn ()T
We also put
X ={2€C(R;R™™) :2(t) = 2(t + T),t € R}.
X is a Banach space with the norm || - || defined by

m+n 1/2
||| = tIEIEOa:}’I('] (; |z,-(t)|2) for each z € X.
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Let us define a linear operator £ : D(£) C X — X such that, for ¢ € [0,00) and
each z € D(L),

zi(t) = 2;(t) for each i € Jpin,
where D(£) = {z € X : z € C* (R;R™*")}. While, N}, N> and N are continu-

ous operators defined by as follows:
Ni : X — X such that for ¢ € [0,00) and each z € X,

z;(t) = 0;(t) — au(t) exp{z;(t — 0i(t))} for each i € Jp,,

ye(t) = —Be(t) + ) crilt) exp{m:(t — pii(t))}
i=1

—dx(t) exp{yk (t — vik (t))} for each k € J,,

Nz : X — X such that for t € [0,00) and each z € X,

4 m
zi(t) = - Z ai; (t) exp{z;(t — 0;(t))}
ot n
) — > bir(t) exp{yr(t — Tix(t))} for each i € Jm,
k=1
ye(t) = — Y dui(t) exp{yi(t — vi(t))} for each k € J,,
\ IZk
and

N:X =X suchthat N =N + M.

Then one can see that the existence problem of T-periodic solutions for (LV’)
corresponds to the abstract equation £z = Mz on D(£) N X.

LEMMA 2.6. Suppose that (2.1) and (2.2) hold. Then the set
Si={2€DLYNX:Lz=Nz+EN2z for some € € [0,1]}

is bounded in X.

Proof. Fix £ € [0,1]. Let 2 € D(L) N X be a possible solution of

(2.6) Lz =MNz+ Nz
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Integrating (2.6) over [0,T], we find that

T
(2.7) @T - /0 aii(s) exp{zi(s — 0:;(s))} ds

T m
- 5/0 Zaij(s) exp{z;(s — 0:;(s))} ds
ok T n | |
- Z bir(s) exp{yx(s — Tir(s))} ds =0

0 k=1

for each i € Jm and

T m
2:8) =BT+ [ 3 cusls) explaals — xi(s))} ds
=1
T
- /0 i () exp{ye (s — vix(s))} ds

T n
- 5/0 12—1: dri(s) exp{yi(s — vri(s))} ds =0

1#£k

for each k € J,. On the other hand, noting that a;;(t) > 0, by (t) > 0, cri(t) >0
and dg;(t) > 0 for all t € R, we find from (2.7) and (2. 8) that

T T
/ |Z;(s)| ds < a;T + / aii(s) exp{zi(s — 0:(s))} ds
0 0 -

T m '
€ [ 3 ay() exple(s - oiy(e))} ds

J#i

(2.9)
T n
+& [ ) bir(s) exp{yr(s — Tix(s))} ds

0 k=
== (Ei, + ?JZ,)T

for each i € J,, and

T - T m
[ i@ ds < BT+ [ 5 custs) expaats - mas(o)) do

1=

T
+ / dir(8) exp{yr(s — vki(s))} ds
0

T n
+e /0 S dia(s) exp{ui(s — vii(s))} ds

: - T m
= Be=BaT+2 [ " cuule)explas(s = uus(s))} da
=1

(2.10)
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for each k € J,. It follows from the continuities and periodicities of z;(¢) and
yk(t) that there exists (;,¢; € [0,T] and 7, 7k € [0, T] such that

(2.11) x,((,) = Hf% z;i(t), ri(G) = IIBOH’}] z;(t) for eachi € J,,
(2.12) (k) = trerf%] Y (1), yk(nk) = tg[lg’rr_xr] yx(t) for each k € J,.

By standerd arguments, we have that for all ¢ € [0, 00), each i € J, and each
ke J'rn

. T 3 T
(2.13) z:(&) - /0 jG4(8)] ds < zi(t) < (&) + / ld4(s)| ds,
: T ’ T
(2.14) i (k) — / 19 ()] ds < va(t) < waie) + /0 [ (s)] ds.
From (2.1), (2.7) and (2.11), we have
Zz“i,-Texp{x,-(fi)} <aT,
that is

(2.15) z:({) < log % for each i € J,,.

il

From |2.9), (2.13) and (2. 15), we obtain

(2.16)  zi(t) < log _g- + (@ +a@)T for all t € [0,00) and each i € Jy,.

it

By using notation (2.3), exp{z;(t)} < exp{z:({;)} < C; for all ¢t € [0,00) and
each i € J,. From (2.2), (2.8), (2.11), (2.12) and (2.16), we have

dir T exp{yx ()} < / ch,(s) exp{w,((,)} ds < Tz cr:iCs,

that is
(2.17) v (7ix) < log{ Zc,” } for each k € J,,.
From (2.10), (2.12), (2.14), (2.16) and (2.17), we obtain
y(t) < log{ S aC } + (Bx - BT
(2.18) - +2 / ch,(s) exp{zi(:)} ds

S 10g{=1—-25k,<(3,} + (,Bk —,Bk +2ZEMC,-> T

i=1 i=1
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for all ¢t € [0,00) and each k € J,. By using notation (2.4), exp{yx(t)} <
exp{yx(Ax)} < Dy for all t € [0, 00) and each k € J,. While, we have from (2. 7),
(2.11), (2.12), (2.16) and (2. 18) that

T m
aiTexp{z:(§)} > @l — ¢ / Zaij(S) exp{z;({;)} ds

J#t

(2.19) A E bir(s) exp{yk(n)} ds
k=1
>a;T TZGUC Tz bir Dy
(i

for each ¢ € J,,. By using (2. 1), we obtain from [2. 9}, (2.13) and (2.19) that

n

1 [ &_ - ~
(2.20) z;(t) > log = a; — Z;aij(cj' — Z bix Dy, —(a; +@;)T

i —

i

for all ¢t € [0,00) and each ¢ € Jn. By using notation ), exp{zi(t)} >
exp{zi((;)} > E; for all t € [0,0) and each i € J,,. From (2. 8) (2 11), (2.14),
(2.18) and (2.20), we have

Ak T exply (i)} 2 —BoT + / chz(s ) exp{zi(&)} ds

(2.21) - E/ del(s) exp{y:(7)} ds

>-6.T+T Z il =T Z dii Dy

=1
l;élc

for each k € J,. By using (2.2), we obtain from (2.10), (2.14) and (2.21) that

1 _ m n_
yi(t) > log ¢ =— [ =B + Y _ B — Y _ duly
dkk i=1 1=1
1£k
— (Br — B)T — 2/ Ecki(s) exp{z;((;)} ds
0 =
(2.22) =1
1 _ m n__
>log{ =— | -6+ Z'c'kiEi - delDl
dkk i=1 1=1
Ik

- (Ek — B + 2ZEkiC'i) T

i=1
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for all ¢t € [0,00) and each k € J,. Let us denote by Fy,

1 _ m n _ _ _ m
=— | =Bi +2_%Ei = 3 _dub: | exp {— (ﬂk — B + 22@&) T}
kk =1 l=1

=1
1#k

for each k € J,, then exp{yx(t)} > exp{yz(7x)} > Fy for all ¢ € [0,00) and each
k € J,. Consequently, we obtain that

tgf&}qg] |z:(t)] < max {|logC;|, |log E;|} for each i € Jp,,
tg?%] lyx(t)| < max {|log Dg|, |logFk|} for each k € J,,
it follows that there exists r > 0 independent of £ such that
l|2]| <r forall z€S;.
This completes the proof. O
LEMMA 2.7. Under conditions (2.1) and (2.2), the set
Sy ={2€ D(L)NX : Lz =AN1z for some A € (0,1]}

is bounded in X.

Proof. The proof is entirely similar to the proof of Lemma 2.6l Fix A € (0,1]
and let z € D(L£)N X be a possible solution of £z = AN;z. Then we obtain that

||z|| < r independently of A\, where r is the identical constant adopted at the end
of the proof of [Lemma 2.6. O

Proof of Theorem 2.3. It is obvious from the definition of £ that

K(Ly={z€ X:z(t)=c,t € R,ce R™"},

R(£)={z€X:/Tz(s)ds=0}.
0

Since R(L) is a closed subspace of X and dimK (L) = codimR(L) = m + n,
L is a Fredholm operator with index 0. Now, we define continuous projections
P,Q: X = X as

and

T ,
Pz:Qz:%/ z(s) ds for each z € X.
0



PERIODIC DELAY PREDATOR-PREY SYSTEMS 55

Then K(£) = R(Q), and we can choose identity Z as a bijection J : K(L) —
R(Q). We denote by Kp : R(L) = D(L) N K(P) the inverse operator of the
restriction of £ to D(L) N K(P), that is,

. t T pt
Kpz = / z(s) ds — -—1-/ / z(s) ds dt for each z € R(L).
0 T Jo Jo

Let z = 2* € K(L) be a solution of QN;z = 0, that is, constant vector value
function z(t) = 2* = (z},...,25,9%,...,y5)T € R™*™ for all t € [0, 00) satisfies
o; —az;exp{r;} =0 for each i€ Jn,

B + ZE’“' exp{z}} — direxp{y;} =0 for each k € J,.

=1

Then, by using (2.1) and (2.2), we have

(2.23) z} = log {g’—} for each i € Jp,,

1 = =l O
2.24 r=logd =— | =8, + Cri— for each k € J,.
( ) Yk g{dkk ( B ;Ck aii)}

It is obvious from (2.23) and (2.24) that z* is the unique solution belonging to
K(L) of QN 1z =0.
We define mappings H¢ : X — X by

He = N1 + ENy  for each € € [0,1].

We note that Ho = N; and H; = N. Then, for all £ € [0,1], we can see that
QM () is bounded for any bounded open set  C X and mapping K»(Z — Q)H,
is compact by Ascoli-Arzela’s theorem. Therefore, H¢ is a homotopy of L-
compact mappings on X. Here, we fix ro > 0 such that

ro > max {1, sup_ =1}
zE€ES1US,
where S; and S, are defined in and 2.7 respectively. We put 2 =
B,,(0) C X. We also define mapping F : (D(£) N Q) x [0,1] = X by
F(z,€) = Lz —Hez for each z € D(L) N Q and each £ € [0,1].

Then, by Lemma 2.6, we find that £z # H¢z for all z € D(L) N 0N and all

€ € [0,1], it follows from the homotopy invariance property of Leray-Schauder
degree that

D[,(]:(Jl)aﬂ)zDﬁ(}.(’O)vQ)
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Furthermore, by N: and 9 satisfy conditions (i) and (ii) of
2.1. And then we find

D, (F(.,0),Q) = deg (—j_IQ/\/l]K(g),K(ﬁ)ﬂQ,O) .

We recall that J = 7 and K(£) ~ R™™. Mapping J *ON1|k(c) : K(£) =
K (L) is given by

{171\ (51 \ (?1-11 0 0 0\ (exp{zl}\
xm N N2 o - @mwm O -~ 0 exp{.xm}
Y1 —B,; ~C11 v —Cim din - 0 exp{y1}

\vo) \B) \ctm o om0 o ) \ewlyn))

for each z = (Z1,...,Tm,¥1,---,Yn)T € K(L). While, we have already stated
explicitly that z* is the unique solution belonging to K(£) N Q of QN;z =0 in
the last paragraph. Thus we obtain

deg(—J ~'QN1|k(c), K(£) N Q,0)

=sgn{<—1>m+"n<«—ai,-> H(—akk>exp{zx: +zy;:}}
=1 k=1 =1 k=1

— (_1)2m+2n = 1.

Hence it follows that D, (F(..1),Q) = 1, by using Lemma 2.1 again, this implies
that £z = Nz has at least one solution z € D(L) N Q. Therefore, problem (LV)
has at least one positive T-periodic solution. O

COROLLARY 2.8. Under assumptions (2.1) and (2.2) with T = 0, the au-
tonomous system corresponding to (LV) replaced all of the periodic parameters
and delays by nonnegative constants has a positive equilibrium.

Proof. By the similar arguments to and 2.7, we have that QH¢ # 0
for £ € [0,1] and all z € K(£) NN, where H, and § are the same as those in the
proof of [Theorem 2.3. By using the homotopy invariance property of Brouwer
degree, we obtain deg(QN|k(c), K(£) NQ,0) = deg(QN1|k(c), K(£) N ,0) =
(=1)™*" from the conclusion at the end of the proof of [Theorem 2.3. This implies
that QNz = 0 has at least one solution z € K(£)NQ, which is coincident with a
positive equilibrium of the autonomous system corresponding to (LV). We may
choose 0 as T of (2.1) and (2.2) because the autonomous system is obviously
independent of ¢t. O
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3. Global attractivity

Before stating our result of the present section, we define the following con-
cept concerning the stability of a solution.

DEFINITION 3.1. Let w*(t) = (ul(t),...,u%(t),vi(t),...,vi(t))T be a posi-
tive T-periodic solution of (LV). If

Jim 3o lus(®) ~uf ] =0 and fim 2 j(t) ~vit)] =0

for any solution w(t) = (uy(t),...,um(t),v1(t),...,va(t))T of (LV) satisfying
initial condition (C1), then w*(t) is said to be globally attractive.

In the present section, we consider the special case where o;;(t), Tir(t), pri(t)
and v (t) are constant functions, that is, for every ¢,j € J,, and every k,l € Jy,

(C3) 04(t) = 0ij, Tik(t) = Tir, pri(t) = pri and v (t) = v for all t € R,
and (LV) is free from the delays of intra-specific competition, namely, |
(C4) 0ii=0 foreachi€ J,, and v =0 foreach k€ J,.
Throughout the rest of this paper, we assume that (C3) and hold.

PROPOSITION 3.2. In addition to the conditions of Theorem 2.3, suppose that
the following conditions hold:

(3.1) i > Y b+ Y bk for each i € Jm,
(3.2) drr > Z bix + Zcilk for each k € J,,
=1 =1
1£k

where f = max{f(t) : t € [0,T]} and f = min{f(t) : t € [0,T]} for a given
T -periodic function f € C(R;[0,00)). Then the positive T-periodic solution of
(LV) is globally attractive.

Proof. Let w(t) be a solution of (LV) with (C1) and let w*(t) be a positive
T-periodic solution of (LV). We denote by DT the right-hand derivative. Then
we find for ¢ €.[0, 00), '

DT |logu;(t) — logu} (t)] < —aiilus(t) —ui (®)

+ Z Gijlug(t — o5;) — uj(t — 045)]

j=1 n

J#i , -
+ Zbik"‘)k(t - T,'k) —_ vk(t — Tik)l
k=1
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for each 7 € J,,, and

D*|log vk (t) — log vy (t)| < —di vk (t) — v (t)|
+ E Crilui(t — prs) — ul (t — pi)
i=1 LA
+ dezlvz(t — Vi) — v (t — via)|
=1

15tk
for each k € J,,. Define Lyapunov function L(t) for ¢ € [0, c0) by

L(t) = ) |logui(t) — logui ()| + Y _ |log va(t) — log v ()|
i=1 k=1

( )
m m t n t
+3 0 b [ s - w@ds+ 3 b [ fun(s) ~vp()] ds
i=1 | 5= t—oij k=1 t=Thi )
4 N
n m t n 3 t
+30d Zc’k,-/ lus(s) — ul ()] ds+del/ loi(s) — vf (s)| ds ¥ .
k=1 Li:l t—pki :;)1c t—vgl

Then we have for ¢ € [0, ),

DT L(t) < Z{ = Galui(t) —wf ()] + D dijlu;(t — 035) — uj(t — 045))|
=1 i=1

i

+ Z bir v (t — i) — v (t — T2
k=1
+ Z Gij [lu;i () — ui ()] — luj(t — 04;) — wj{t — 045)|]

+ D G [lua(t) = uf (0] — Jua(t — pas) — w3 (¢ — o)) }

k=1

+> { — deklvi(t) — vk (O] + D Guilua(t — pas) — ui (¢ — pows)|

k=1 i=1

n
+ Z dkllvl(t — sz) — ’Uf(t - Vkl)|

=1
1#k

+ ) bar [loa(®) — vi ()] = okt — 7os) — v} (¢ — 7))

i=1

+ ) du[Joi(®) = of (&)] = |vi(t — ve) — v} (¢ — vht)] }

=1
I#k
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m m n
= Z —ai; + éji + Z Cri |uz(t) - u: (t)|
j k=1

=1 =1
i#

+ i —dkk + Z bir + Zdlk lve () — vk(t)l
k=1

l;ék

By using (3.1) and [3.2), we have there exists € > 0 such that

(3.3)
m n “m n
€ = min dii - Zén - Zéki, dkk - Zbik - Zdlk (1€ Jm, ke Jn
=1 k=1 i=1 I=1
FE 2 l#k
And then

D+L(t —€ {Z lus (t) — ul(t)| + Z lue(t) — vk(t)l} for ¢ € [0, 00).

=1

Integrating the above inequality over [0, ], we find for ¢ € [0, 00),

64  LO+e | {Z us(s) —uf ()] + 3 lurs) - v;:(s)|} ds < L(0),
0 li=1 k=1
it follows from L(0) < oo that

limsup/ {Zlu,(s) —uX(s)] + Z vk (8) —’uk(s)|}ds < -L—(f’—) < 00.

t—o0

This implies that Yo", |u,( ) —uf(t)] + > p_q lvk(t) — vi(t)| is integrable on
[0, 00).
While, we find from the definition of L(t) and (3.4) that for ¢ € [0, 00),

> llogu;(t) —logui ()| + Y |log vk (t) — logvi (t)| < L(#) < L(0).
=1 k=1

Clearly, we have for t € [0, 00), | log u;(t) — log u}(t)| < L(0) for each ¢ € J,, and
| log vk (t) — log vi(t)| < L(0) for each k € J,. That is, for t € [0, ),

u; (t) exp{—L(0)} < u;(t) < u}(t)exp{L(0)} for eachi € Jn,
vk (t) exp{—L(0)} < vi(t) < vi(t) exp{L(0)} for each k € J,.
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Since w*(t) is a positive T-periodic solution of (LV), using positive constants C;,
D, E; and Fy, of Section 2, we get from the inequalities above that for t € [0, 00),

0<E; exp{——'L(O)} < u;(t) < C;exp{L(0)} < oo for each i € J,,
0 < Frexp{—L(0)} < vi(t) < Drexp{L(0)} < oo for each k € J,.

Now that u;(t) and vi(t) satisfy (LV), we obtain that u;(t), u} (¢) and 0 (), v (¢)
are uniformly bounded on [0, o) for every i € J,,, and every k € J,, respectively.
Therefore, nonnegative function Y .-, |ui(t) — ul(t)] + Y re; lvk(t) — vE(2)] is
integrable and uniformly continuous on [0, c0), it follows that

tl_iglo; jus(t) — ul(t) =0 and tli’%kz-l o (t) — vi(8)| = 0.

This completes the proof. O

REMARK 3.3. From a viewpoint of biology, if there exist M > 0 and M > 0
such that for any solution w(t) of (LV) with (C1),

M< litrginf w;(t) < limsupw;(t) <M for all i € Jpin,

t—o00

then system (LV) is said to be permanent. [Proposition 3.2 indicates the positive
T-periodic solution of (LV) is unique and attracts all orbits with (C1). Thus, one
can see that (LV) attains permanence under conditions (3. 1) and (3. 2). Actually,
by the argument of Lemma 2.6, we may take M = min{E;,Fy : i € J,,, k € J,,}
and M = max{C;,D; : i € Jp,k € Jn} : i
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