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Abstract. In the paper we prove two uniqueness theorems for linear differential
polynomials which improve a recent result of Fang-Lahiri.

1. Introduction, Definitions and Results

Let f be a noncnstant meromorphic function defined in the open complex
plane C. If for some a € CU {00}, f and g have the same set of a-points with
the same multiplicities, we say that f and g share the value a CM (counting
multiplicities) and if we do not consider the multiplicities then f, g are said to
share the value a IM (ignoring multiplicities). We do not explain the standard
notations and definitions of the value distribution theory as these are available

in [3].

DEFINITION 1. We denote by N(r,a; f |= 1) the counting function of simple
a-points of f for a € CU {o0}.

DEFINITION 2. Let p be a positive integer and a € C U {oo}. We denote
by N(r,a; f |> p) the counting function of those distinct a-points of f whose
multiplicities are not less than p.

In [4] the following result is proved.

THEOREM A ([4]). Let f and g be two nonconstant meromorphic functions
and ay,as, . ..,an(a, # 0) be finite complex numbers. If

(i) f and g share co CM,
L X n i
(ii) F and G share 0,1 CM, where F = Y a;f® and G = Y a;g?,
i=1 =1
2. 4(aif)

(i) e ~ 7 3 fap) > b where T 8(aif) >0,
aFoo a7oo
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then either (a) F = G or (b) FG = 1. If, further, f has at least one pole or F
has at least one zero, the case (b) does not arise.

Following question is asked in [1] : Is it possible in any way to relax the nature
of sharing the values and to weaken the condition on deficiencies in Theorem A?

To answer this question the notion of weighted sharing of values is used in
[1] which we explain in the following definition.

DEFINITION 3 ([5, 6]). Let k be a nonnegative integer or infinity . For a €
C U {oo} we denote by Ei(a; f) the set of all a-points of f where an a-point
of multiplicity m is counted m times if m < k and k + 1 times if m > k. If
Ei(a; f) = Ex(a;g), we say that f, g share the value a with weight k.

The definition implies that if f , g share a value a with weight k then z, is
an a-point of f with multiplicity m(< k) if and only if it is an a-point of g with
multiplicity m(< k) and z, is an a-point of f with multiplicity m(> k) if and
only if it is an a-point of g with multiplicity n(> k) where m is not necessarily -
equal to n.

We write f, g share (a, k) to mean that f, g share the value a with weight
k. Clearly if f, g share (a, k) then f, g share (a,p) for all integers p, 0 < p < k.
Also we note that f, g share a value a IM or CM if and only if f, g share (a,0)
or (a,00) respectively.

Improving Theorem A in [1] following result is proved.’

THEOREM B ([1]) Let f and g be two nonconstant meromorphic functions
and ay,Qay,...,a,(a, # 0) be finite complex numbers. If

(i) f and g share (00, 0),
(ii) F and G share (0,1), (1,00), where F = ¥ a; 9 and G = ¥ a;9?,

@) $ o) >} = =

then ezther (a) F =G or (b) FG = 1. If, further, f has at least one pole or F
has at least one zero, the case (b) does not arise.

The purpose of the paper is to investigate the possibility of further reducing -
the weight of sharing values in [Theorem B. We prove in the paper the followmg
two results which improve Theorem B.

THEOREM 1. Let f and g be two nonconstant meromorphic functions and
a1,a2,...,0,(a, # 0) be finite complex numbers. If

(i) f and g share (00, 1),
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(ii) F and G share (0,1), (1,6), where F = Y a;f® and G =Y aig®,
=1 =1
(i) > e f) > 3,

a#oo

then either (a) F = G or (b) FG = 1. If, further, f has at least one pole or F
has at least one zero, the case (b) does not arise.

THEOREM 2. Let f and g be two nonconstant meromorphic functions and
ai1,a,...,an(a, # 0) be finite complex numbers, where n > 2. If
(i) f and g share (c0,0), N
n . n .
(ii) F and G share (0,1), (1,6), where F = 3. a;f® and G = 3 a;9,
=1 =1
(iii) 3= o(a; f) > 3,
aF#oo
then either (a) F = G or (b) FG = 1. If, further, f has at least one pole or F
has at least one zero, the case (b) does not arise.

Considering f = exp(z) — (1/2)" exp(22), g = (~1)"exp(~z) — (~1/2)"
exp(—2z), F = f(™) and G = g{™ we see that the condition (iii) of Theorems 1
and 2 is sharp.

We now give two more definitions.

DEFINITION 4 ([2]). We put for a € CU {00}

r

T(t, f)
TO (T’ f) = dta
/=
Notras )= [ 0,

1

mo(r, a; f) =/m—(t’~tgﬁdt,
1 .
So(r, f) = / —b:(—tt’ﬁdt etc.
1
DEFINITION 5 ([2]). For a meromorphic function f we put

So(a; f) = 1~ limsup %ﬁ'—;c—)ﬁ = lim ot %ﬁ
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2. Lemmas
In this section we present some lemmas which will be needed in the sequel.

LEMMA 1 ([2]). For a meromorphic function f

lim SO(Ta f) —

e To(r f)

through all values of r.

LEMMA 2 ([9]). If f is a meromorphic function and a € CU{oo} then é(a; f) <
do(a; f)-

LEMMA 3 ([8]). If f, g share (0,0), (1,0), (c0,0) then

(6) T(r, f) < 3T(r,g9) + S(r, f),
(#) T(r,g) < 3T(r, f) + S(r, 9).

shows that S(r, f) = S(r,g) and we denote them by S(r).
LEMMA 4 ([10]). Let f, g share (0,0), (1,0), (c0,0) and
_ _f_l_l_ 3 2fl 3 gll 3 2gl
"= (f’ f-1) \¢ ¢-1)°

If H =0 then f, g share (0,00), (1,00), (00,00).

LEMMA 5 ([7]). If f, g share (1,1) and H Z 0 then

N(r,1;f|=1) =N(r,1;9|=1)
< N(r,H)+ S(r, f) + S(r, g).

LEMMA 6. Let f, g share (0,1), (1,m), (00, k) and f, g have no pole of mul-
tiplicity less thanm. If f # g and (m — 1){m(A —1) — 1} > (1 + m)?, where
A = max{n,1 + k}, then for a = 0,1,00 we get N(r,a; f |> 2) = N(r,a;g |>
2) = S(r). :

Proof. We prove N(r,a;f |> 2) = S(r) for a = 0,1, 00 because the other can
similarly be proved. We consider the following cases.

Case I. Let A < oo. If m = oo then we can choose a sufficiently large positive
integer m for which the given condition holds. So we may suppose, without loss of

generality, m to be finite. Let ¢; = f(ff'_ﬂ - g(ggil) = (?_Ll - ;9_'—1) - (1}_’ - -‘lgi),

’ ! !

¢2=7.Ll-§9_—13nd¢3=‘§-—;9g--
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We suppose that N(r,a; f) # S(r) because otherwise the case is trivial. Since
f # g, it follows that ¢; # 0 for i = 1,2,3. Now

N(r,0; f |2 2) < N(r,0;¢2) < T(r, ¢2) + O(1)
= N(r,oo;¢2) + S(T) .

(1) <N(r L f|>14+m)+ N(r,00; f > X) + S(r).
Again
mN(r,Lf|>1+m) < (m—-1D)N(,Lf|>1+m)+N(r,1;f1>2)
S N(Ta0,¢3)
< N(r,00; ¢3) + S(r)
(2) < N(r,0; f |>2)+ N(r,00; f |> A) + S(r).
Also
(A=1)N(r,00; f |> A) £ (A = 2)N(r,00; f |> A) + N(r,00; f [> 2)
S N(T10;¢1)
< N(r,00;¢1) + S(r)
(3) <N L f|>21+m)+ N(r,0;f|>2)+S(r). -
From (1) and (2) we get
(4) (m — 1)N(r,0; f |>2) < (m + 1)N(r,00; f |[> A) + S(r).

From (2), (3) and (4) we obtain

{m(A = 1) = 1}N(r,00; f |> A) < (m 4+ 1)N(r,0; f |> 2) + S(r)
< (1+m)?

< R 001 £12 3) + S()

ie, [(m-1){mA~-1) -1} - (1 +m)’] x N(r,00; f |2 }) < (m - 1)S(r)

ie., N(r,o0; f |> A) = S(r).
So from (4) we get N(r,0; f |> 2) = S(r) and from (2) we get N(r,1; f |>
2) = S(r) and from (3) we get N(r,o00; f |> 2) = S(r).

Case II. Let A = co. We now consider the following two subcases.

Subcase (i) Let n = co. Then f and g are entire functions. Hence proceeding
as Case I we get N(r,0; f |[> \) < N(r,1;f |> 1+ m) + S(r), and

mN(r, L f|>1+m) < (m—-1)N(r,1;f|>1+m)+N(r,1;f > 2)
< N(r,0; f |2 2) + S(r).
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So we see that N(r,0; f |>2) = S(r) and N(r, 1; f |> 2) = S(r).

Subcase (it) Let n < co. Then k = oo and so it is possible to chose a sufficiently
large finite k(> n) such that for Ap = 1 + k the condition of the lemma holds.
Hence in this case the result can be proved in the line of Case I. This proves the
lemma.

3. Proofs of the theorems

Proof of Theorem 1. Since f, g share (c0,1) and F, G have only multiple poles,
it follows that F, G share (00,2). So by we get

(5) N(r,00; F) = N(r,00; F |> 2) = S(r)
and
(6) ~ N(r,00;G) = N(r,00;G |> 2) = 8(r),

where S(r) = S(r, F) = S(r,G) by Lemma 3 |
. P
Let by,bo,...,b, be finite deficient values of f. Since Y m(r,bn;f) <

n=]1
. P ’
m(r,0; F) + S(r, f), integrating we get Y- mo(r, bn; f) < mo(r,0; F) + So(r, f)
n=1

and so

2. mo(r,bai f) _ mo(r,0;F) To(r,F) . Solr. f)
Z TO(Ta f) < TO(T’F) TO(T) f) M TO(T7 f)

n=1

Since N(r,o00; F) = S(r,F) = S(r, f) implies No(r,00; F) = Sy(r, f), it follows
from above that

P mO(rabn;f) mo(T,O;F) . TO(r’f)+SO(Taf) So(T',f)
Z To(r, f) = To(r, F) To(r, f) * To(r, f)’

n=1

, .
Hence in view of we get Y 0o(bn; f) < d0(0; F) and since p is arbitrary,
n=1
it follows that Y~ &o(b; f) < 6(0; F). So by and condition (iii) we get
b#00

(7) 56(0; F) > %

We put
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If possible suppose that ¢ Z 0. Then by Lemmas 3 and 5 we get
(8) N(r,1;F|=1) = N(r,1;G |= 1) < N(r,¢) + S(r).

Since F', G share (1, 6) by a simple computation, we see that if 2o is a simple
zero of F — 1 and G — 1 then 9(29) = 0. Since the poles of y are all simple, we
get in view of Lemma 6

(9) N(r,) < Nu(r,0; F') + Nu(r,0;G") + S(r),

where N, (r,0; F') is the counting function of those zeros of F’ which are not the
zeros of F'(F' —1), a zero is counted according to its multiplicity and N.(r,0; G')
is an analogous quantity.

By the second fundamental theorem we get in view of (5), (6), (8), (9) and
Lemma 6

T(r,F)+T(r,G) < N(r,0;F) + N(r,1; F) + N(r, 00; F)
+N(r,0;G) + N(r,1;G) + N(r,00; G)
—N,(r,0; F') = N,(r,0;G") + S(r)
<2N(r,0; F)+T(r,G)+ N(r,1; F |=1)
—N.(r,0; F') — Nu(r,0;G") + S(r)
<2N(r,0; F) + T(r,G) + S(r)

and so T'(r, F) < 2N(r,0; F) + S(r, F).

On integration we get To(r, F) < 2Ny(r,0; F) + So(r, F) so that 60(0; F) <
1/2, which contradicts (7). Hence v = 0. So by Lemma 4 F and G share (0, ),
(1,00), (00,00). Now the theorem follows from Theorem B. This proves the
theorem.

Proof of Theorem 2. The theorem can be proved in the line of the proof of
Theorem 1 noting that F' and G have no simple and double pole.

References

1] M.L. Fang and I. Lahiri, Weighted sharing and uniqueness of differential polynomials,
Yokohama Math. J., 49 (2001), 37-45.

[2] M. Furuta and N. Toda, On exceptional values of meromorphic functions of divergence
class, J. Math. Soc. Japan, 25 (4) (1973), 667-679.

[3] W.K. Hayman, Meromorphic Functions, The Clarendon Press, Oxford (1964).

[ I. Lahiri, Uniqueness of meromorphic functions as governed by their differential polyno-
mials, Yokohama Math. J., 44 (1997), 141-146.

[5] I Lahiri, Weighted sharing and uniqueness of meromorphic functions, Negoya Math. J.,
161 (2001), 193-206.




I. LAHIRI AND A. BANERJEE

I. Lahiri, Weighted value sharing and uniqueness of meromorphic functions, Complez
Variables, 46 (2001), 241-253. '

I. Lahiri, Weighted sharing and a result of Ozawa, Hokkaido Math. J., 30 (2001), 679~
688.

I. Lahiri, On a result of Ozawa concerning uniqueness of meromorphic functions, J. Math.
Anal. Appl., 271 (2001), 206-216.

N. Toda, On a modified deficiency of meromorphic functions, Téhoku Math. J., 22
(1970), 635-658.

H.X. Yi, Meromorphic functions that share three values, Bull. Hong Kong Math. Soc.,
2 (1998), 679-688. !

Indrajit Lahiri

Department of Mathematics,

University of Kalyani,

West Bengal 741235, INDIA

E-mail: indrajit@cal2.vsnl.net.in,
ilahiriQhotmail.com

Abhijit Banerjee

Department of Mathematics,

Kalyani Government Engineering College, -
West Bengal 741235, INDIA

E-mail: abanerjee@movemail.com




	1. Introduction, Definitions ...
	THEOREM A ...
	THEOREM $B$ ...
	THEOREM 1. ...
	THEOREM 2. ...

	2. Lemmas
	3. Proofs of the theorems
	References

