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Abstract. In @], the authors defined some pair of 1-forms and a unitary frame
field, called a special adapted pair, to study the integrability of almost complex
structure of four-dimensional almost Kahler Einstein manifolds. In this paper,
we define another kind of special adapted pair. These two pairs have similar
properties, but the latter seems more useful in our discussion. Making use of the
latter one, we show a result (§ 3,[Proposition 3)) on strictly almost Kéhler Einstein
manifolds of dimension four, and as an apphca.’clon we will give an another proof
of the result by J. Armstrong .

1. Introduction

An almost Hermitian manifold M = (M, J,g) is called an almost Kéhler
manifold if the corresponding Kahler form  defined by Q(X,Y) = ¢g(X,JY) is
closed, or equivalently &x.y,z 9((VxJ)Y,Z) = 0 for any vector fields X, Y, Z
on M, where & x,y,z denotes the cyclic sum with respect to X, Y, Z. Therefore,
a Kéhler manifold (VJ = 0) is necessarily an almost Kahler manifold. It is well-
known that an almost Kahler manifold with integrable almost complex structure
is Kahlerian. A non-Ké&hler almost Kahler manifold is called a strictly almost
Kéahler manifold. Examples of strictly almost Kahler manifold are constructed
by many authors. In the framework of the study concerning the integrability of

the complex structure of almost Kahler manifolds, the following conjecture by
S.I Goldberg ([2]) is interesting.

CONJECTURE. A compact almost Kéhler Einstein manifold is Kahlerian.

K. Sekigawa ([6]) proved that the above conjecture is true if the scalar curvature
7 of M is non-negative. Many progresses have been made under some additional
conditions.
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2. Preliminaries

Let M = (M, J,g) be a four-dimensional almost Hermitian manifold with
the almost Hermitian structure (J,g). The Ké&hler form Q of M is defined by
QAUX,Y) = g(X,JY) for X, Y € X(M), where X(M) is the Lie algebra of
all smooth vector fields on M. We assume that M is oriented by the volume
form dV = Q?/2. We denote by V, R, p, and T the Riemannian connection, the
curvature tensor, the Ricci tensor and the scalar curvature of M, respectively. We
assume that the curvature tensor is defined by R(X,Y)Z = [Vx,Vy|Z-V|x y|Z
for X, Y, Z € X(M). We denote by p* the Ricci *-tensor of M defined by

1
(2.1) p*(z,y) = = trace of (z = R(z, Jy)Jz)
for z, y, 2 € T, M, the tangent space of M at p € M. The Ricci *-tensor satisfies

(2.2) p*(z,y) = p*(Jy, Jz)

for any z,y € T,M, p € M. We note that if M is Kéhlerian, the Ricci tensor and
the Ricci *-tensor coincide on M. The x-scalar curvature 7* of M is the trace
of the linear endomorphism Q* defined by g(Q*z,y) = p*(z,y) for z, y € T, M,
p € M. An almost Hermitian manifold M is called a weakly x-Einstein manifold
if p* = A*g (A* = 7*/4), and a weakly *-Einstein manifold with constant x-scalar
curvature is called a *-Einstein manifold. The following identity holds for any
four-dimensional almost Hermitian manifold:

23 3{o@y)+ Uz, )} - 51 @0 + 5 w2} = T g(wy)

forany z, y€e T,M,pe M.
Let A2M be the vector bundle of all 2-forms on M. The bundle A2M inherits
a natural inner product g and we have an orthogonal decomposition

NM=RQ& LM & AN M,

where LM (resp. Ay M) is the bundle of J-skew-invariant (J-invariant) 2-forms
on M perpendicular to 2. We can identify the subbundle RQ® LM (resp. /\(1)’1 M)
with the bundle of self-dual (resp. anti-self-dual) 2-forms on M.

In the sequel, we assume that M = (M, J,g) is a four-dimensional almost
Kahler manifold. Then, we have

(2.4) VQ=a®®-Ja®J®,

where a is a local 1-form and {®, J®} is a local orthonormal flame field of the
bundle LM. Thus, we have

1 ™ — T
lall? = 3Vl = 2192 = T2
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From this equality, we find that M is Kahlerian if and only if 7* —7 =0 on M.

In this paper, for any orthonormal basis (resp. any local orthonormal frame
field) {e1,e2,e3,€e4} of a point p € M (resp. on a neighborhood of p), we shall
adopt the following notational convention:

Jij = g(Jei e;), Tijk =g(Ve,ej,¢ex),

Rijr = g(R(ei,ej)ex,er), ... , B = g(R(Je;, Jej)Jex, Jer),
(2.5) pi; = p(ei,€;), ... ,p53 = p(Jei, J€;),
pi; = p*(ei€5), ... ,p55; = p"(Jei, Jej),
Vidik = g(Ve)ej,er), -, Vidsi = 9((Vie, J)Jej, Jer),

and so on, where the latin indices run over the range 1, 2, 3, 4. We define a
function G on M by

4
G=Y (ot~ rj:)*

i,j=1

Then, from (2.2), we have

(2.6) G =16 {(p3)" + (pa)*} -

3. Special adapted pair of the second kind

Let M = (M,J,g) be a four-dimensional compact strictly almost Kéahler
FEinstein manifold and put M, = {p EM I ™ —-17>0atp } Then, M, is a
no-empty open submanifold of M.

Since M is a Einstein manifold, the Riemannian metric g is of class C“. Thus,
we can choose a local C¥-orthonormal frame field {e;} on a neighborhood of any
point of M. Then, we may observe that the functions J;; (i, j =1, ..., 2n)
satisfy a certain system of elliptic partial differential equations of second order
whose coefficients are C*-functions (we omit the details). Hence, from the well-
known regularity theorem, we may assume that the almost Hermitian structure
(J,9) is of class C¥.

First, we recall the notion of a adapted pair defined in [4]. For the 1-form
a of [2.4), we denote by D the 2-dimensional J-invariant distribution on Mp
spaned by {a*, Ja*} and by D+ the orthogonal complement of D in the tangent
bundle of M, where a* is the dual vector field of . We choose a local unitary
frame field {e;,e; = Je;,e3,eq = Jez} on a neighborhood of any point of My
such that e, ez € D and e3, e4 € D+ and put {e*} the dual basis of {e;}. Then,
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we have

We call the pair {o, Ja,{e;}} an adapted pair to VQ. If {a,Ja,{e;}} is an
adapted pair to VQ2, we have a; = a(e;) =0 (i = 3, 4) and hence

™ — 71

(3.1) lol? = a? +af = T

REMARK 1. We remark that such a pair is not uniquely determined. In fact,
for an adapted pair {a,Jo,{e;}} and arbitrary local functions # and ¢, we
define a(8, p) = (cosf)a — (sinf)Ja, Ja(b,p) = (sinf)a + (cosb)Ja, e; (8, p) =
(cosp)er — (sinp)ez, e2(6, ) = (sin p)er + (cos p)es, e3(f, ) = (cos(f + p))es +
(sin(6 + p))es, es(8,9) = —(sin(6 + ¢))es + (cos(f + ¢))es. Then, {a(,¢),
Ja(8, ), {ei(8,9}} is again an adapted pair ([4]).

Now, let {a, Jo, {€;}} be a local C“-adapted pair to VQ. Then, from (2.38)
and (2.43) of [4], we have

(3.2)
Fis20n — D10 [3101 + Tig2ce P13 0
Vi, _
_(F131a1 + P132a2) F132a1 —_— F13102 — __(T —- 7-) . 0
4 P14

The determinant of the matrix in the left-hand side of (3.2) is

2, .
(T13201 — P13102){r1320¢1 —T'z1as — %(T - 7')} + (T13101 + T13202)?

V2

(3.3) = (F%31 + I‘%az)(af + 04%) - T(T* — 7)(l13200 — Ti3102)

T — T

2

V2
= {(F%m + i) — "'2‘(F1320t1 - P13102)}
We assume that (3.3) does not vanish at some point pg € My. Then, G = 0 on
a neighborhood of py. Since G is real-analytic, G = 0 on M, and hence, M is
weakly x-Einstein.

In the sequel, we assume that M is not weakly *-Einstein. Then, we may
assume that

2 .
(3.4) (T35, + I25,) — %(1—‘132011 —T'iz3102) =0

holds on Mj.
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For a local C¥-adapted pair {a, Ja, {e;}}, there exists a local C*-function ¢
satisfying
a = [lal|{(cos¢)e" — (sin{)e’}.
If we put

a(0,{) =a, Ja(0,{) =Ja,
€1 (Oa () = (COS C)el - (Sin 4)62, 62(0’ C) = Jel (0, C)a
e3(0,¢) = (cos()es + (sin()es, e4(0,¢) = Jes(0,(),

then {a(O,(), Ja(0,¢),{ei(0,¢)}} is an adapted pair satisfying
(3.5) a(0,¢) = |lalle'(0,¢), Ja(0,¢) = llalle*(0,¢).

So, let {a, Ja, {e;}} be alocal C“-adapted pair on an open set U in M satisfying
(3.5) and define a local C¥-adapted pair {a(9,6), Ja(8,6), {e:(6,0)}} by

a(6,0) = (cosf)a — (sinf)Ja, "Ja(8,0) = Ja(6,0),
(3.6) e1(6,6) = (cosfB)e; — (sinf)e,, e2(6,6) = Jel(a 9),
e3(0,0) = (cos20)es + (sin20)eys, e€4(8,0) = Jes(6,90),

where 0 is defined by

(3.7) 2v2 2v/2

cos20 =1— “ H F132, sin 260 = — ” ” F131

We may note that, from and (3. 5),

2v2. \*, (22, ' _,_ 42 8
(1 ] F132) +( o ”F131) =1- T ”I‘132+” ”2( 131+[‘32)

4f 8 2
=1- Toll P2 + 7 e .§I‘132||a|| =1

Similarly, for an arbitrary local C“-adapted pair {&, Ja,{&:}} on U with U N
U#0 satisfying (3 5), we define an local C*-adapted palr {@(0,0), Ja(8,6),
{2:(0,6)}} on U by

8,0) = (cosb)a — (sinf)Ja, Ja(d,8) = Ja(d,h),
(3.8) £:(0,8) = (cosf)e, — (sin §)és, &:(9,0) = Je.(9,0),
(8,0) = (cos20)e; + (sin20)ey, &4(0,8) = J&3(8,0),
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where 6 is defined by

(3 9) COoSs 29_ =1- |2l\/|?1‘132, sin 20 = —l2|\/|—I-F131,

and T';jx = 9(V&,€;,8). On UNU, there exists a C¥-function n on UNU such
that

a = (cosn)a — (sinn)Ja,
(3.10) €1 = (cosn)e; — (sinn)es,

€z = (cos 2n)es + (sin 2n)ey.

Thus, form (2.42) of [4], we have

- ' 2
I'y31 = T31 cos2n — IM'y3o8in 20 + %Hall sinncosy

V2

= (_4—”0” - P132) sin 2n + I';37 cos 27,
(3.11)

_ 2
I'132 = I'1318in2n + 133 cos 2n + 12‘_”01“ sin®

2 . V2
= '\i;lla|| +I'y318in2n — (T”O!H - P132) cos 2n

on UNU. From (3.7), (3.9) and (3.11), we have

~ 2 2
cos 20 = ”\/I]{ \/—”O{” + I'131 sin 27] - (-\/—_HaH - F132) Cos 217}
2

= ”\/”- (T'131 sin 2 + I35 cos 2n) + cos 2n
= sin 26 sin 2n + cos 26 cos 2
= cos2(8 — n),

sin 26 = —%ﬁ{ <£||a|| - I‘132> sin 2n + I'13; cos 217}
= —sin2n + H\/”_(Flgg sin 2n — I'131 cos 2n)
= — cos 20 sin 277 + sin 26 cos 27
= sin2(6 — n),

and hence,

(3.12) 6=0-n+mn
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on U NU for some integer m. Therefore, we obtain
a(8,0) = (=1)™{cos(8 — n)((cosn)a — (sinn)Ja)
+ sin(6 — ) ((cosn)Ja + (sinn)a) }
= (-1)"{(cos§)a + (sin)Ja} = (-1)"a(b,6)
(3.13) &1(8,0) = (~1)™e1(6,6), |
€3(9,6) = cos2(6 — n){(cos 2n)es + (sin 2n)es }
+ sin2(6 — n){(cos 2n)es — (sin2n)es }
= (cos 26)e3 + (sin 20)eq, = e3(6,8)
on UNU. So, we have the following. |

LEMMA 1. On UNU(# 0), either
@(0,6) = a(6,60), &.(8,0) =e (6,0), &3(8,0)=es(6,0),

or

a(0,0) = —a(0,6), &1(0,0) = —e (6,6), &3(8,0) =es3(6,0),
is holds.
REMARK 2. By choosing {—a&, —é&1, &3} instead of {a, €1,€3} on U if necessary,

we may assume that the first case of the always holds on UNU. Thus,
the universal covering of M, admits C“-absolute parallelism.

We will call the above {a(6,0), Ja(6,0),{e:(0,6)}} a special adapted pair of
the second kind and, for the brevity, put
a(f) =a(6,0), Ja) =Ja(d,8), e;(6) =ei(0,0), i=1,23,4.
We will call a special adapted pair defined in a one of the first kind.

LEMMA 2. With respect to a special adapted pair of the second kind {a(6), Ja(6),
{ei(8)}}, we have

I'151(0) =0, T132(0) =0, p14(6) =0..
Proof. From 3.4}, (3.7) and (2.42) of [4], we have

F131 (0) = P131 COos 20‘+ (%Hall - F132> sin 20 = O,

I'32(0) =Ty3 sin 26 + I'132 cos 20 + ?Ha“(l — cos 26)
_2v2
“ ” (F131 132) + 2l'32 = 0.

From these equalities and (2.43) of [4], we have p},(6) = 0.
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From [Lemma 2, for each point p of My, we can choose local C“-special
adapted pair of the second kind {a, Ja,{e;}} defined on a neighborhood of p
satisfying

T™* — T

a(er) = [lall = , ale2) =0

2
(3.14) * e )
131 =T132 =0, pis= “‘4—(2 0), pia=0.
Therefore, similar equalities for a special adapted pair of the first kind, obtained
by using merely the equalities (3.14), such as (3.14)~(3.17) in [4], are valid for
a one of the second kind.

We remark that a special adapted pair of the first kind is not deﬁned at the
point (in Mp) where the function G vanishes (cf. [4]). But a special adapted pair
of the second kind is defined on a neighborhood of each pomt of My, and we can
prove the following.

PROPOSITION 3. Let M = (M,J,g) be a four-dimensional strictly almost
Kibhler Einstein manifold which is not weakly x-Einstein. Then, G > 0 at which
™" —-7>0.

Proof. We suppose that G vanishes at py € M, and let {a, Ja, {e;}} be a special
adapted pair of the second kind on a neighborhood of py which satisfies (3. 14).
Since G(pp) = 0 is the minimum value of G, we have e;p}; = 0 (¢ = 1,2,3,4)
and pj; = 0 at po. Then, from the second equality of (3.16) in [4], we have
(t* —T)ay = (* — 7)||a]| = 0 at po. But this is a contradiction.

From this proposition, we immediately obtain the following.

THEOREM 4 ([1]). Let M = (M, J,g) be a compact four-dimensional almost
Kihler Finstein manifold. Then, 7 — 7 = 0 holds at some point of M.

Proof. First, we note that G must vanish somewhere on M ([5], Theorem 1). If
7* — 7 > 0 holds on M, then My = M. Hence, from [Proposition 3, G > 0 on
M. But this is a contradiction.
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