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Abstract. In this paper, we make use of the Birkhoff’s ergodic theorem to
obtain some spectral properties of kt*-order slant Toeplitz operators. We also
obtain the spectral radius of such an operator for continuous symbol .

Introduction

w .
Let ¢(2) = 3. a;z* be a bounded function on the unit circle T, where

a; = {p, 2*) is the it Fourier coefficient of ¢ with respect to the usual standard
basis {2* : ¢ € Z} of the space L?> = L?(T),Z being the set of integers. For an
integer k > 2, let W, : L? — L? be an operator defined as

Z*/%  if i is divisible by k

0, otherwise.

Wi(2*) =

A k*h-order Slant Toeplitz operator U, [1] is defined as U, = WyM,, M,
being the multiplication operator on L2 = L2(T) induced by . In [1] it is shown
that the spectrum of U, with symbol ¢ invertible in L*°, contains a closed disc
that consists of the eigen values of U, with infinite multiplicities and the radius
of that disc is (r(Uz-1))~!. Here we find the spectral radius of U, for first a
trigonometric symbol ¢ and then for continuous ¢ in L>°(T) and prove that it
is same in both the cases.

1. Trigonometric Polynomial ¢

Let ¢ be a trigonometric polynomial. Suppose that

N
p(z) = Z a2
I=—N
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for some non-negative integer N. Assume further that |||l = 1. It is proved
in [1] that the spectral radius r(U,,), of the operator U,,, is

r(Uy) = lim [[gnll2"
where ¢, = U";lz(l). As W} is a bounded operator on L2(T) with ||Wk]|| = 1,
we have ||tn|lcc < 1, for every n. Therefore ||tn]loo > ||¥nl]2-
M
LEMMA 1. Let C;: |l| < M, be complex numbers and ¥(z) = Y. Ciz'. Then
l=—M
the subspace H = span of {z' : |l| < M} of L*(T) is invariant under Uy.
Proof. We see that
Uk (29) = Wi (279 = ZF3/k,if i+] is divisible by k
0, . otherwise.
Hence if |i|,|j| < M, then for all k¥ > 2

|t + 7| < li| + 5] M+M 2M
k — k k k
Therefore U,:(27) € H. From this we get that Uy(2?) is in H for all |j| < M.
This completes the proof.

< <M.

COROLLARY 2. ¢, belongs to the finite - dimensional space H = span {z' :
il < 2N}

l=—

N _
Proof. If ¢ = Y. a;2', then |p|?> € H and since ¢, = U, 2(1), therefore by
Lemma-1 the resultzgsllows. '
Now let ¢, = > b™z! and let (ag.’)), li|, |7] < 2N represent the matrix
l=—2N
of (Uj,2|H)". Since ¥, = (Uj,2|H)™(1), we have a(()g) = bf,"). But
b = ((Ujpp | D" (1), 1)
= (Ulgp(1), 1)
n—1
= (L, [] le(z*)1?%)
=0

= (1, ¢n)

1 2w
= — ndb.
2T _/(P
0



GENERALIZED SLANT TOEPLITZ OPERATORS 3
n—1 !
where ¢, = [] |¢(2*)|?. Now, for any [i, |j] < 2N, we have
=0

off) = (U, | H)"#, 2")
= (U (), ")
= (27, pn*"")
= (pn, 2¥ *79).

It follows that
2w

() _ —(kmi—j)0 90
o) = [pn@)e W0 L]

0
and so |a(”)| < b{™.

THEOREM 3. The Hilbert Schmidt norm of (Uj,2|H)™ is bounded by (4N +
1)b{™.

2N
Proof. By definition, the Hilbert Schmidt norm of (Uj,z|H)™ equals ( >

i,j=—2N

1/2
|a(")|2) . Since (Uj,2|H)™ has at most (4N + 1)? non-zero entries, we have

2N 1/2
(U2 H)*|| = ( Y e (”)|2) < (4N + l)bf,"). This completes the proof.
; N \

3:]':—2

LEMMA 4. There ezist positive integers Ky and Ko such that
Kq1||(Upepp | H)™| < NUZIP < Ka|l(Ujg2[H)™ -

Proof. Since H = {2! : |I| < 2N}, therefore dimH = 4N + 1. Thus

2N
1¥nlleo < Z Ib,(n)l < V4N + 1||¢nll2 (Cauchy Schwarz Inequality)
I=—2N

= VAN + 1)U (D]l
< VAN + 1||([Ujpp2 | H)™ .

On the other hand,

(n) 1
noo> n > 2
nlloe 2 t5nllz 2 18§ |_4N+1

> 4N+ e )11

(U2 H)" 2
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As |[Yn]leo = ||UZ||* we get the desired result.
As r(U,), the spectral radius of U,, equals by 1_i+m ]|¢n||<1,42", we obtain
the following :

COROLLARY 5. The spectral radius of U, is equal to the square root of the
spectral radius of U, 2|H.
As H is finite dimensional we yet obtain the following

COROLLARY 6. (r(U,))? = max{|)\| : det(Uj,2|H — A) = 0}.

2Tn—1 1/n
THEOREM 7. (r(U,))? = lim (f I1 |<.0(kl9)|2%)
n= \ o0 I=0

Proof. From the above lemma

2N 1/2
bV < nlloo = [Ufpll < VAN +T |[gnll = VAN + 1 ( 2 'b‘(n)|2) »
=—-2N

(n) (7)| = (™) W e o g2 |
As |5 = |a;p’| < by, therefore ZNlbl | < 1by " |*(4N + 1). Hence

2N 1/2
4N + 1( ) |b§”)|2> < (4N + )bV (2)
I=—2N

Using (1) and (2) we get
b < U=l < (4N + 1)65™. Let 4N + 1 = K. On taking limit as n — oo
we obtain that

. 27rn—l ’ 1/n
do
(r(Uy))? = lim lp(k'0)[* —
n—oo (b/ g 27!')

2. Continuous function ¢

Let (T, A, n) be a probability space and let 74, : T — T be a measure preserv-
ing continuous map. Also let T': L? — LP(1 < p < o0) be defined as

Tf=form

for any f in LP(T), where 7 : T — T for each k > 2 is defined as 73 (e®?) = e*%,
We can define

1 n—1
Snf==3 T'f
=0
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for all n. Then for each k > 2, 7, is ergodic [7], if and only if the T-invariant
functions are constants. Consider (U,)*(f(2)) = MaW;f =9 f ok
Therefore, U; is a weighted composition operator on T as for all fin L?

(Ucp)*f =P for

Now

ln—ll ln—l vit
— T f = — fe™) - C

a.e. and in L? for all 1 < p < oo by [7] Birkhoff’s Ergodic Theorem. That is,
1 n—1 )
- le __
I~ Z;Tf Clle =0

as n — 0o. Now for every n

Tinl a9 1227 a8
= l — )

/nZI_OTf%r nZ/Tf%r
) n

1= 7 Wips A9 ppotg KF 0 d0 (,a)de
=2 X [reng =g [ g = [ reng
l=00 =0 0 0

27r1,n__1 da ln_l 111—-1
L 100 1 Ly 1 lp
[rE T o<t S -cl<iz X1 - ol o
0 =0 =0 =0
as n — oo. Hence
2w
dé
C=/f§—-. (1)
™
0

Our attempt in this section is to obtain r(U,) for continuous symbols. To
achieve the same we begin with the following

LEMMA 8. If ¢ is a function on T such that log || is integrable, then

o 1/n 7 df
(H |<p(k10)|) — exp (/ loglcpl:?;;) a.e. on T.
=0 0
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Proof. Apply Birkhoff’s ergodic theorem on L!-function log || and using (1),
we get that '

-1

—-Zlog|<p(k‘6)| - /log|<pl~—-ae on T.
1=0

The proof is complete as for almost every 6 in [0, 27) and for all n

(H Iso(k’H)l) " eXP(% g log Iw(klﬂ)l)-

THEOREM 9. For any L*® function ¢ on T, we have

27
dé
exp (/ log Icplg;) <r(U,).
0

Proof. Since ¢ is bounded above, we have

~o0 < /Ioglwlg-g < oo

2w
If log || is not integrable then exp ( [ log o] %) = 0. So we assume that log |¢|
0

is integrable. Therefore

r(Up) = lim [[ynllf*

> lim sup ||vn|[t/*"
n—o0

1/2n
= nlgr;sup(/ Uly2 1)—-—)

= nll)n;o sup(UMz (1)7 1>1/2n

n—1
= lim sup(L, [ ] l(k'6)*)"/2".
=0

~As f(z) = z}/?" is a concave function on [0, c0) we have

2

. =\ de
(U, 2 lim sup [ (p o)) 5
o =0
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n—1
Also since [] |p(k'8)|'/™ < ||¢lloo, therefore, by Lebesgue dominated conver-
1=0 :
gence Theorem, we have
27 n-—-1 1/n 2 do
7.2 [ im sup(T] o)) =exn( [ gl 32 ).
0 =0 0 '
This completes the proof.

LEMMA 10. Let ¢ be an L™ function on T essentially bounded away from 0.
If {¢n} is a sequence in L°(T) such that ||, — ¥llec = 0, then

1nli_)lrr;o r(U,,) =r(U,).

Proof. Let p > 1 and § < 1. By [Lemma 3.1, 6], there exists an € > 0 such that
for any L function ¢ with ||t — ¢||ec < € we have

0| < [¥| < plel a.e. on T.

Since ||¢n —¥||cc — 0. Therefore, we can find a large N such that ||¢n —¢|lec < €
if n > N. That is, 8|¢| < |¢n| < p|lp| a.e. on T if n > N. Also we can see from
that the spectral radius function is a monotonic increasing function therefore
for n > N since

| 3| < |en] < plel a.e. onT,
we must have
r(Usy) <1(U,,) < T(Upy)
The proof is complete on taking §,p — 1.

THEOREM 11. If ¢ is a continuous on T without zeros then

' 2mn_1 de\ /2"
) = Jim ([ TLeorg)
0 =0

Proof. Since ¢ is continuous, therefore, there exists a sequence {P,, } of trigono-
metric polynomials, such that || P, — ¢||cc = 0 as m — co. Let p > 1 and § < 1.
By [Lemma 3.1, 6], there is an € > 0 such that for any v satisfying ||y —¢lle <€,
we have é|p| < || < ply| a.e. on T.

Now, since ||Py, — ¢||cc — 0, therefore, we can choose a large M, such that
for each m > M, ||P,, — ¢|loo < €. Therefore, for m > M, we have

8| < |Pm| < plel-
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Thus, for any n and m > M, we have
n—1 n-—1 n—1
5" I le@®'0)l < T] 1Pn(k'0)] < p™ ] lo(K'6)]
=0 =0 =0

for all 6 in [0,27). This means that for every n and for m > M
271 1/n 2Tn—1 1/n
dé de
2 192 WY . 1gy(2 29
#([Twworg) < ([T Pwors)
21'r,n__1 20 1/n
2 12 &9
< (Ofgwke)i =)

This implies that (since the result is true for trigonometric polynomials) for
m > M, we have

2m1 do i/n
2 1: l 277 < 2
) nanolosup(/ H lo(k'9)]| 27r) < (r(Upr,))
0 =0
2'"'71-—1 dé 1/n
< 52 lim i 1gy12 49 _
< Jim nt( [ T 1o )
) 0 =0
' Again since ||P,, — ¢||cc — 0, therefore, using [Lemma 10, we have
Jl_f)nooT(UPm) =r(U,).

. Hence,
27rn_1 de 1/n
2 1 192 @0 2
o Jim sup / IT le(e'o); =) <)

27"'n,—l de 1/n
< im it ([ T leo)P22)
0 1=0

The proof is complete on taking p,d — 1.
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