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Abstract. We shall show that any projective-planar double covering of a 3-
connected graph is planar, discussing structures of double covering of planar
graphs algebraically and combinatorially.

Introduction

Our graphs are simple and finite. A graph $\tilde{G}$ is called an (n-fold) covering
of a graph $G$ with a projection $p$ : $\tilde{G}\rightarrow G$ if there is an n-to-one surjection
$p:V(\tilde{G})\rightarrow V(G)$ which sends the neighbors of each vertex $v\in V(\tilde{G})$ bijectively
to those of $p(v)$ . A graph is said to be projective-planar if it can be embedded
in the projective plane.

In 1986, Negami [12] has proposed the following conjecture, which is called
the $1- 2-\infty$ conjecture or Negami’s planar cover conjecture, recently:

CONJECTURE 1 (Negami [12], 1986). A connected graph is projective-planar
if and only if it has a planar covering.

The necessity is clear since any graph embedded on the projective plane is covered
doubly by a graph embedded on the sphere. The sufficiency is still open.

There are many studies $[1]-[16]$ around this conjecture and all of them give
evidences supporting it. In particular, Hlin\v{e}n\’y [6] has proposed the following
conjecture and shown that it is equivalent to Conjecture 1:

CONJECTURE 2 (Hlin\v{e}n\’y [6]). A connected graph is projective-planar if and
only if it has a projective-planar covering.

Recently, Negami [16] has proved the following two theorems on projective-
planar coverings of graphs, related to Conjecture 2:
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THEOREM 1 (Negami [16]). A connected graph is projective-planar if and only
if it has a projective-planar double covering.

THEOREM 2 (Negami [16]). Every projective-planar double covering of a 2-
connected nonplanar graph is planar.

He has shown the best-possibility of the latter. That is, there exist those
graphs that adimit double coverings which are projective-planar but not planar
if we don’t assume that they are 2-connected and nonplanar. In this paper, we
shall discuss what happes if we strengthen the assumption on the connectivity,
cutting the nonplanarity. The following is our main theorem:

THEOREM 3. Every projective-planar double covering of a 3-connected graph
is planar.

If the 3-connected graph $G$ in the theorem is nonplanar, then the theorem
follows immediately from Theorem 2. Thus, it suffices to prove the theorem
when $G$ is planar. One will be able to give a purely combinatorial proof for
Theorem 3, mimiking the arguments in [16], that is, considering double coverings
of $K_{4}$ , instead of $K_{3,3}$ , and configurations of bridges for a subdivision of $K_{4}$ in
a 3-connected planar graph. However, we shall show a simple proof, avoiding
complicated arguments on bridges.

We shall discuss double coverings of planar graphs with an algebraic formu-
lation in Section 1, which will give us a general argument on those more than we
need to prove our main theorem. In Section 2, we shall introduce the notion of
“bridges” and prepare some technical lemmas. Section 3 is devoted to the proof
of Theorem 3.

1. Double coverings of planar graphs

Let $G$ be a connected graph. Then each double covering of $p$ : $\tilde{G}\rightarrow G$

corresponds to a subgroup in the fundamental group $\pi_{1}(G)$ of indeX 2. Since
such a subgroup is necessarily normal in $\pi_{1}(G)$ , it can be obtained as the kemel of
a homomorphism $\tilde{\sigma}$ : $\pi_{1}(G)\rightarrow Z_{2}$ and such a homomorphism can be determined
uniquely by a homomorphism $\sigma$ : $H_{1}(G;Z_{2})\rightarrow Z_{2}$ , where $H_{1}(G;Z_{2})$ is the
l-dimensional homology group with $Z_{2}$-coefficients.

This is a formulation for double coverings of graphs in algebraic topology.
We can also formulate them in terms of graph theory as follows, since $H_{1}(G;Z_{2})$

is nothing but the cycle space $C(G)$ , where the addition of two elements in
$H_{1}(G;Z_{2})$ corresponds to the symmetric difference of two sets in $C(G)$ .

Let $\{C_{1}, \ldots, C_{r}\}$ be a basis of $C(G)$ (or of $H_{1}(G;Z_{2})$ ). A homomorphism $\sigma$ :



PROJECTIVE-PLANAR DOUBLE COVERINGS OF GRAPHS 89

$H_{1}(G;Z_{2})\rightarrow Z_{2}$ corresponds bijectively to an assignment $\sigma$ : $\{C_{1}, \ldots, C_{2}\}\rightarrow$

$Z_{2}$ . The homomorphism $\sigma$ : $C(G)\rightarrow Z_{2}$ is defined by

$\sigma(\sum_{i=1}^{r}\lambda_{i}c_{i})=\sum_{i=1}^{r}\lambda_{i}\sigma(C_{i})$

with $\lambda_{i}\in Z_{2}=\{0,1\}$ . There exists a double covering $p=p_{\sigma}$ : $\tilde{G}_{\sigma}\rightarrow G$ of
$G$ such that $p^{-1}(C)$ consists of two disjoint cycles of the same length as $C$ if
$\sigma(C)=0$ and that $p^{-1}(C)$ forms a cycle which is twice as long as $C$ if $\sigma(C)=1$ .
This double covering is said to be derived from $\sigma$ . If $\sigma$ assigns $0$ to all cycles,
then $\tilde{G}_{\sigma}$ consists of two componets each of which is isomorphic to $G$ .

Now let $G$ be a planar graph 2-cell embedded on the sphere $S^{2}$ with $r+1$ faces
$A_{0},$ $A_{1},$

$\ldots,$
$A_{r}$ and let $C_{i}$ be the boundary cycle of $A_{i}$ for $i=0,1,$ $\ldots$ , $r$ . Then

$\{C_{1}, \ldots, C_{r}\}$ becomes a basis of $C(G)$ . Give any assignment $\sigma$ : $\{C_{1}, \ldots, C_{r}\}\rightarrow$

$Z_{2}$ to define a homomorphism $\sigma$ : $C(G)\rightarrow Z_{2}$ . Then we have $\sigma(C_{0})=$

$\sum_{i=1}^{r}\sigma(C_{i})$ . This implies that an even number of cycles $C_{0},$ $C_{1},$
$\ldots$ , $C_{r}$ are as-

signed 1.
Consider the double covering $p:\tilde{G}\rightarrow G$ of $G$ derived from a given $\sigma$ . Pasting

a 2-cell along each of components of $p^{-1}(C_{i})$ for $i=0,1,$ $\ldots$ , $r$ , we obtain a closed
surface $F_{\sigma}^{2}$ where $\tilde{G}$ is embedded so that each component of $p^{-1}(C_{i})$ bounds a
face. Two faces correspond to $C_{i}$ with $\sigma(C_{i})=0$ while one face to $C_{i}$ with
$\sigma(C_{i})=1$ . Furthermore, we can define naturally a branched covering projection
$\tilde{p}:F_{\sigma}^{2}\rightarrow S^{2}$ with $\tilde{p}|_{\tilde{G}}=p$ , branched over the central points of the faces bounded
by $C_{i}’ s$ with $\sigma(C_{i})=1$ .

The existence of this branched covering projection forces $F_{\sigma}^{2}$ to be orientable.
Let $n$ denote the number of $C_{i}’ s$ with $\sigma(C_{i})=1$ , which is an even number. Then
$\chi(F_{\sigma}^{2})=2|V(G)|-2|E(G)|+2(r+1-n)+n=4-n$ . This implies that $\tilde{G}$ is a
planar graph embedded on the sphere $F_{\sigma}^{2}$ if $n=2$ . Note that $\tilde{G}$ may be planar
even if $n\geq 4$ . For example, the 3-cube covers doubly $K_{4}$ . This double covering
is derived from the homomorphism $\sigma$ : $C(K_{4})\rightarrow Z_{2}$ which assigns 1 to all four
faces of $K_{4}$ embedded on the sphere.

In general, two coverings $p_{1}$ : $\tilde{G}_{1}\rightarrow G$ and $p_{2}$ : $\tilde{G}_{2}\rightarrow G$ of the same graph $G$

are said to be equivalent modulo automorphisms if there exist an isomorphism
$\tau$ : $\tilde{G}_{1}\rightarrow\tilde{G}_{2}$ and an automorphism $\sigma$ : $G\rightarrow G$ with $\sigma p_{1}=p_{2}\tau$ . Roughly
speaking, two equivalent coverings modulo automorphisms look like the same
in the unlabled sense. For example, Figure 1 presents two double coverings of
$K_{4}$ which are not equivalent modulo automorphisms. One is isomorphic to the
3-cube and the other has 2-cuts consisting of vertices and of edges.

LEMMA 4. There exist precisely two connected double cove $r\dot{v}ng$ of $K_{4}$ , up to
equivalence modulo automorphisms, as given in Figure 1.
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Figure 1 Inequivalent double coverings of $K_{4}$

Proof. Embed $K_{4}$ on the sphere. Then there are precisely four faces. We have
only two ways to choose an even number of faces, two or four, which should be
assigned 1, up to symmetry. These correspond to the double coverings of $K_{4}$

given in Figure 1. $\blacksquare$

Let $G$ be a planar graph embedded on the sphere as above and $H$ a subgraph.
Given a homomorphism $\sigma$ : $C(G)\rightarrow Z_{2}$ , we can define a homomorphism $\sigma_{H}$ :
$C(H)\rightarrow Z_{2}$ for $H$ so that $\sigma_{H}(C)=\sum_{j=1}^{h}\sigma(C_{i_{j}})$ if $C=\sum_{j=1}^{h}C_{i_{j}}$ in $C(G)$ .
Then the double covering $\tilde{H}_{\sigma}$ of $H$ derived from $\sigma_{H}$ can be regarded naturally
as a subgraph in the double covering $\tilde{G}_{\sigma}$ of $G$ which covers $H$ doubly via the
projection $p_{\sigma}$ .

LEMMA 5. Let $G$ be a 3-connected planar graph embedded on the sphere and
$p=p_{\sigma}$ : $\tilde{G}\rightarrow G$ the double covering of $G$ derived from a homomorphism $\sigma$ :
$C(G)\rightarrow Z_{2}$ which assigns 1 to at least four faces of G. Then $G$ contains a
subdivision $H$ of $K_{4}$ such that $p^{-1}(H)$ is a subdivison of the 3-cube.

Proof. Use induction on the number of faces of $G$ , say $m\geq 4$ . If $m=4$ , then $G$

is isomorphic to $K_{4}$ and the lemma follows from Lemma 4. Suppose that $m>4$ .
Choose a boundary cycle $C_{1}$ of $G$ out of those with $\sigma(C_{i})=0$ , or any one if

there is no such cycle. Let $C_{2}$ be another boundary cycle which shares an edge $e$

with $C_{1}$ . If $G-e$ with vertices of degree 2 neglected is 3-connected, then $G-e$
contains a subgraph $H$ satisfying the condition in the lemma by the induction
hypothesis, and $H$ satisfies the same condition for $G$ .

Otherwise, $G-e$ has a 2-cut $\{u, v\}$ and there is a simple closed curve $\gamma$ on
the sphere which crosses $e$ transversely and passes through $u$ and $v$ . Then there
is another boundary cycle $C_{3}$ meeting $C_{1}$ along an edge $e^{\prime}$ in a 2-cell regioin
bounded by $\gamma$ and we can do the same argument for $C_{3}$ as for $C_{2}$ . We find the
desired subgraph $H$ or a simple closed curve $\gamma^{\prime}$ which meets $G$ in a 2-cut of
$G-e^{\prime}$ and the middle point of $e^{\prime}$ . In the latter case, we can choose $\gamma^{\prime}$ so that $\gamma^{\prime}$
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is contained inside $\gamma$ and can continue this argument. Finally, we will reach the
innermost one and find H. $\blacksquare$

COROLLARY 6. Let $G$ be a 3-connected planar graph and $p:\tilde{G}\rightarrow G$ the double
covering of G. If $\tilde{G}$ is nonplanar, then $G$ contains a subdivision $H$ of $K_{4}$ such
that $p^{-1}(H)$ is a subdivison of the 3-cube.

Proof. If $\tilde{G}=\tilde{G}_{\sigma}$ is nonplanar, then $\sigma$ assigns 1 to at least four faces. Thus, the
corollary follows from Lemma 5. $\blacksquare$

2. Bridges in double coverings

We shall introduce the notion of “bridges”, as follows, which is often used in
topological graph theory to investigate embeddings of graphs on closed surfaces.
Our arguments in this section do not need the planarity of graphs although it is
important in the previous section.

Let $G$ be a graph and $H$ a subgraph in $G$ . A subgraph $B$ induced by a
component of $G-V(H)$ and the edges joining it to $H$ is called a bredge for $H$

in $G$ . A subgraph consisting of a single edge in $E(G)-E(H)$ with both ends
in $H$ also is called a bridge for $H$ but it is said to be singular. It is clear that
$G$ decomposes into $H$ and the bridges for $H$ and that they are mutually edge-
disjoint. A vertex of a bridge is called a vertex of attachment if it lies in $H$ . If $H$

is a subdivision of another graph $H$ ‘ with minimum degree at least 3, then any
path joining two vertices of degree more than 2 in $H$ corresponds to an edge of
$H^{\prime}$ and is called a side of $H$ .

Now let $p$ : $\tilde{G}\rightarrow G$ be a double covering of $G$ . Then there exist precisely
two vertices $v_{1},$

$v_{2}\in V(\tilde{G})$ with $p(v_{1})=p(v_{2})=v$ for each vertex $v\in V(G)$ .
It is clear that the mapping $\tau$ : $V(\tilde{G})\rightarrow V(\tilde{G})$ defined by $\tau(v_{i})=v_{3-i}$ induces
an automorphism of $\tilde{G}$ . This automorphism $\tau$ : $\tilde{G}\rightarrow\tilde{G}$ is called the covereng
transformation of $\tilde{G}$ (of order 2).

Put $\tilde{H}=p^{-1}(H)$ for a subgraph $H$ in $G$ . Then $p|_{\overline{H}}$ : $\tilde{H}\rightarrow H$ is a double
covering of $H$ and the covering transformation $\tau$ of $\tilde{G}$ induces that of $\tilde{H}$ , that is,
$\tau(\tilde{H})=\tilde{H}$ . Let $B_{1},$

$\ldots,$
$B_{s}$ be the bridges for $H$ in $G$ . Then $p^{-1}(B_{i})$ becomes

either a bridge $\tilde{B}_{i}$ or a disjoint pair of bridges $\tilde{B}_{i}^{\prime}$ and $\tilde{B}_{i}^{\prime}$
‘ for $\tilde{H}$ in $\tilde{G}$ .

LEMMA 7. Let $p$ : $\tilde{G}\rightarrow G$ be a double covering of a $2- conr\iota ected$ graph $G$

and let $H$ be a subgraph in $G$ with a bridge B. Suppose that $B$ has vertices of
attachement only on a side $S$ of $H$ and that $\tilde{B}=p^{-1}(B)$ forms one bridge for $\tilde{H}$

in $\tilde{G}$ . Then there exist a path $Q$ in $B$ joining two vertices on $S$ such that $p^{-1}(Q)$

consists of two disjoint paths joining two distinct sides of $\tilde{H}$ which project to $S$ .
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Proof. Since $p|_{\tilde{B}}$ : $\tilde{B}\rightarrow B$ is a double covering of $B$ , there exists a cycle $\tilde{C}$

in $\tilde{B}$ which covers a cycle $C$ in $B$ doubly. Since $G$ is 2-conneted, we can find
two disjoint paths $P_{1}$ and $P_{2}$ in $B$ each of which joins $C$ and $S$ , using Menger’s
theorem for example. Then $p^{-1}(C\cup P_{1}\cup P_{2})$ consists of $\tilde{C}$ and two copies of $P_{1}$

and $P_{2}$ , say $\{P_{1}^{\prime}, P_{1}^{\prime\prime}\}$ and $\{P_{2}^{\prime}, P_{2}^{\prime\prime}\}$ .
Let $S^{\prime}$ and $S^{\prime\prime}$ be the two components of $p^{-1}(S)$ . We may assume that $P_{1}^{\prime}$ and

$P_{2}^{\prime}$ have their ends on $S^{\prime}$ and $P_{1}^{\prime\prime}$ and $P_{2}^{\prime\prime}$ on $S^{\prime\prime}$ . Then we can find immediately
two disjoint paths joining $S^{\prime}$ and $S^{\prime\prime}$ , one of which runs along $P_{1}^{\prime}$ and $P_{2}^{\prime\prime}$ and
the other along $P_{1}^{\prime\prime}$ and $P_{2}^{\prime}$ . They project to the same path $Q$ in B. $\blacksquare$

LEMMA 8. Let $\tilde{G}$ be a double covering of a 3-connected graph $G$ with its cover-
ing transformation $\tau$ : $\tilde{G}\rightarrow\tilde{G}$ and suppose that $\tilde{G}$ is 2-cell embedded on a closed
surface $F^{2}$ . Let $\tilde{K}$ be a gmph 2-cell embedded on $F^{2}$ and let $\tilde{H}$ be a subgraph in
$\tilde{G}$ satisfying the following two conditions:

(i) $\tilde{H}$ is a subdivision of a graph $\tilde{K}$ .
(ii) $\tilde{H}$ is 2-cell embedded on $F^{2}$ as a subembedding of $\tilde{G}$ .

$Then_{\sim}$ there exists a subgraph $\tilde{H}^{\prime}$ in $\tilde{G}$ satisfying (i) and (ii) such that every brtdge
for $H^{\prime}$ in $G$ has vertices of attachment on at least two sides of $\tilde{H}^{\prime}$ .

Proof. Let $\tilde{H}^{\prime}$ be a subgraph with the same condition as $\tilde{H}$ which has fewest
bridges among those subgraphs. Suppose that there is a bridge $B$ for $\tilde{H}^{\prime}$ in $\tilde{G}$

such that all of its vertices of attachment are contained in a side $S$ of $\tilde{H}^{\prime}$ . Since
$\tau(S)\cap S=\emptyset$ , we have $\tau(B)\cap B=\emptyset$ .

Consider the union of faces bounded by only edges lying on $B$ or $S$ . Then
it forms a 2-cell region $R$ which contains $B$ since $\tilde{H}^{\prime}$ is 2-cell embedded on $F^{2}$ .
Its boundary splits into two paths one of which is a segment of $S$ containing all
vertices of attachment in $B$ and the other runs along the periphery of $B$ . Let $S^{\prime}$

and $Q$ be these paths, respectively.
It is clear that the subgraph $\tilde{H}^{\prime\prime}$ in $\tilde{G}$ obtained from $\tilde{H}^{\prime}$ by replacing $S^{\prime}$ with

$Q$ and $\tau(S^{\prime})$ with $\tau(Q)$ satisfies Conditions (i) and (ii). Since $G$ is 3-connected,
there is another bridge for $\tilde{H}^{\prime}$ in $\tilde{G}$ which has at least one vertex of attachment
on $S^{\prime}$ ; otherwise, the projection of two ends of $S^{\prime}$ would form a 2-cut in $G$ . Thus,
the replacement of paths in $\tilde{H}^{\prime}$ unffies $B\cup S^{\prime}-E(Q)$ and those bridges to be
one bridge and hence the number of bridges for $\tilde{H}$” in $\tilde{G}$ is smaller than that
for $\tilde{H}^{\prime}$ . This is however contrary to the assumption of $\tilde{H}^{\prime}$ . Therefore, there does
not exsit such a bridge $B$ for $\tilde{H}^{\prime}$ in G. $\blacksquare$
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3. Proof of the theorem

Applying general results in the previous sections, we shall give a proof of our
main theorem in this section.

$ProofofTheorem3$ . $LetGbea3$-connected graph andp: $\tilde{G}\rightarrow Gadoublecov-$

ering of $G$ which is projective-planar. It suffices to prove the theorem, assuming
that $G$ is planar, as is mentioned in introduction.

Suppose that $\tilde{G}$ is nonplanar and let $\tau$ : $\tilde{G}\rightarrow\tilde{G}$ be the covering trans-
formation of $\tilde{G}$ . By Corollary 6, $G$ contains a subdivision $H$ of $K_{4}$ such that
$\tilde{H}=p^{-1}(H)$ is a subdivision of the 3-cube with $\tau(\tilde{H})=\tilde{H}$ . By Lemma 8, we
may assume that every bridge for $\tilde{H}$ in $\tilde{G}$ has vertices of attachment on at least
two sides of $\tilde{H}$ . Let $v_{1},$ $v_{2},$ $v_{3},$ $v_{4}$ be the four vertices of degree 3 in $H$ and put
$p^{-1}(v_{i})=\{v_{i}^{\prime}, v_{i}^{\prime\prime}\}$ so that $v_{1}^{\prime}v_{2}^{\prime}v_{3}^{\prime}v_{4}^{\prime}$ and $v_{1}^{\prime\prime}v_{2}^{\prime\prime}v_{3}^{\prime\prime}v_{4}^{\prime\prime}$ form two cycles in the 3-cube
as in the left hand of Figure 1, which indicates only their subscripts. Then $\tilde{H}$

contains the following six cycles, corresponding to six faces of the 3-cube:

$C_{1}=v_{1}^{\prime}v_{2}^{\prime}v_{3}^{\prime}v_{4}^{\prime}\prime\prime l’\prime l$

$C_{2}=v_{2}^{\prime}v_{3}^{l}v_{1}^{\prime\prime}v_{4}^{\prime\prime}$ ,
$ C_{3}=v_{3}^{\prime}v_{4}^{\prime}v_{2}^{\prime\prime}v_{1}^{\prime\prime}\prime\prime$ ’

$C_{6}=v_{1}v_{2}v_{3}v_{4}$ , $C_{5}=v_{2}^{\prime\prime}v_{3}^{\prime\prime}v_{1}^{\prime}v_{4}^{\prime}$ , $C_{4}=v_{3}v_{4}^{\prime\prime}v_{2}^{\prime}v_{1}^{\prime}$ .

More precisely speaking, each consecutive vertices in the above must be joined
by a side of $\tilde{H}$ . Note that $C_{i}$ and $C_{7-i}$ form a disjoint pair and they project to
the same cycle in $H$ .

Embed $\tilde{G}$ on the projective plane. Since any two essential cycles on the
projective plane must intersect each other, at least one of $C_{i}$ and $C_{7-i}$ bounds
a 2-cell region, which is a face of $\tilde{H}$ . We may assume that $C_{1},$ $C_{2}$ and $C_{3}$ bound
faces $A_{1},$ $A_{2}$ and $A_{3}$ of $\tilde{H}$ , respectively, and that $A_{1}\cup A_{2}\cup A_{3}$ forms a 2-cell
region on the projective plane. We shall show that either $B$ or $\tau(B)$ is contained
in $A_{1}\cup A_{2}\cup A_{3}$ for any bridge $B$ for $\tilde{H}$ in $\tilde{G}$ .

First, suppose that none of $C_{4},$ $C_{5}$ and $C_{6}$ is essentail on the projective plane.
Then they bound faces $A_{4},$ $A_{5}$ and $A_{6}$ of $\tilde{H}$ , but exactly one of them must bound
a crosscap. Consider any bridge $B$ for $\tilde{H}$ in $\tilde{G}$ which is contained in one of these
faces of $\tilde{H}$ , say $A_{6}$ . By our assumption on the bridges for $\tilde{H}$ , there is a path $Q$

in $B$ which joins two vertices lying on two sides of $\tilde{H}$ , and these sides correspond
to two distinct edges of the cycle $v_{1}^{\prime\prime}v_{2}^{\prime/}v_{3}^{\prime\prime}v_{4}^{\prime\prime}$ in the 3-cube. Then $\tau(Q)$ joins two
sides of $\tilde{H}$ corresponding to two distinct edges of $v_{1}^{\prime}v_{2}^{\prime}v_{3}^{\prime}v_{4}^{\prime}$ . We can find such a
path only in the face $A_{1}$ since $A_{1}\cup A_{2}\cup A_{3}$ forms a 2-cell region. This implies
that $\tau(B)$ lies in $A_{1}$ .

Next, suppose that at least one of $C_{4},$ $C_{5}$ and $C_{6}$ is essential on the projective
plane. We may assume that this is $C_{6}$ , up to symmetry. Under the assumptions
here, $\tilde{H}$ has a unique embedding, up to symmetry, as given in Figure 2, where
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Figure 2 The 3-cube on the projective plane

$C_{4}$ bounds a face $A_{4}$ of $\tilde{H}$ . The same argument as in the previous case works
for any bridge contained in $A_{4}$ and it will be sent into $A_{3}$ by $\tau$ .

Let $R$ be the face of $\tilde{H}$ bounded by the closed walk $v_{1}^{\prime}v_{4}^{\prime}v_{2}^{\prime/}v_{3}^{\prime\prime}v_{4}^{\prime l}v_{1}^{\prime\prime}v_{2}^{\prime\prime}v_{3}^{\prime\prime}$ . Since
sides $v_{1}^{\prime}v_{2}^{\prime},$ $v_{2}^{\prime}v_{3}^{\prime},$ $v_{3}^{\prime}v_{4}^{\prime},$ $v_{2}^{\prime}v_{4}^{\prime\prime}$ and $v_{3}^{\prime}v_{1^{\prime}}^{\prime}$ lie inside the closure of $A_{1}\cup A_{2}\cup A_{3}\cup A_{4}$ ,
any bridge attached to the images of these sides by $\tau$ must be sent into one of
$A_{1},$ $A_{2},$ $A_{3}$ and $A_{4}$ by $\tau$ . The only sides of $\tilde{H}$ that are not the imagas of these
sides are $v_{1}^{\prime}v_{4}^{\prime}$ and $v_{1}^{\prime\prime}v_{4}^{\prime\prime}$ .

Thus, if there were a bridge $B$ for $\tilde{H}$ in $\tilde{G}$ such that $\tau(B)$ is not contained
in $A_{1}\cup A_{2}\cup A_{3}\cup A_{4}$ , then $B$ would be attached to only two sides $v_{1}^{\prime}v_{4}^{\prime}$ and
$v_{1}^{\prime/}v_{4}^{\prime\prime}$ . By the assumption on bridges for $\tilde{H}$ , $B$ must join both of these sides and
hence $\tau(B)=B$ . By Lemma 7, there exist two disjoint paths in $B$ joining two
sides $v_{1}^{\prime}v_{4}^{\prime}$ and $v_{1}^{\prime\prime}v_{4}^{\prime\prime}$ and they project to the same path in $p(B)$ . It is however
impossible to embed these two paths together in $R$ , a contradiction. Therefore,
each bridge $B$ in $R$ is sent into one of $A_{1},$ $A_{2},$ $A_{3}$ and $A_{4}$ . However, if $\tau(B)\subset A_{4}$ ,
then we would have $B=\tau(\tau(B))\subset A_{3}$ by the argument in the first case. Thus,
all bridges contained in $A_{4}$ or $R$ are sent into $A_{1}\cup A_{2}\cup A_{3}$ .

In either case, $\tilde{G}$ consists of the subdivision $\tilde{H}$ of the 3-cube, bridges contained
in $A_{1}\cup A_{2}\cup A_{3}$ and their images by $\tau$ . Then we can construct an embedding of
$\tilde{G}$ on the sphere; first embed $\tilde{H}$ on the sphere and next put a copy of the picture
of $A_{i}$ in each of the two faces bounded by $C_{i}$ and $C_{7-i}$ for $i=1,2,3$ . Therefore,
$\tilde{G}$ is planar. $\blacksquare$
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