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Abstract. We study the stability of a recently introduced iteration procedure
for the class of ¢-strongly pseudocontractive mappings in real Banach spaces.
Our main results improve and extend a lot of recent results.

1. Introduction

Suppose X is a real Banach space and T is a selfmap of X. Suppose zg € X
and z,41 = f(T,z,) defines an iteration procedure which yields a sequence of
points (r,) in X. Suppose F(T) = {r € X | Tz = z} # 0, and that (z,)
converges strongly to p € F(T'). Suppose (y,) is a sequence of points in X and
(€n) is a sequence in [0, +00) given by e, = ||yn+1 — F(T, yn)||- If limp—o00 € = 0
implies that lim, ,. y» = p, then the iteration procedure defined by r,; =
f(T,z,) is said to be T—stable or stable with respect to T (see [11]).

We say that the iteration procedure (z,) is almost T-stable or almost stable
with respect to T if o> &€, < oo implies that lim,_,. yn = p (see [21, p.319]).
It is clear that an iteration procedure (z,) which is T-stable is almost T-stable.
In [21, p.328] an example of almost T-stable mapping which is not T-stable was
presented.

Stability results for several iteration procedures for certain classes of nonlinear
mappings have been established in the recent papers by several authors see,
for example, [10], [11], [17], [19-21], [23], [29], and the references therein.
Harder and Hicks showed how such sequences (y,,) could arise in practice and
demonstrated the importance of investigating the stability of various iteration
procedures for various classes of nonlinear mappings.

Let X be a real Banach space. The normalized duality mapping J : X — 2%~
is defined by ‘

J(z) ={f € X" |{z, f) = l=II?, llzl| = lI£II}.
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where X™ denotes the dual space of X and (-,-) denotes the generalized duality
pairing. It is well known that J is bounded, J(az) = aJ(z) for all o €
[0,4+00), z € X and that X is uniformly smooth ( or equivalently, X* is a
uniformly convex Banach space ) if and only if J is single-valued and uniformly
continuous on bounded subsets of X.

An operator T with domain D(T) and range R(T) in X is called strongly
pseudocontractive if for all z,y € D(T) there exist j(z —y) € J(x —y) and ¢ > 1
such that

(To-Tyje-y) <l -y’ M

If, in the above definition, ¢t = 1, then T is said to be pseudocontractive operator.

T is called ¢-strongly pseudocontractive if for all z,y € D(T) there exist
j(z —y) € J(z — y) and a strictly increasing function ¢ : [0, 00) — [0, 00) with
#(0) = 0 such that '

(Tz =Ty, j(z - y)) < llz - ylI* - ¢(llz - yl)llz — yll. (2)

It is easy to see that the class of strongly pseudocontractive operators is a
proper subset of the class of ¢-strongly pseudocontractive operators ()

An operator T is called strongly accretive if for all z,y € D(T) there exist
Jj(z —y) € J(z — y) and a constant k£ > 0 such that

(Te =Ty, j(z—y)) 2 kllz —y|>. (3)

If, in the above definition, k = 0, then T is said to be accretive operator.

T is called ¢-strongly accretive if for all z,y € D(T) there exist j(z — y) €
J(z — y) and a strictly increasing function ¢ : [0, 00) — [0,00) with ¢(0) = 0
such that

(Tz —Ty,j(z - y)) 2 ¢(llz - yl))llz — yl|. (4)

If I denotes the identity operator, then it follows from inequalities ( 1)-(4) that
T is strongly pseudocontractive (respectively, ¢-strongly pseudocontractive) if
and only if I — T is strongly accretive (respectively, ¢-strongly accretive). Hence
the mapping theory for strongly accretive operators (respectively, ¢-strongly ac-
cretive) is closely related to the fixed point theory for strongly pseudocontractive
operators (respectively, ¢-strongly pseudocontractive). These classes of opera-
tors have been studied extensively by several authors (see, for example [1-6, 8,
14, 15, 17-22, 30, 32, 33, 35]). : :

In [17), [19-21] Osilike studied stability of certain Mann [16] and Ishikawa
iteration procedures for fixed points of Lipschitz strong pseudocontractions
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as well as ¢-strong pseudocontractions, and solutions of nonlinear accretive op-
erators and respectively ¢- accretive operators. In the authors among other
topics studied also stability of Kirk iteration procedure for fixed points of certain
contractive-type mappings which were studied by Harder and Hiks , Rhoades
[26-28] and Osilike [17]. In the author generalized results from using a
new iteration procedure.

That new iteration procedure was introduced in (see also [29]), for in-
vestigating of approximations of fixed points for nonexpansive mappings. This
procedure is defined by

En 1=t D TED (. T(EE Tan+(1—t*)zn +u)) .. )+ (1=t 2 +ul)+(1 -t zn +ullD

9 € X, (5)
n=1,2 3..., where (ts.j)) are real sequences in [0, 1] and (uszj)), j =1,k are given
sequences in X for a fixed natural number k.

The procedure generalizes Mann and Ishikawa iteration processes. In we
proved that under some conditions on (qu )), j = 1,k the iteration procedure
(5) converges strongly to a fixed point of nonexpansive mapping.

In this note we study the stability of iteration procedure (5) for the class
of ¢-strongly pseudocontractive mappings in arbitrary real Banach spaces. We

were motivated by [5] and [21].

2. Auxiliary results

In this section we gather several auxiliary results which we need in the sequel
and which are useful in general.
The following lemma is well known.

LEMMA A. Suppose that (a,) is a sequence of real numbers bounded from be-
low, such that

(Ve > 0)(3Ing € N)(VYn > ng)(Vk € N) anyr < an + €.
Then the finite limit lim,,_, a,, erists.

COROLLARY 1. (/82]) Suppose that {a,} and {b,} are two sequences of non-
negative numbers such that ani1 < an +by for alln > 1. If 3°2° | b, < o0, then
the finite limit lim,,_, . a,, ezists.

The following simple lemma is essentially proved in [2] and [9] together, see

also [15].
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LEMMA B. Let (a,), (bn) and (c,) be three non-negative real sequences satis-
fying the difference inequality

An+1 S (1 - tn)an + bn + Cn

with t, € [0,1], >0 o tn = 00, by = 0(t,) and 3.2 s cn < 0. Then lim,
a, =0.

LEMMA 1. Let (a,), (bn) and (c,) be three non-negative real sequences satis-
fying the difference inequality

n41 < (1 —=tn)an, + bn + Cn

witht, € [0,1], Y02 (tn = 00, by = O(t,) and 3, ¢n < 00. Then the sequence
(an) ts bounded.

Proof. Let M > 0 be such that |b,| < Mt, for all n € N U {0}. It is easy to
prove by induction that

n—1
an < max{M,ao} + Z Ci, n € N,
1=0

from which the result follows.

LEMMA 2. Let (a,), (bn), (t,), (8,) and (e,) be nonnegative sequences of real
numbers such that

(a) t,€[0,1],n € NU{0}, and t, = 0 asn — oo; .
(b) 8, = 0 asn — oo

(©) Xaio€n < oo; \

(d) (an) is bounded and liminf a,, = 0;

(e) lim,_o0(an —b,) =0;

(f) limpyeo(@nt1 —an) =0;

(8)

f1(bn)
fz(bn)

where fi and f; are nonnegative increasing function on [0,00) and f2(0) > 0.
Then lim,,_, a, = 0.

An+1 S an (1 - tn ) + tn(sn + En,

Proof. From the boundedness of the sequence (a,,) and (e) it follows that there
is a constant M > 0 such that b, < M for n € N U {0}. From the conditions of
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the theorem we have that for each £ > 0 there is an ng € N such that a,, < €
and

ad _ efi(e/4)
an — Qpy1 > “‘5/2; bn — an > —5/4; kz:;ek <& < W
for all n > nyg.
Using this and (g) we obtain
Ef1(€/4) — 2anof1(bno))
n, <e+ tno + Eng - (6)
= ( 2fa(M) °

We show that a,,+1 < € +€,,. Assume the contrary that an,4+1 > € +€n,. Then
we have an, > ano+1 —€/2 > £/2 and consequently bp, > an, —€/4 > /4. From
this and (6) we obtain a,,+1 < € + £,,, which is a contradiction.
Similarly by induction we can obtain
| k—1
Ono+k S €+ Z Eng+i < 26
1=0

for all £ € N. From this the result follows.

In the following lemmas we give some estimates in Banach spaces. For given
sequences (z,) C X, (qu)) C X,1i=1,...,k, real sequences (tgf)), i=1,...,k
and operator T : X — X, let us define

:L‘Szi) = ts:+1)T(x£zi+l)) +(1- t1(1i+1))37n + U1(1i+1)a i=1,...,k-1,

xs;k) = Tn,
for n € N. .
Similarly for given sequences (y,) C X, (ugf)) C X,i1=1,...,k, real se-
quences (t£f )), t=1,...,k and operator T' : X — X, we can define the sequences

v i=1,.. k.
We can easily prove the following lemma.

LEMMA 3. Let X be a normed space and let T be a selfmap of X. Assume a
sequence. (pn) in X satisfies the following recurrent formula

Prn=(1=tO)yn + tPTED) +u, n=0,1,..., (7)
where (y,,) is a sequence in X, (ul), i = 1, K, are k sequences in X and (t3)), i =

1,%, are k real sequences. Then

Yo = (1 + tg))Pn + tSzl)(I —T-~vDp,—(1- 7)t1('zl)yn
+(2 =D (gn — TyD) + 0 (Tpn — TyY) — (1 + (2 = NP )ul)
(8)
foralln > 1 and v € R.
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COROLLARY 2. Let X be a normed space and let T' be a selfmap of X. Assume
a sequence (z,) in X satzsﬁes recurrent formula (5), where (u )), i=1,k, arek
sequences in X and (tn ), i = 1, k, are k real sequences. Then

n = (L+ ) enps + tOI = T = YD&ngs — (1 - Nt Pz,
+ (2= D) (@0 = TzD) + 11 (Tzpis — T2D) — (14 (2 = 1)t )uld)
| (9)

foralln >1 and v € R.
Proof. Set p, = z,+1 and y, = z,, in Lemma 3|
The following lemma is essentially proved in [21, p.323] by Kato’s lemma [13].

LEMMA 4. Let X be a Banach space, T be a ¢-strongly pseudocontractive self-
map of X. Then for all z,y € X and r > 0 holds

|z —yll <|le —y +r((I ~T = y(z,y) )z — (I = T — v(z,y))y)|l,

where (z,3) = d(ll - yI)/(1 + ¢(lIz — yl]) + Iz — yll)-

LEMMA 5. Let X be a Banach space, (p,) be the sequence in Lemma 8 and let
T be a ¢-strongly pseudocontractive selfmap of X with F(T) # 0. If p € F(T),
then

1+ 81— y,) C=wm)E&?
llpn —pl| < 1+ t(l) llyn — pll + 1+ (1) ||yn |
(1) (1) ‘
2 1 1+tn’(2—v),

+m”TPn Ty + L+ ¢D luD||, - (10)
where Yn, = ¥(Pn, p)-
Proof. We have

p=1+tMp+tPUI —T — v D)p - (1 — 7,)tPp. (11)

By (8) and we obtain

Yn =P =1+t (pn —p) +t (I =T = yl)pp = I = T — v,D)p))
— (1= 1)t (Yn — D) + (2 = ) D)2 (yn — TyP) + tO (T, — TyD)
— (D@ — ).
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From this and by we obtain

llyn — pl| > 1+ t)||pn — 2l = (1 = )t P |yn — 2|
—(2 = 1) (D)2 ||yn — TyD|| = t O || Tpn — Ty
—(1+ (2 = )t D], (12)

from which the result follows.

LEMMA 6. Let X be a normed space and T : X — X be a Lipschitzian map-
ping with F(T ; # 0. Assume a sequence (z,) in X satisfies recurrent formula
(5), where (un ), i = 1,k, are k sequences in X and (tsl)) i = 1,k, are k real
sequences in [0,1]. Then

lznsr —pll < [(1—20) + LA - t?) + tDL((1 - ) +---
+tE VL1 = t®) + B ). )] ||zn — Dl
HluP|] + P L([uP]] + D L@ + - - + tEDLuP))...)
(13)

for alln > 1 and all p € F(T).

Proof. Let p be a fixed point of T. Since T is a Lipschitzian mapping, by (5) we
get

|Za+1 = pl| = |(1 — tP)zp + P TTE +uP) - pl]
= (|1 =t (@n — p) + P (T2 - Tp) +u||
< (1= tO)lzn — pl| + tPN Tz — Tpl| + [P
< (1= tD)len - pl| + P LYz — pl| + [[ul]], (14)

and similarly, for i = 1,k — 1, we obtain
2 = pll = [I(1 = t8HD)zp, + tFDTEHD 4w+ — p||
< @ =t§ ) len — pll + t§TVL|[2EHD — pl| + [l (15)
Especially for i = k — 1 we have

2l = pll < @ = ) l2n — pll + O LI — pl| + [P
= (1= t{)|lzn — pl| + t39 Lllen — pl| + [[ui?]], (16)

since zg, ) = =z, forn € N.
From [14), (15) and (16) the result follows.
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COROLLARY 3. Let X be a normed space and T : X — X be a Lipschitzian
mapping with constant L > 1 and with FgT) # 0. Assume a sequence (z,) in X
satzsﬁes recurrent formula (5), where (tn ), i = 1,k are real sequences in [0,1]
and (u ) i =1,k are sequences in X satisfying
t) 50 as n—o oo
luP|| 50 as n— oo, for i=2F.

Then

lIZnt1 = pll < L* ||zn = pl| + [[u]]] + o(t])
for alln > 1 and allp € F(T).

Similarly to we can prove the following lemma.

LEMMA 6a). Let X be a normed space and T : X — X be a Lipschitzian
mapping with F(T) # (0. Assume a sequence (zn) in X satisfies recurrent formula
(5), where (u,(1 ), i = 1,k, are k sequences in X and (tn)) i=1, 1,k, are k real
sequences in [0,1]. Then
el = pll < [(1 - t§FY) + tGFVL((1 - D) + DL - D) + -
VL1 - #9) + 1P L)...)] ||zn — pl|
HuG DN + VLG + -+ tE DL ®)) )
(17)
fori=1,k—1 and for alln > 1 and all p € F(T).
LEMMA 7. Let X be a normed space and T : X — X be a Lipschitzian map-
ping with F(T; # 0. Assume a sequence (z,) in X satisfies recurrent formula
(5), where (ugl ), i = 1, k, are k sequences in X and (t(’)), i = 1,k, are k real
sequences in [0,1]. Then ‘
120 = T2 < (L+ L((1 = #2) + 6P L(A - D) + -
&L -t P) +tPL)...)) ||lzn — ]
+L[|[uP|| + D LD + - + tEDL®..)]
, » (18)
Jori=1,k—1 and for alln > 1 and all p € F(T).
Proof. Since T is a Lipschitzian mapping, we have

_ llzn = T2 || < ||zn — pl| + L2 - pl|.
By a) the result follows.
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"LEMMA 8. Let X be a normed space and T : X — X be a mapping with
F(T) # 0. Assume a sequence (p,) is defined as in Lemma 3, where (ugl)) i=
1,k, are k sequences in X and (tsl)) i = 1,k, are k real sequences in [0,1]. Then

l1pn — 411 < 112 = D] lyn — pll + tDNTUD — pl] +

+tNTyE - pl| + [l + |[ulP]]. (19)
Proof. We have
P — yP1 = 1R — t0) (yn — p) + tD (TyH — p) —

—tD(Ty? - p) +ul) —u?d||
< 8D — tO|{lyn — pll + DN Ty — ol +
+tD|| Ty — pl| + D] + [P,

as desired.

COROLLARY 4. Let X be a normed space and T : X — X be a Lipschitzian
mapping with F(T) # 0. Assume a sequence (z,) in X satisfies recurrent formula
(5), where (usz ), i = 1,k, are k sequences in X and (tS,)) i = 1,k, are k real
sequences in [0,1]. Then

znts = 2Pl < (62 = 80| |2n ~ pll + tD LYz — pl| +
+HP L2 — pll + ]| + [u@]]-

3. Main results

We are now in a position to formulate and to prove our results. The following
theorem is the main result in this paper. The proof of this result relies among
other things on Lemma 2. Our starting point for this result was Theorem 2.1
in [5]. Before we formulate and prove the result we want to point out that it is
not only a generalization of Theorem 2.1 in [5] for the new iteration method (5).
In fact, the most important fact is that it generalizes the theorem in the case of
Ishikawa iteration process with errors (k = 2).

THEOREM 1. Let X be an arbitrary Banach space and T : X — X be an

uniformly continuous ¢- strongly pseudo-contractive mapping with bounded range

and F(T) # 0. Let (u{?), i = 1, k, be k sequences in X and (t(’)), i=1,k, bek
real sequences in [0, 1] satisfying the following conditions:

(@) T2l < oo;
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(b) limn_ye |[ul]| =0, i = 2, F;
(©) limp,ety =0, i=T1,Fk;
() o2t = oo.

Let o be an arbitrary point in X. Suppose (x,,) is a sequence in X which satisfies
recurrent formula (5), (yn) is a sequence in X,

en = |lynt1 — (1= t)yn — DTy —ud||, n=0,1,...

Then
(I) The sequence (z,,) is almost T stable.
(I1) limg,oyn =p € F(T) implies lim,,_,o. €, = 0.

Proof. (I) Assume that ) .° &, < co. First we show that the operator T has
a unique fixed point. Otherwise there are p,q € F(T'), p # q. From (2) we have

(Tp—Tq,j(p—a)) <llp—all> — ¢(|lp — ql)|lp — 4|

and consequently ¢(||p—g||)||p—g|| < 0. Since ¢ is nonnegative strictly increasing
we obtain ||p — ¢|| = 0 i.e. p = ¢, which is a contradiction with the assumption

p#q.
Now we show that the sequence (y,) is bounded. We have
lyn+1 = 2l = lyn+1 — (1 = 8y — D TP —u)| -
+HI(1 = t8) (yn — p) + D (TyP - p) +ul)|
< (1= tD)llyn — pll + DTy = pll + [[ul)][ + &n
< (1= t)lyn — Pl + DM + [[ulD]] + €n

where M = SUP,eNU{0} 1Ty — p|| < oo. By Lemma 1 we get the boundedness
of (yn). Let M; = sup {||y( - pll, ||Ty(’) — ||} < 0o, where we take supremum
overi € {1,...,k} and n € N U {0}.
Note that
llyn+1 = DIl < [lynt1 — (1 = t)yn — tHOTYD — ul)|
HI(1 = t)yn + tDTYD + ul) - pi|
= |lpn — pl| + €n.

Form and the conditions of the theorem we obtain

1+t5901 =7,
llyn+1 =Pl < 1 +(t(1) iy = Il + @ = 1) (692l — TyO||

O Tp = TyO |+ 1+ 1D0@ = 3)) w460 (20)
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where v, = (pn, p)-
Using the fact that v, € [0,1),n € N, (20) and the inequality

1+tPa - ) _
14+¢W

— tMa,, + (tD)? (21)

we obtain that for sufficiently large n the following inequality holds

yn+1 — pll < (1 = 7t + 3¢ lyn — pl| + tP || Tpn — TyY||
+4(tMY2 My + 3|[ulD]| + en. (22)

By and the conditions of the theorem we see that ||p, — y,(11)|| -0
as n — 0o. Hence from the uniform continuity of 7" it follows

|ITpn — TyP)| -0 as n— oo.

Now we show that liminf +, = 0. Otherwise liminf vy, = v > 0 and by (22)
we have that for all € € (0,v/2) and for sufficiently large n

Hynt1 — pll < (1= (v = )tP)lyn — pl| + t6,

+4(t0)* My + 3)[ul)|| + en, (23)
holds, where 4, ||Tp - Ty(l)H By Lemma B we obtain ||y, — p|| = 0 as

n — 00. By [Lemma 5 and the conditions of the theorem we obtain ||p, —p|| = 0
as n — 0o. Hence v = 0, arriving at a contradiction.

Since liminf~y, = 0 we have liminf||p, — p|| = 0. Furthermore, it follows
from the inequality

llpn = Pl =t UITYD ~ pll + Iy = pI) = [[wPI] < Hlyn — 2l
< llpn = Il + 87 (174D = pll + [y = plI) + ]|

that liminf ||y,, — p|| = 0, moreover
Jim ({ly - pll - [lpa = 2ll) = 0.
On the other hand we have
~ 11 (= TyD) = w1 < g1 — vl < £+ (160 (@ — ToD) = ulD|l
Hence lim,_, o ||yn+1 — ¥n|| = 0 and consequently

lim (|{yn+1 — pl| = llyn — pl|) = 0.

n—oco
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Let an, = |lyn — p|| and b, = ||pn — p||- Then (22) can be written in the
following form |

| b) |
< _ay_ 8n (1) 5(1) o (1)
Qnt1 S Qn (1 tn 1+ ¢(bn) + bn + tn 611. +en’s

where 65 = 0 as n — oo and Yoo e < .

Since all conditions of are satisfied we obtain lim,_,. a, = 0, as
desired.

(IT) Let limp_yoo ¥n = p € F(T), then by some simple calculations and by
the conditions of the theorem we obtain

€n = ||yns1 — (1 = tP)yn — tOTYP — V||
< |Yna1 — 2l + X =t lyw — pl| + tP Ty — pl| + [JulP]] = 0

as n — 00, as desired.

The following theorem is a natural generalization of in [21]. The
proof of the theorem follows the lines of the proof of that Theorem with necessary
modifications. Some details in the proof are shorter since we use lemmas from
section 2.

THEOREM 2. Let X be an arbitrary Banach space and T : X — X be a
Lipschitz ¢-strongly pseudo-contractive mapping with F(T) # 0. Let (qu) ), i =
1,k, be k sequences in X and (tgf )), i =1, k, be k real sequences in [0, 1] satisfying
the following conditions:

@) T2l <oo,i=T12;

(b) limpseo |[u¥|| =0, i = 2,F;
(©) limpoo ts) =0, i =1, k;
(d) o2, 92 < oo;

(&) Y02, (t4))? < oo

Let z¢ be an arbitrary point in X. Suppose (z,), (ys,i)) i=1,...,k and (,) are
as in Theorem 1.
Then

(I) Ifpe F(T), then
yn+1 — 2l € @ = t 7 (Pn, p))llyn — pll + C1ED)?|lyn — pl|
+Cot Ot 2 ||y — pl| + 3||uP|| + 3L||uP|| + €n, (24)

for some C1,C3 > 0.
(II) The sequence (x,) is almost T stable.
(III) lim, oo yn = p € F(T) implies lim,, o €, =0
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Proof. (I) Asin we obtain F(T) is a singleton if F(T) # 0. Also

lyn+1 — Pl < [lpn = Il + €n-
By and the conditions of the theorem we obtain

(1)
1+t91—n,
. ((1) ) 1y — pll + @ = 1) G2 lym — TyD|
1+ 14

A+t Llpn — y ) + A+ P @ = )] + en

where v, = ¥(pn, D).
Applying Lemma 7| and Lemma § to [24) we obtain the result.

(IT) From [(23) we have
lynt1 — Bl < (1 + 8)llyn — pl| + 3|[ulP]] + 3L||u|| + &n,
where 3">° 4, < co. From this and we obtain that the sequence (y,)

n=0
is bounded above by some K. By [Corollary 1| we obtain that there is a finite limit
limy,_ ||yn — p|| = a. We prove that a = 0. Assume that a > 0. By
a) and since (y,) is bounded, the sequence ||Ty$.1) — p|| is also bounded. From

the inequality

A=t |yn =l =t DTy = p|| < |Ipn—pl| < (1=tD)||yn —pl|+tD||1TyL —pl|

and since ts,l) — 0 as n = oo we obtain that

Nyn+1 —p|| <

lim |[pn — pl| = a.
n-—oo
Hence ||p, — p|| is bounded i.e. there are constants m, M > 0 such that

m<|lpn—pl| <M for n>ng
then

¢(m) =M; for n>ng

¥(Pn,p) > TF (M) <3 —

so that implies that
lynt1 — pll < @ =t My)||yn — pl| + CL(ED)2K
+CotDtP K + 3||ull|| + 3L|[ul®|| + en. (25)
From and Lemma B the result follows.
(III) Let lim, ,o yn = p € F(T), then as in previous theorem we obtain
en = |lynt1 — (1 =t )yn — tP Ty — )|
< lynss = pll + (1 = ) lyn — pl| + D LIS = pl| + [[uP]| = 0

as n — 00, as desired.
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REMARK 1. For ¢, = 0, n > 0, we obtain that under conditions of
1or the sequence (z,) converges strongly to p € F(T) and F(T) is
a single set.

REMARK 2. The reader can state and prove the corresponding results for ¢-
accretive operators.

[17]
[18]

[19]

References

S. S. Chang, On Chidume’s open questions and approximate solutions of multivalued
strongly accretive mapping equations in Banach spaces, J. Math. Anal. Appl. 216 (1997),
94-111.

C. E. Chidume, Iterative approximation of fixed points of Lipschitzian strictly pseudo-
contractive mappings, Proc. Amer. Math. Soc. 99 (1987), 283-288.

C. E. Chidume, An iterative proces for nonlinear Lipschitzian strongly accretive map-
pings in LP spaces, J. Math. Anal. Appl. 151 (1990), 453-461.

C. E. Chidume, Approximation of fixed points of strongly pseudocontractlve mappings,
Proc. Amer. Math. Soc. 120 (1994), 545-551.

C. E. Chidume and M. O. Osilike, Iterative solutions of nonlinear accretive operator
equations in arbitrary Bahach spaces, Nonlinear Anal. TMA 36 (1999), 863-872.

K. Deimling, Zeroes of accretive operators, Manuscripta Math. 13 (1974), 365-374.

L. Deng, Convergence of the Ishikawa iteration process for nonexpansive mappings, J.
Math. Anal. Appl. 199 (1996), 769-775.

L. Deng and X. P. Ding, Iterative approximation of Lipschitz strictly pseudo-contractive
mappings in uniformly smooth Banach spaces, Nonlinear Anal. TMA 24 (1995), 981-987.
J. C. Dunn, Iterative construction of fixed points for multivalued operators ot the mono-
tone type, J. Funct. Anal. 27 (1978), 38-50.

A. M. Harder and T. L. Hicks, A stable iteration procedure for nonexpansive mappings,
Math. Japon. 38 (1988), 687-692.

A. M. Harder and T. L. Hicks, Stability results for fixed point iteration procedures, Math.
Japon. 38 (1988), 693-706.

S. Ishlka.wa, Fixed points by a new iteration method Proc. Amer. Math. Soc. 44 (1974),
147-150.

T. Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan 18/19
(1967), 508-520.

L. Liu, Approximation of fixed points of a strictly pseudocontractive mapping, Proc.
Amer. Math. Soc. 125 (5) (1997), 1363-1366.

L.-S. Liu, Fixed points of local stri‘ctly pseudo-contractive mappings using Mann and
Ishikawa iteration with errors, Indian J. Pure. Appl. Math. 26 (7) (1995), 649-659.

W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506-
510.

M. O. Osilike, Stability results for the Ishikawa fixed point iteration procedures, Indian
J. Pure Appl. Math. 26 (1995), 937-945.

M. O. Osilike, Iterative solution of nonlinear equations of the ¢-stongly accretive type,
J. Math. Anal. Appl. 200 (1996), 259-271.

M. O. Osilike, Stable iteration procedure for quasi-contractive maps, Indian J. Pure



[22]

(23]

[24]
(25]
[26]
[27]
(28]
[29]
(30]
(31]
[32]
(33]
[34]

(35]

¢-STRONGLY PSEUDOCONTRACTIVE MAPPINGS 85

Appl. Math. 27 (3) (1996), 259-271.

M. O. Osilike, Stable iteration procedures for nonlinear pseudocontractive and accretive
operators in arbitrary Banach spaces, Indian J. Pure Appl. Math. 28 (8) (1997), 1017-
1029. )

M. O. Osilike, Stability of the Mann and Ishikawa iteration procedures for ¢-strong
pseudocontractions and nonlinear equations of the ¢-stongly accretive type, J. Math.
Anal. Appl. 227 (1998), 319-334.

M. O. Osilike, Iterative solutions of nonlinear ¢-stongly accretive operator equations in
arbitrary Bahach space, Nonlinear Anal. TMA 36 (1) (1999), 1-9.

M. O. Osilike and A. Udomene, Short proofs of stability results for fixed point iteration
procedures for a class of contractive-type mapping, Indian J. Pure Appl. Math. 30 (12)
(1999), 1229-34.

L. Qihou, A convergence theorem of the sequence of Ishikawa iterates for quasi-
contractive mappinng, J. Math. Anal. Appl. 146 (1990), 301-305.

S. Reich, An iterative procedure for construction zeros of accretive sets in Banach spaces,
Nonlinear Anal. TMA 2 (1978), 85-92.

B. E. Rhoades, Fixed point theorems and stability results for fixed point iteration pro-
cedures, Indian J. Pure Appl. Math. 21 (1990), 1-9.

B. E. Rhoades, Some fixed point iteration procedures, Int. J. Math. Math. Sci. 14 (1991),
1-16.

B. E. Rhoades, Fixed point theorems and stability results for fixed point iteration pro-
cedures II, Indian J. Pure Appl. Math. 24 (1993), 691-703.

S. Stevi¢, On stability results for a new approximating fixed points iteration process,
Demonstratio Math. 31 (4) (2001), 873-880.

S. Stevié, Stability of a new iteration method for strongly pseudocontractive mappings,
Demonstratio Math. 36 (2) (2003), 417-424.

S. Stevi¢, Approximating fixed points of nonexpansive mappings by a new iteration
method, Far East J. Math. Sci. (to appear).

K. K. Tan and H. K. Xu, Iterative solution to nonlinear equations and strongly accretive
operators in Banach spaces, J. Math. Anal. Appl. 178 (1993), 9-21.

X. Weng, Fixed point iteration for local strictly pseudocontractive mapping, Proc. Amer.
Math. Soc. 113 (1991), 727-731. ,

Z. B. Xu and G. F. Roach, Characteristics inequalities of uniformly convex and uniformly
smooth Banach spaces, J. Math. Anal. Appl. 157 (1991), 189-210.

H. Zhou and Y. Jia, Approximation of fixed points of strongly pseudo-contractive maps
without Lipschitz assumption, Proc. Amer. Math. Soc. 125 (6) (1997), 1705-1709.

Mathematical Institute of Serbian Academy of Science,
Knez Mihailova 35/1, 11000 Beograd, Serbia
E-mail: sstevicOptt.yu; sstevo®matf.bg.ac.yu



	1. Introduction
	2. Auxiliary results
	3. Main results
	THEOREM 1. ...
	THEOREM 2. ...

	References

