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Abstract. Every circular helix in E3 is a typical example of Bertrand curve.
The circular helix is one in a family of special Frenet curves. We prove that
no special Frenet curve in E™ (n > 4) is a Bertrand curve. Thus the notion of
Bertrand curve stands only on E? and E3. In E%, we can show an idea of a
generalization of Bertrand curve.

1. Introduction

We denote by E® a 3-dimensional Euclidean space. Let C be a regular C°°-
curve in E3, that is, a C*°-mapping ¢ : L — E3 (s + c(s)). Here L C R is some
interval, and s(€ L) is the arc-length parameter of C.- Following Wong and Lai
[7], we call a curve C a C*°-special Frenet curve if there exist three C'*-vector
fields, that is, the unit tangent vector field t, the unit principal normal vector
field n, the unit binormal vector field b, and two C*-scalar functions, that is,
the curvature function k(> 0), the torsion function 7(# 0). The three vector
fields t, n and b satisfy the Frenet equations. A C°-special Frenet curve C is
called a Bertrand curve if there exist another C°-special Frenet curve C and
a C*-mapping ¢ : C — C such that the principal normal lines of C and C at
corresponding points coincide. Here, the principal normal line of C' at c(s) is
collinear to the principal normal vector n(s) . It is a well-known result that a
C*-special Frenet curve C in E3 is a Bertrand curve if and only if its curvature
function x and torsion function 7 satisfy the condition ax(s) + br(s) = 1 for all
s € L, where a and b are constant real numbers.

In an n-dimensional Euclidean space E™, let C be a regular C*°-curve, that is,
a C°°-mapping ¢ : L — E™ (s — c(s)), where s is the arc-length parameter of C.
Then we can define a C*°-special Frenet curve C. That is, we define t(s) = ¢'(s),
n;(s) = (1/l|c"(s)|]) - ¢"(s), and we inductively define nix(s) (k =2,3,---,n—1)
by the higher order derivatives of ¢ (see next section, in detail). The n vector
fields t, ny, - - -, n,_; along C satisfy the Frenet equations with positive curvature
functions ki, - -+, kn—2 of C and positive or negative curvature function k,_; of
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C . We call n; the Frenet j-normal vector field along C, and the Frenet j-normal
line of C' at c(s) is a line generated by n;(s) through c(s) (j = 1,2,---,n — 1).
The Frenet (j, k)-normal plane of C' at c(s) is a plane spanned by n;(s) and
n(s) through c(s) (j,k=1,2,---,n—1;j # k) . A C*-special Frenet curve C
is called a Bertrand curve if there exist another C*-special Frenet curve C and
a C*°-mapping ¢ : C — C such that the Frenet 1-normal lines of C and € at
corresponding points coincide. Then we obtain

THEOREM A. Ifn > 4, then no C*-special Frenet curve in E™ is a Bertrand
curve.

This is claimed in [1] (see p. 176) with different viewpoint, thus we prove the
above in section 3.

We will show an idea of generalized Bertrand curve in E*. A C*-special
Frenet curve C in E* is called a (1, 3)-Bertrand curve if there exist another C*°-
special Frenet curve C and a C*®-mapping ¢ : C — C such that the Frenet
(1,3)-normal planes of C and C at corresponding points coincide. Then we
obtain

THEOREM B. Let C be a C™-special Frenet curve in E* with curvature func-
tions ki,k2,k3 . Then C is a (1,3)-Bertrand curve if and only if there exist
constant real numbers «, 3,7,6 satifying

aky(s) — Bks(s) #0 (a)
aky(s) + y{akz(s) — Bks(s)} =1 (6)
Yk1(8) — k2(s) = dks(s) . (c)

(v* = Dk1(8)ka2(s) + v{(k1(5))? — (k2(s))? — (ks(s))?} # 0 (d)
for all s € L. 4

This is proved in section 4.

We remark that if the Frenet j-normal vector fields of C and C are not
vector fields of same meaning then we can not consider coincidence of the Frenet
1-normal lines or the Frenet (1,3)-normal planes of C and C. Thus we consider
only special Frenet curves.

In section 5, we give an example of (1, 3)-Bertrand curve.

In the present paper, we shall work in C®-category.
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2. Special Frenet curves in E™

Let E™ be an n-dimentional Euclidean space with Cartesian coordinates
(z',2%,...,2™) . By a parametrized curve C of class C*, we mean a. mapping c
of a certain interval I into E™ given by

' (t)
cy=| "0 | wer
zn(t)
d c(t) dc(t) dc(t)\? .
Ifl—dt—’ =<T’ 71 > # 0 for all t € I, then C is called a regular

curve in E™. Here (-,-) denotes the Euclidean inner product on E™. We refer
to[2] for the details of curves in E™.
A regular curve C is parametrized by the arc-length parameter s, that is,

d
c:L— E™ (L>sw+c(s) € E™)([1]) . Then the tangent vector field a—: along
C has unit length, that is, ‘ d;(:) =1for all s € L.

Hereafter, curves considered are regular C*°-curves in E™ parametrized by
the arc-length parameter. Let C be a curve in E™, that is, c(s) € E™ for all

~s€L. Let t(s) = d c(s)

vector field along C, and we assume that the curve C satisfies the following
conditions (C;) ~ (Cpn—-1):

for all s € L. The vector field t is called a unit tangent

d t(s) d? c(s)
1 k = = L.
(C1) : ki(s) ] 75 732 >0 forall se
Then we obtain a well-defined vector field n; along C, that is, for all s € L,
1 d t(s)
nl(s) - kl(S) ds )

and we obtain,

<t(3):n1(s)) =0, (nl(s),nl(s» =1

(Co) : ka(s) = ” d 31;8) +ki(s)-t(s)]| >0 forallseL.
Then we obtain a well-defined vectlor field n, along C, that is, for all s € L,
1 d n; (s) )
= . .t
e D) (S) kz(s) ( d s + kl (S) (S) ;

and we obtain, for i,j = 1, 2,

(t(s),mni(s)) =0, (mi(s),n;(s)) = &,
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where §;; denotes the Kronecker’s symbol.
By an inductive procedure, for £ = 3,4,---,n — 2,

(Cg) : kg(s) = Ei—né‘Tl(s) + kg_l(s) . ng_g(s) >O0forall se€ L.

Then we obtain, for £ = 3,4,---,n — 2, a well-defined vector field n; along
C, that is, for all s € L

and fori,j =1,2,---,n—2
(t(s),;mi(s)) =0,  (ny(s),m;(s)) = &y;.

And p
(Cact) : kn_i(s) = <—“;‘;T2(s),nn_1(s)> £0forallseL,

where the unit vector field n,_; along C is determined by the fact that the
frame {t, n;, ---, n,_;} is of orthonormal and of positive orientation. We
remark that the functions k,,- -, k,_5 are of positive and the function kn_q is
of non-zero. Such a curve C is called a special Frenet curvein E™ ([7]). The term

“special” means that the vector field n;; is inductively defined by the vector
fields n; and n;_; and the positive functions k; and ki;—1. Each function k; is
called the i-curvature function of C (i = 1,2,--- ,n —1). The orthonormal frame
{t,ny,---,n,_1} along C is called the speczal Frenet frame along C ([7]).

Thus we obtain the Frenet equations ([1], [2], [3], [4]):

d t(s)

75 = ki(s) mu(s)
d_:i‘ls(_sl = —k1(8) - t(s) + k2(s) - ma(s)
dg_‘s(s) = ~ke(s) - me—1 + keta(s) - nys (9)
_cl_r;;,i;;(g)_ = —kn-2(5) *Ny_3(8) + kn_1(5) - Dp_1(s)
.d_‘_‘%(_sl = —kn-1(8) - nn—2(s)

for all s € L. And, for j = 1,2, ---, n — 1, the unit vector field n; along C
is called the Frenet j-normal vector ﬁeld along C. A straight line is called the
Frenet j-normal line of C at c(s) (j = 1,2,---,n —1 and s € L), if it passes
throught the point c(s) and is collinear to the Jj-normal vector n;(s) of C at

c(s).
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Remark. In the case of Euclidean 3-space, the Frenet 1-normal vector fields n; is
already called the principal normal vector field along C, and the Frenet 1-normal
line is already called the principal normal line of C at c(s) ([3], [4])-

For each point ¢(s) of C, a plane throught the point c(s) is called the Frenet
(4, k)-normal plane of C at c(s) if it is spaned by the two vectors n;(s) and n(s)
(J,k=1,2,---,n—-1;j <k).

Remark. In the case of Euclidean 3-space, 1-curvature function k; is called the
curvature of C, 2-curvature function k, is called the torsion of C, and (1,2)-
normal plane is already called the normal plane of C at c(s) ([3], [4)]).

3. Bertrand curves in E™

A C*-special Frenet curve C in E™ (c: L — E™) is called a Bertrand curve
if there exist a C°-special Frenet curve C (¢ : L — E™) , distinct from C, and a

regular C*-map ¢ : L = L (3 = ¢(s), <p( ) # 0 for all s € L) such that curves

C and C have the same 1-normal line at each pair of corresponding points c(s)
and €(5) = €(y(s)) under . Here s and 5 are arc-lenght parameters of C and
C respectively. In this case, C is called a Bertrand mate of C ([3], [4]). The
following results are well-known ([3], [4]):

THEOREM (the case of n = 2). Every C>®-plane curve is a Bertrand curve.

THEOREM (the case of n = 3). A C°-special Frenet curve in E3 with 1-
curvature function ki and 2-curvature function ky is a Bertrand curve if and
only if there exists a linear relation

ak;(s) + bka(s) =
for all s € L, where a and b are nonzero constant real numbers.

The typical example of Bertrand curves in E3 is a circular helix. A circular
helix has infinitely many Bertrand mates ([3], [4]).
We consider the case of n > 4. Then we obtain A.

Proof of Theorem A. Let C be a Bertrand curve in E™ (n > 4) and C a Bertrand
mate of C. C is distinct from C. Let the pair of c(s) and &(3) = c(<p(s)) be of
corresponding points of C and C. Then the curve C is given by

&(3) = &(p(s)) = c(s) + a(s) - ny (s) (3.1)
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where a is a C*°-function on L. Differentiating with respect to s, we obtain

d &(3)
ds

=c'(s) + a'(s) - n;(s)
F=p(s)

@'(s) -
+a(s) - nj(s).

Here and hereafter, the prime denotes the derivative with respect to s. By the
Frenet equations, it holds that

©'(s) - t(p(s)) = (1 — a(s)k1(s)) - t(s) |
+a'(s) - n1(s) + a(s)ka(s) - nz(s).

Since (t((s)), n1(¢(s))) = 0 and 11 (p(s)) = +n;(s), we obtain, for all s € L,
a'(s) =0,

that is, a is a constant function on L with value o (we can use the same letter
without confusion). Thus are rewritten as

(3) = &(p(s) = e(s) + - m(s), Gy
and we obtain
#'(9) - E(p(s)) = (1 - aky(5)) - £(s) + aky(s) - ma(s) (32)

for all s € L. By (3.2), we can set
t(p(s)) = (cos8(s)) - t(s) + (sin8(s)) - na(s), (3.3)
where 6 is a C°°-function on L and

cos0(s) = (1 — aki(s)) /¥ (s) (3.4.1)

sin(s) = aka(s)/¢'(s). (3.4.2)

" Differentiating (3.3) and using the Frenet equations, we obtain

k1(0(8))¢' (s) - 1 (¢(s))

= d%sse(s_)_ . t(S) |

+(k1(s) cos8(s) — k2(s) sinf(s)) - n; (s)
d siné(s)

+_TS—_ i ¢ D) (S)

+k3(s)sin6(s) - nz(s).
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Since n; (p(s)) = £n;(s) for all s € L, we obtain
ks(s)sinf(s) = 0. (3.5)

By k3(s) # 0(Vs € L) and [3.5), we obtain that sinf(s) = 0. Thus, by
kz(s) > O(Vs € L) and [(3.4.2), we obtain that & = 0. Therefore, (3.1)' im-
plies that C coincides with C. This is a contradiction. This completes the proof
of A.

4. (1,3)-Bertrand curves in E*

By the results in the previous section, the notion of Bertrand curve stands
only on E? and E®. Thus we will try to get the notion of generalization of
Bertrand curve in E™(n > 4).

Let C and C be C*-special Frenet curves in E* and ¢ : L = L aregular C°°-
map such that each point c(s) of C corresponds to the point &(5) = &(x(s)) of C
for all s € L. Here s and 5 are arc-length parameters of C' and C respectively. If
the Frenet (1,3)-normal plane at each point ¢(s) of C coincides with the Frenet
(1, 3)-normal plane at corresponding point &(3) = &(¢(s)) of C for all s € L,
then C is called a (1,3)-Bertrand curve in E* and C is called a (1, 3)-Bertrand
mate of C. We obtain a characterization of (1, 3)-Bertrand curve, that is, we

obtain B.

Proof of Theorem B. (i) We assume that C is a (1, 3)-Bertrand curve parametrized
by arc-length s. The (1,3)-Bertrand mate C is given by

€(3) = &(p(s)) = c(s) + a(s) - n1(s) + B(s) - n3(s) (4.1)

for all s € L. Here o and B are C°°-functions on L, and § is the arc-legnth
parameter of C. Differentiating with respect to s, and using the Frenet
equations, we obtain

©'(s) - 8(p(s)) = (1 — a(9)k1(5)) - t(s) + a'(s) - m1(s)
+(a(s)kz(s) — B(s)ks(s)) - n2(s) + B'(s) - ns(s)

for all s € L.
Since the plane spanned by n; (s) and n3(s) coincides with the plane spanned
by i1 (p(s)) and n3(p(s)), we can put

i (p(s)) = (cos8(s)) - n1(s) + (sinb(s)) - n3(s) ,(4'2.1)

n3(p(s)) = (—siné(s)) - ny(s) + (cos6(s)) - n3(s) (4.2.2)
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and we notice that sinf(s) # 0 for all s € L. By the following facts

0= (¢'(s) - t(p(s)), B1(0(s))) = &/ (s) - (cos8(s)) + B'(s) - (sin(s))

0 = (¢'(s) - t(p(s)), Bs(p(s))) = —'(s) - (sinb(s)) + B'(s) - (cos B(s)),
we obtain
a'(s)=0, B'(s)=0,

that is, o and 8 are constant functions on L with values a and 3, respectively.
Therefore, for all s € L, (4.1) is rewritten as

5(8) = (p(s)) = e(s) + - my(s) + B - ms(s), @Iy
and we obtain
P(8) - E(s) = (1 - aks(5)) - () + (aka(s) — Phs(s)) -mas).  (43)
Here we notice that
(¢'(9)? = (1= aky (5))? + (aka(s) — By (s))? # 0 (44)
for all s € L. Thus we can set
E(p(s) = (cos 7(5)) - t(s) + (sin(s) - ma(s) (43)

and

cos7(s) = (1 - aki(s))/(¥'(s))
sinT(s) = (aka(s) — Bks(s))/(¢'(s))

where 7 is a C*°-function on L. Differentiating with respect to s and using
the Frenet equations, we obtain
- d cos(t(s
P ()Fa(p(s)) - B (p(e)) = LD Ly,
+{k1(s) cos(7(s)) — ka(s) sin((s))} - n;1(s)
d sin(7(s
(Al

+k3(s)sin(7(s)) - n3(s).

Since 103 (p(s)) is expressed by linear combination of n;(s) and ns(s), it holds
that ‘
d cosT(s) _

0 d sint(s)) _
ds -7

ds =0,
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that is, 7 is a constant function on L with value 79. Thus we obtain

t(p(s)) = (cos 7o) - t(s) + (sin 7o) - mz(s) (4.5)
¢'(s)cos o = 1 — ak;(s) (4.6.1)
©'(s) sin 1o = aks(s) — Bks(s) (4.6.2)

for all s € L. Therefore we obtain
(1 — aky(s))sinTo = (aka(s) — Bks (s)) cosTo (4.7)

for all s € L.
If sintg = 0, then it holds cos7g = £1. Thus [4.5) implies that t(p(s)) =
+t(s). Differentiating this equality, we obtain

' (8)k1(p(s)) - B1(p(s)) = £ka(s) - my(s),
that is,

1 (p(s)) = 2my(s),
forall s € L. By A, this fact is a contradiction . Thus we must consider
only the case of sin7y # 0. Then implies

aky(s) — Bks(s) #0 (s € L),

that is, we obtain the relation (a).
The fact sin 79 # 0 and imply

aky(s) + {(cos 7o) (sin 70) "1 }(akz(s) — Bks(s)) = 1.
From this, we obtain
aky(s) + v(aksz(s) — Bks(s)) =1

for all s € L, where v = (cos 7o) (sin7p)~! is a constant number. Thus we obtain
the relation (b). :

Differentiating [4.5)' with respect to s and using the Frenet equations, we
obtain

@' (8)k1((s)) - 11 (p(s)) = (k1 (s) cos 7o — ko (s) sinTo) - my(s)
+k3(s) sin 70 - n3(s)
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for all s € L. From the above equality, [4.6.1), [4.6.2) and (b), we obtain
{#' ()1 ((3))}

= {k1(s) cos 10 — ka(s) sin 9} + {k3(s) sin7p}?
= (aka(s) — Bks(s))? [(vk1(s) = ka(5))* + (ks(s))?] (¢'(s)) 2

for all s € L. From and (b), it holds

(#'(9))* = (v* + 1) (aka(s) — Bks(s))>.

- Thus we obtain

{#'(s)k1(0(5))}? = {(vk1(s) — ka(5))? + (k3(s))*}- (4.8)

24—1

By (4.6.1) , [4.6.2) and (b) , we can set

B (¢(s)) = (cosn(s)) - m (s) + (sinn(s)) - ma(s), (49)
where
(aka(s) — Bks(s)) (yha(5) — ka(s))
cosn(s) = Fi(2(9) (@ (3))? (4.10.1)
C (aka(s) — BRa(s))ka(s)
) = L e W () (4102

for all s € L. Here, 7 is a C°°-function on L.
Differentiating [(4.9) with respect to s and using the Frenet equations, we
obtain

—¢'(8)k1(0()) - E((5)) + ¢ (8)Ra(p(s)) - Fia(ip(s))

_d cosn(s) d s1nn(s)
=g, m@)+——>7—

—ka(s)(cosn(s)) - t(s)
+(k2(s)(cosn(s)) — ks(s)(sinn(s)) - n2(s)

for all s € L. From the above fact, it holds

n3(s)

d cosn(s) _ 0 d sinn(s)

ds as -0

that is, 7 is a constant function on L with value 7y. Let 6 = (cosno)(sinng)~?
be a constant number. Then [(4.10.1) and [4.10.2) imply

Yk1(8) — k2(s) = dks(s) (Vs € L),




NOTES ON BERTRAND CURVES 51

that is, we obtain the relation (c).
Moreover, we obtain

~¢'()k1(0(5)) - B (s)) + ¢ (8)ka(p(s)) - B2 (p(s))
= —ki(s)(cosn(s)) - t(s)
+{k2(s)(cos(s)) — k3(s)(sinn(s))} - m2(s)
By the above equality and [4.3), we obtain
¢'(8)k2(p(s)) - B2 (p(s)) = ¢’ (8)k (0(5)) - Eep(5))
~k1(s)(cos o) - t(s)
+{ko(8)(cosnp) — k3(s)(sinmng)} - na(s)
= (¢'()) " {k1(p(s))}
{A(s) - t(s) + B(s) - na(s)},
where
A(s) = {¢' ()1 ((s))}2(1 — ks (s))
—k1(s)(akz(s) — Bks(s))(vk1(s) — ka(s))
B(s) = {#'(s)k1(p(3))}* (akz(s)) — Bks(s))
+(akz(s) — Bks(s)) (ki (s) — k2(s))k2(s)
—(aksz(s) — Bks(s))(ks(s))”
for all s € L. From (b) and [4.8), A(s) and B(s) are rewritten as:
A(s) = =(v* + 1) (aks(s) — Bks(s))
x [(7* = Dk(8)ka(s) + v{(k1(8))? = (k2(8))* = (k3(3))*}]

B(s) = v(v* + 1)" ! (aky(s) — Bks(s))
x [(7 = Dka(s)ka(s) + 7{(k1(9))? = (a())? — (ks(5))*}] -
Since ¢'(8)k2(p(s)) - Bz (p(s)) # o for all s € L, it holds
(v* = Dk1(s)ka(s) + v{(k1(5))? — (k2(s))* — (k3(5))*} # 0
for all s € L. Thus we obtain the relation (d). |

(i) We assume that C (c¢: L — E*) is a C*-special Frenet curve in E* with
curvature functions ki, k2 and ks satisfying the relation (a), (b_), (c) and (d) for
constant numbers a, 3,7 and §. Then we define a C* -curve C by

€(s) = c(s) + a-ny(s) + B - n3(s) (4.11)
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for all s € L, where s is the arc-length parameter of C. Differentiating
with respect to s and using the Frenet equations, we obtain

_d;(:) = (1 — aki(s)) - t(s) + (akz(s) — Bks(s)) - ny(s)

for all s € L. Thus, by the relation (b), we obtain

d c(s)
ds

= (akz(s) — Bks(s)) - (v - t(s) + n2(s)) (4.12)

for all s € L. Since the relation (a) holds,the curve C is a regular curve. Then
there exists a regular map ¢ : L — L defined by

s=p)= [

where § denotes the arc-length parameter of C, and we obtain
©'(8) = /72 + 1(aky(s) — Bks(s)) > 0, (4.13)

where € = 1 if aks(s) — Bks(s) > 0, and € = —1 if aky(s) — Bks(s) < 0, for all
s € L. Thus the curve C is rewritten as ‘

d c(t)
dt

” dt (Vs e L),

=c(s) + @ -n1(s) + 8 - n3(s)

for all s € L. Differentiating the above equality with respect to s, we obtain

o(s)- L)

= (aka(s) — Bks(s)) - { - t(s) + ma(s)}. (4.14)

5=yp(s)

We can define a unit vector field t along C by t(3) = d €(3)/d 5 for all 5 € L.
By (4.13) and [4.14), we obtain

tp(s) = (7 + )72 - {7 - t(s) + m2(s)} (4.15)

for all s € L. Differentiating (4.15) with respect to s and using the Frenet
equations, we obtain

o) LO| 2 )2 (yki(s) = ka(s)) - ma(s)

d3 |5mp(s)
+k3(s) -n3(s)}
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and
d t(3) _ V(Yki(s) — k2(8))? + (ks(s))?
A5 |spoll o' (V7 +1 '
By the fact that k3(s) > 0 for all s € L, we obtain
Bi(els)) = | 420 e (4.16)

for all s € L. Then we can define a unit vector field i; along C by

81(5) = 81 (¢(s))
_ 1 dt(3)
T Fip(s) ds
_ 1
e/ (7kL(5) — R2(s))2 + (k3 (9))
{(vk1(8) — k2(8)) - n1(s) + k3(s) - n3(s)}

F=¢p(s)

for all s € L . Thus we can put

n1(p(s)) = (cos&(s)) - ni(s) + (sin&(s)) - n3(s), (4.17)
where
= k1(s) — ka(s) 4.18.1
e N OEYAD) N (O (418D
éin £(s) = ks (s) >0 (4.18.2)

eV (Yk1(8) — k2(8))% + (k3(s))?
for all s € L. Here, £ is a C*-function on L. Differentiating with respect
to s and using the Frenet equations, we obtain
d (3
o) BB () cosé(s)) - t(s)
| 45 |smp(e)
+{k2(s)(cos&(s)) — k3(s)(sin&(s))} - ma(s)

+d sin &(s)  n(s).
ds

Differentiating (¢) with respect to s , we obtain

(Yk1(s) — k3(s))ks(s) — (vki(s) — k2(s))k3(s) = 0. (4.19)
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Differentiating (4.18.1) and [4.18.2)] with respect to s and using [4.19), we obtain

d cos§(s) _ 0 d siné(s) _
ds 7 ds — 7

that is, £ is a constant function on L with value &. Thus we obtain

vk1(s) = ka(s)

e/ (vk1(s) — ka(s))2 + (ks(s))2 = cos &o, | (4.18.1)
a1 =sin&p > 0. | /

ev/ (vk1(s) — k2(8))? + (k3(s))?
From , it holds

1 (p(s)) = (cos o) - m1(s) + (sin &) - n3(s). (4.20)
Thus we obtain, by (4.15) and [4.16),

Fi(p(s)) - Ele(s))
_ (k1 (8) = ka(5))? + (ka(s))?
e ()12 + DV (1R (3) - ka(9))2 + (ka(5))?

and by (4.18.1)"[(4.18.2)' and [4.20),

- (7 t(s) + m2(s)),

d 0y (3) _ —k1(s) (k1 (s) — ka(s)) - t(s)
d3 |ips) €9 (8)V/ (VK1 (8) — k2(8))2 + (k3(s))2
k(@) (8) — kale) = Ga(e)®

e (8)v/(Vk1(3) — F2(5))2 + (k3(s))Z

for all s € L. By the above equalities, we obtain

: 315(5) F=¢p(s) +k (p(8)) - t(e(s))
_ P(s) Q(S)
= 1O+ By 220,

where

P(s) = = [7{(k1(8))* — (k2(8))? = (k3(8))*} + (v* — 1)k () ka(s)]

Q(s) =7 [Y{(k1()? = (k2(5))® — (k3(s))*} + (+* = D)k (s)ka(s))]

R(s) = e(v* + 1)¢' (s)v/(7k1(s) — k2(8))? + (ks(s))% # 0
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for all s € L. We notice that, by (c), P(s) # 0 for all s € L. Thus we obtain

k2((s))

d 1, (3)
ds

IR CORTD)
_ (k1 (6)? = (a(5))? = (hs(5)*} + (77 = Dy (s)kao)
(&)Y + 1/ (5) = ka(3))? + (Ra(3))?

>0

for all s € L. Thus we can define a unit vector field fiz(3) along C by

fiy(8) = Nz (p(s))

1 (dm) _ -
) ( 35y B t(w(S))),
that is,
Ba(p(6)) = s (<86 + 7 mals) (421)

for all s € L. Next we can define a unit vector field fiz along C by

1i3(5) = Bs(p(s))
1
" e/(7ki(s) — ka(s))? + (k3(9))2
{—k3(s) - n1(s) + (vk1(s) — k2(s)) - n3(s)},

that is,

niz(p(s)) = —(sin&o) - m1(s) + (cos&o) - n3(s) (4.22)
for all s € L. Now we obtain, by [(4.15), (4.20), (4.21) and (4.22),

det [£(¢(s)), A1 (¢(s)), B2 ((s)), iz (0(s))]

= det [t(s), n;(s),nz(s),n3(s)] =1
for all s € L. And we obtain

(E(p(s), Bi((s))) =0, (Bip(s)),m;(p(s))) = by
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for all s € L and ¢,j = 1,2,3. Thus the frame {t,f;,ny,03} along C is of
orthonormal and of positive. And we obtain

Es((s) = < dEals)

, i (90(8))>
15=p(s)

_ V72 + 1k1(8)ks(s)
@' (8)V/(Yk1(s) — k2(s))? + (ks(s))?

>0

for all s € L. Thus curve C is a C*™-special Frenet curve in E4 . And it is trivial
that the Frenet (1,3)-normal plane at each point c(s) of C coincides with the
Frenet (1, 3)-normal plane at corresponding point &(3) = &((s)) of C. Therefore
C is a (1,3)-Bertrand curve in E4.

Thus (i) and (ii) complete the proof of [Theorem! B.

5. An example of (1,3)-Bertrand curve

Let a and b be positive numbers, and let r be an integer greater than 1. We
consider a C*°-curve C in E* defined by c: L — E* ;

for all s € L. The curve C is a regular curve and s is the arc-length parameter
of C. Then C is a special Frenet curve in E* and its curvature functions are as
follows:

b (s) = Vria? ¥ b2
1(8) = SRR
ka(s) = r(r? —1)ab
2 (r2a? + b2)v/ria® + B2
r
k3(s) = '
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We take constants «, 3, v and § defined by

o= —(r?aA + bB) + (r%a? + b?)

Vria? + b2
5= —(r?aB — bA) + (r? — 1)ab
- Vréa? + b2 ’
_ r%aA+bB
7= r(aB — bA)’
P r*aA + bB
r2(aB — bA)’

Here A and B are positive numbers such that aB # bA. Then it is trival that
(a), (b), (c) and (d) hold. Therefore, the curve C is a Bertrand curve in E*, and
its Bertrand mate curve C in E* (&: L — E*) is given by

. -
A _r
cos ( YOI s)
Asin (——’l————g)
Vr2A? 4+ B?
B cos (—1—5)
Vr2A? + B2

1
Bsin [ ——735

X (vr2A2 + B? ) |
for all 5 € L, where 5 is the arc-length parameter of C, and a regular C*°-map
¢ : L — L is given by

5= o(s) = Vr2AZ + B? ;

IRV~

Remark. If a® + b% = 1, then the curve C in E* is a leaf of Hopf r-foliation on

s® ([6], [8D.

(Vs € L).
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