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Abstract. Let ( $M$, $(, \rangle, J)$ be a Hermitian symmetric space or a K\"ahler C-space
with second betti number 1 and with a certain condition. We concretely solve the
differential equation of the motion of a charged particle under electromagnetic
field $\kappa J$ , which is given by

$\nabla_{\dot{x}}\dot{x}=\kappa J\dot{x}$ .
APplying this, we show that if the motion of a charged particle intersects itself,
then it is simply closed.

Introduction

Let $(M, \langle, \rangle)$ be a Riemannian manifold and $F$ a 2-form on $M$ . We denote
by $\iota(X)$ : $\wedge^{m}(M)\rightarrow\wedge^{m-1}(M)$ the interior product operator induced from $X$

and by $L$ : $T(M)\rightarrow T^{*}(M)$ , the Legendre transformation defined by

$L:T(M)\rightarrow T^{*}(M);u\mapsto*L(u)$ , $ L(u)(v)=\langle u, v\rangle$ $(v\in T(M))$ .

A curve $x(t)$ in $M$ is called the motion of a charged $pa\hslash icle$ under electromagnetic
field $F$ if it satisfies the following differential equation:

$\nabla_{\dot{x}}\dot{x}=-L^{-1}(\iota(\dot{x})F)$ ,

where $\nabla$ is the Levi-Civita connection of $M$ . This equation originated in theory
of general relativity (see [11, p. 112, (19.15)]). When $F=0$ , then $x(t)$ is a
geodesic. If $x(t)$ is the motion of a charged particle under electromagnetic field
$F$ , then the norm $||\dot{x}||$ of its velocity vector is a constant. If $x(t)$ is the motion
of a charged particle under $F$ , then $y(t)=x(at)$ ( $a$ : constant) is the motion of
a charged particle under $aF$ . If $F$ has an electromagnetic potential $A$ , that is
$F=dA$ , then we define a functional $E_{A}$ by

$E_{A}(x)=\frac{1}{2}\int_{0}^{1}(||\dot{x}||^{2}+A(\dot{x}))dt$ .
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The Euler-Lagrange equation of $E_{A}$ is nothing but the motion of a charged
particle under $F$ . When $(M, J, \langle, \rangle)$ is a Hermitian manifold, it is natural
to take a scalar multiple of K\"ahler form $\Omega$ defined by $\Omega(X, Y)=\langle X, JY\rangle$ as
electromagnetic field $F$ . Since $-L^{-1}(\iota(X)\Omega)=JX$ , a curve $x(t)$ is the motion
of a charged particle under electromagnetic field $\kappa\Omega$ if and only if

$\nabla_{\dot{x}}\dot{x}=\kappa J\dot{x}$ . $(0.1)$

It is an interesting question, in general, whether a given equation of motion
has a periodic solution or not. In this paper, we describe the solution of the
equation $(0.1)$ in Hermitian symmetric spaces and K\"ahler C-spaces with certain
conditions (Theorem 1.1, Corollaries 2.1 and 3.1). Applying this we show that
if the motion $x(t)$ of a charged particle intersects itself, then it is simply closed
(it is known by S. Kobayashi that if a geodesic in a Riemannian homogeneous
space intersects itself, then it is simply closed [9, p. 321]). These results are a
generalization of a theorem of R. Dohira ([5]).

The author would like to express his thanks to Professor R. Dohira for his
valuable suggestions. The author also thanks the referee for helpful comments.

1. Motion of charged particles

In this section we shall construct a Riemannian homogeneous space $M$ with
an invariant $(1, 1)$ -tensor $I$ and consider the motion of charged particles under
electromagnetic field $\kappa I$ .

Let $G$ be a connected Lie group and $K$ a compact subgroup of $G$ . We consider
the coset manifold $M=G/K$ . We denote by $\mathfrak{g}$ and $t$ the Lie algebras of $G$ and
$K$ , respectively. Since $K$ is compact, there exists an $Ad(K)$-invariant subspace
$m$ of $\mathfrak{g}$ such that

$\mathfrak{g}=P\oplus m$ (direct sum). (1. 1)
We denote by $\pi$ the natural projection from $G$ onto $M$ , and by $0=\pi(e)$ , the
origin of $M$ . Then we can identify $m$ with $T_{o}(M)$ through $\pi_{*}$ . We assume that
there exist $Ad(K)$ -invariant subspaces $m_{1}$ and $m_{2}$ of $m$ such that

$m=m_{1}\oplus m_{2}$ (direct sum) (1.2)

and such that

$[m_{1}, m_{1}]\subset e\oplus m_{2}$ , $[m_{2}, m_{2}]\subset e$ , $[m_{1}, m_{2}]\subset m_{1}$ . (1.3)

For $X$ in $\mathfrak{g}$ , we denote by $X_{i}$ the $m_{i}$-component of $X$ . Moreover we assume that
there exist a nonzero constant $c\in R$ and $Ad(K)$ -invariant inner product $\langle, \rangle$ of
$m$ such that

$m_{1}\perp m_{2}$ and that $\langle[X, Y]_{2}, Z\rangle+c\langle X, [Z, Y]\rangle=0(X, Y\in m_{1}, Z\in m_{2})$ . $(1.4)$
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If we extend the inner product $\langle, \rangle$ to a G-invariant Riemannian metric $\langle, \rangle$ on
$M$ , then $M$ is a Riemannian homogeneous space and $G$ acts on $M$ isometrically.
We denote by $\mathfrak{c}$ the center of $f$ . For $W$ in $c$ , we define an endomorphism $I$ of $\mathfrak{m}$

by

$I$ : $m\rightarrow m;X_{1}+X_{2}\vdash\rightarrow[W, X_{1}]+\frac{1}{c}[W, X_{2}]$ $(X_{1}\in m_{1}, X_{2}\in m_{2})$ . (1. 5)

Since $Ad(k)I=IAd(k)$ for any $k$ in $K$ , we can extend $I$ to a G-invariant $(1, 1)-$

tensor $I$ on $M$ . We then have

\langle IX, $Y\rangle$ $+\langle X, IY\rangle=0$ (X, $Y\in \mathfrak{X}(M)$ ).

Let $\kappa$ be a constant. A curve $x(t)$ is called the motion of a charged particle
under electromagnetic field $\kappa I$ , if it satisfies the following differential equation:

$\nabla_{\dot{x}}\dot{x}=\kappa I\dot{x}$ . (1. 6)

When $\kappa=0$ , then $x(t)$ is a geodesic.

THEOREM 1.1. Let $M=$ $(G/K, \langle, ))$ be a Riemannian homogeneous space
with a G-invariant skew-symmetric $(1, 1)$ -tensor I satisfying the conditions (1. 1),
(1. 2), (1. 3), (1. 4) and (1. 5). Let $x(t)$ be the motion of a charged particle defined
by (1.6) under electromagnetic field $\kappa I$ with initial conditions $x(O)=0$ and
$\dot{x}(0)=X_{1}+X_{2}(X_{1}\in m_{1}, X_{2}\in m_{2})$ . Then $x(t)$ is given by

$x(t)=\pi(\exp t(X_{1}+cX_{2}+\kappa W)$ exp $t(1-c)(X_{2}+\frac{\kappa}{c}W))$ .

If $x(t)$ intersects itself, then it is simply closed.

Remark. In the case where $\kappa=0$ , this is a theorem of R. Dohira ([5]).

EXAMPLE 1.2 (geodesics in compact 4-symmetric spaces). Let $G$ be a com-
pact connected Lie group and $\theta$ an automorphism of $G$ of order 4. We also
denote by $\theta$ the differential of $\theta$ . We define a closed subgroup $K$ of $G$ by
$K=\{g\in G|\theta(g)=g\}$ . We define a subspace $m$ in the Lie algebra $\mathfrak{g}$ of
$G$ by

$m=\{X\in \mathfrak{g}|(\theta^{3}+\theta^{2}+\theta+1)(X)=0\}$ .

We define subspaces $m_{1}$ and $m_{2}$ in $m$ by

$m_{1}=\{X\in m|\theta^{2}(X)=-X\}=\{X\in \mathfrak{g}|\theta^{2}(X)=-X\}$ ,
$m_{2}=\{X\in m|\theta^{2}(X)=X\}=\{X\in \mathfrak{g}|\theta(X)=-X\}$ .
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Let $F:G/K\rightarrow G$ be a Cartan embedding, which is defined by

$F:G/K\rightarrow G;gK\leftrightarrow g\theta(g^{-1})$ .

Take an $Ad(G)$ and $\theta$ invariant inner product $(, )$ on $\mathfrak{g}$ . Then $F$ and $(, )$ induce
a G-invariant Riemannian metric $\langle, \rangle$ on $G/K$ . Since $F_{*}X=X-\theta X$ $(X\in m)$ ,
we have

\langle X, $Y\rangle$ $=(X-\theta X, Y-\theta Y)$ (X, $Y\in m$).

If we set $c=2$ , then the conditions (1. 1), (1.2), (1.3) and (1.4) are satisfied.
Hence a curve $x(t)$ in $(G/K, \langle, \rangle)$ is a geodesic such that $x(O)=o$ and that
$\dot{x}(0)=X_{1}+X_{2}(X_{i}\in m_{i})$ if and only if

$x(t)=\pi(\exp t(X_{1}+2X_{2})\exp(-tX_{2}))$ .
In order to prove the theorem above, we show the following lemma.

LEMMA 1.3. Let x $(t)$ be a curve in $M$ such that x $(O)=0$ . $Let\alpha(t)$ be a curve
in $G$ such that $\alpha(0)=e$ and that $\pi(\alpha(t))=x(t)$ . Then

$\alpha(t)_{*}^{-1}\nabla_{\dot{x}}$ th $=\frac{d}{dt}\alpha(t)_{*}^{-1}\dot{x}(t)+(c-1)[(\alpha(t)_{*}^{-1}\dot{x}(t))_{1}, (\alpha(t)_{*}^{-1}\dot{x}(t))_{2}]$

$+[(\alpha(t)_{*}^{-1}\dot{\alpha}(t))_{\epsilon}, \alpha(t)_{*}^{-1}\dot{x}(t)]$ ,

where we denote by $X_{t}$ the $P$ -component of $X\in \mathfrak{g}$ .

Proof of Lemma 1.3. For $X\in \mathfrak{g}$ , we define a Killing vector field $X^{*}$ on $M$ by

$X_{p}^{*}=\frac{d}{dt}$ exp $tXp_{|t=0}\in T_{p}(M)$ .

Then for $X,$ $Y\in \mathfrak{g}$ and $g\in G$ we have

$[X^{*}, Y^{*}]=-[X, Y]^{*}$ , $g_{*}X^{*}=(Ad(g)X)^{*}$ . (1. 7)

By a formula of Koszul ([9, p. 61, Theorem 11]) and the first equation of (1. 7)
we have $(\nabla_{X^{\wedge}}X^{*})_{0}=(c-1)[X_{1}, X_{2}]$ for $X\in m$ , where we used (1. 3) and (1. 4).
The decomposition (1. 1) defines an invariant connection $\nabla^{0}$ on the reductive
homogeneous space $M$ (see [8]). Then $(\nabla_{X^{*}}^{0}X^{*})_{0}=0$ for $X\in m$ . We define a
tensor field $T$ on $M$ of type $(1, 2)$ by $T=\nabla-\nabla^{0}$ . Then $T$ is a Riemannian
homogeneous structure on $M$ (see [10] for the definition) and $T_{X}X=(c-$
$1)[X_{1}, X_{2}]$ for $X\in m$ . Since

$\nabla_{\dot{x}}^{0}\dot{x}=\alpha(t)_{*}(\frac{d}{dt}\alpha(t)_{*}^{-1}\dot{x}+[(\alpha(t)_{*}^{-1}\dot{\alpha}(t))_{f}, \alpha(t)_{*}^{-1}\dot{x}])$ ,

the lemma is proved.
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Proof of Theorem 1.1. To begin with, we prove the first half of the theorem. We
define a curve $\alpha(t)$ in $G$ by

$\alpha(t)=\exp t(X_{1}+cX_{2}+\kappa W)$ exp $t(1-c)(X_{2}+\frac{\kappa}{c}W)$ .

We further define a curve $x(t)$ in $M$ by $x(t)=\pi(\alpha(t))$ . It is sufficient to show
$\nabla_{\dot{x}}\dot{x}=\kappa I(\dot{x})$ . Since

$\alpha(t)_{*}^{-1}\dot{\alpha}(t)=Ad(\alpha(t)^{-1})(X_{1}+cX_{2}+\kappa W)+(1-c)(X_{2}+\frac{\kappa}{c}W)$

$=Ad(\exp t(c-1)(X_{2}+\frac{\kappa}{c}W))X_{1}+(X_{2}+\frac{\kappa}{c}W)$ ,

we have

$\alpha(t)_{*}^{-1}\dot{x}(t)=Ad(\exp t(c-1)(X_{2}+\frac{\kappa}{c}W))X_{1}+X_{2}$ ,

which implies that

$\frac{d}{dt}\alpha(t)_{*}^{-1}\dot{x}(t)=(c-1)[X_{2}+\frac{\kappa}{c}W$, Ad $(\exp t(c-1)(X_{2}+\frac{\kappa}{c}W))x_{1}]$ .

By using the equations above and Lemma 1.3 we have

$\alpha(t)_{*}^{-1}\nabla_{\dot{x}}\dot{x}=\kappa[W$, Ad $(\exp t(c-1)(X_{2}+\frac{\kappa}{c}W))x_{1}]+\frac{\kappa}{c}[W, X_{2}]$

$=\kappa I(\alpha(t)_{*}^{-1}\dot{x}(t))$ .

Next we prove the latter half of the theorem. The velocity vector $\dot{x}(t)$ of $x(t)$ is
given by

$\dot{x}(t)=\alpha(t)_{*}(Ad(\exp t(c-1)(X_{2}+\frac{\kappa}{c}W))X_{1}+x_{2})$ .

We assume that there exists a real number $t_{0}$ such that $x(t_{0})=0$ ; that is,
$\alpha(t_{0})\in K$ . Then

$\dot{x}(t_{0})=Ad(\exp t_{0}(X_{1}+cX_{2}+\kappa W))X_{1}+Ad(\alpha(t_{0}))X_{2}$ .

By the way we have

$X_{1}+cX_{2}+\kappa W$

$=Ad(\exp t_{0}(X_{1}+cX_{2}+\kappa W))(X_{1}+cX_{2}+\kappa W)$

$=Ad$ ( $\alpha(t_{0})$ exp $t_{0}(c-1)(X_{2}+\frac{\kappa}{c}W)$ ) $(X_{1}+cX_{2}+\kappa W)$

$=Ad$ ( $\alpha(t_{0})$ exp $t_{0}(c-1)(X_{2}+\frac{\kappa}{c}W)$ ) $X_{1}+Ad(\alpha(t_{0}))(cX_{2}+\kappa W)$ .
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Here we obtain

Ad ( $\alpha(t_{0})$ exp $t_{0}(c-1)(X_{2}+\frac{\kappa}{c}W)$ ) $X_{1}\in \mathfrak{m}_{1}$ ,
$Ad(\alpha(t_{0}))cX_{2}\in m_{2}$ , $Ad(\alpha(t_{0}))\kappa W\in\epsilon$ ,

which implies that

$Ad(\exp t_{0}(X_{1}+cX_{2}+\kappa W))X_{1}=X_{1}$ , $Ad(\alpha(t_{0}))X_{2}=X_{2}$ .

Hence we have $\dot{x}(t_{0})=\dot{x}(0)$ .

2. Charged particles in Hermitian symmetric spaces

In this section we shall apply Theorem 1.1 to the motion of charged particles
in Hermitian symmetric spaces. We know that every motion of a charged particle
in a Hermitian symmetric space under K\"ahler electromagnetic field is simple (see
[1], [6] or [7]). Let $(G, K, \theta, \langle, \rangle, J)$ be an almost effective Hermitian symmetric
pair. Then the coset manifold $M=G/K$ is a Hermitian symmetric space.
Conversely, every Hermitian symmetric space is obtained in this way. Let

$\mathfrak{g}=e\oplus m$

be the canonical decomposition of the Lie algebra $\mathfrak{g}$ of $G$ . We denote by $c$ the
center of $t$ . There exists an element $J_{o}$ in $c$ such that $J=ad(J_{o})$ is a complex
structure on $m$ . Setting $\mathfrak{m}_{2}=\{0\}$ and $W=J_{o}$ in Theorem 1.1, we redemonstrate
the following.

COROLLARY 2.1 (Adachi-Maeda-Udagawa[l]). Let $M=G/K$ be a Hermi-
tian symmetric space. Let $x(t)$ be the motion of a charged particle defined by
$(0.1)$ under the electromagnetic field $\kappa J$ with initial conditions $x(O)=o$ and
$\dot{x}(O)=X\in m$ . Then $x(t)$ is given by

$x(t)=\pi(\exp t(\kappa J_{o}+X))$ . (2. 1)

COROLLARY 2.2. Let $x(t)$ be the motion of a charged particle in a Hermitian
symmetrec space. Its velocity vector $\dot{x}(t)$ can then be extended to a Killing vector
field which is an infinitesimal automorphism of $J$ .

Proof. For the motion of a charged particle (2. 1), we set $Y=\kappa J_{o}+X\in \mathfrak{g}$ .
Then we have $Y_{x(t)}^{*}=\dot{x}(t)$ .
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3. Charged particles in K\"ahler C-spaces

In this section we shall apply Theorem 1.1 to the motion of charged particles
in K\"ahler C-spaces with certain conditions. We know that every motion of a
charged particle in a K\"ahler C-space under K\"ahler electromagnetic field is simple
(see [6] or [7]). By a C-space we mean a compact simply connected complex
homogeneous space, and by a K\"ahler C-space, a C-space $M$ which admits a
K\"ahler metric such that a group of holomorphic isometries acts transitively on
$M$ . We shall construct K\"ahler C-spaces according to [2, Chap. 8]. Let $G$ be a
compact connected semisimple Lie group and $W$ in its Lie algebra $\mathfrak{g}$ . We define
a closed subgroup $K$ of $G$ by

$K=\{g\in G|Ad(g)W=W\}$ .

Then $K$ is connected, and coset manifold $M=G/K$ is compact and simply
connected, which is called a generalized flag manifold. We can identify the
tangent space $T_{o}(M)$ at the origin $0$ with $m={\rm Im} ad(W)$ .

In order to define a G-invariant complex structure $J$ on $M$ , take a maximal
torus $T$ of $G$ such that $W$ is in its Lie algebra $t$ . Take a biinvariant Riemannian
metric $(, )$ on $G$ . We denote by $\Delta$ the set of nonzero roots of $\mathfrak{g}^{C}$ with respect
to $t^{C}$ . Take a lexicographic ordering on $t$ such that $(W, \alpha)\geq 0$ for any positive
root $\alpha$ . We denote by $\Delta^{+}$ the set of positive roots. We have the following direct
sum decomposition of $\mathfrak{g}$ :

$\mathfrak{g}=t\oplus\sum_{\alpha\in\Delta+}(RF_{\alpha}\oplus RG_{\alpha})$
,

where for each $H\in t,$ $[H, F_{\alpha}]=(\alpha, H)G_{\alpha},$ $[H, G_{\alpha}]=-(\alpha, H)F_{\alpha}$ . Set

$\Delta_{W}=\{\alpha\in\Delta|(\alpha, W)=0\}$ , $\Delta_{W}^{+}=\Delta_{W}\cap\Delta^{+};$

then we have

$\epsilon=t\oplus\sum_{\alpha\in\Delta_{W}^{+}}(RF_{\alpha}\oplus RG_{\alpha})$
,

$\mathfrak{m}=\sum_{-\alpha\in\Delta+\Delta_{W}^{+}}(RF_{\alpha}\oplus RG_{\alpha})$

.

We define a complex structure $J$ on $m$ by

$JF_{\alpha}=G_{\alpha}$ , $JG_{\alpha}=-F_{\alpha}$ $(\alpha\in\Delta^{+}-\Delta_{W}^{+})$ .

Since $Ad(k)J=JAd(k)$ for any $k$ in $K$ , we can extend $J$ to a G-invariant
almost complex structure on $M$ . This almost complex structure $J$ is integrable.
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We assume that $G$ is simple. We denote by $\Pi=\{\alpha_{1}, \cdots, \alpha_{r}\}$ the set of simple
roots, and by $\alpha_{0}=\sum m_{j}\alpha_{j}$ , the highest root. If we set

$\Pi_{W}=\{\alpha_{j}\in\Pi|(\alpha_{j}, W)>0\}=\{\alpha_{i_{1}}, \cdots, \alpha_{i_{s}}\}$ ,

then it is known that the second betti number $b_{2}(M)$ of $M$ is given by $b_{2}(M)=$

$s=\#(\Pi_{W})$ ([3]). We assume that $b_{2}(M)=1$ ; that is, $\Pi_{W}=\{\alpha_{i}\}$ . For a natural
number $n$ , set

$\Delta^{+}(\alpha_{i}; n)=\{\alpha=\sum n_{j}\alpha_{j}\in\Delta^{+}|n_{i}=n\}$
,

$m_{n}=\sum_{(\alpha\in\Delta+\alpha:;n)}(RF_{\alpha}\oplus RG_{\alpha})$
;

then we have

$\Delta^{+}-\Delta_{W}^{+}=\Delta^{+}(\alpha_{i})=\bigcup_{n\geq 1}\Delta^{+}(\alpha_{i};n)$
,

$\mathfrak{m}=\sum_{n\geq 1}\mathfrak{m}_{n}$
.

We set $\mathfrak{m}_{0}=g$ for simplicity; then for $n,$ $m\geq 0$ we have $[\mathfrak{m}_{n}, m_{m}]\subset m_{n+m}+$

$\mathfrak{m}_{|n-m|}$ . If we normalize $W$ so that $(W, \alpha_{i})=1$ , then we have $nJ=adW$ on $m_{n}$ .
We define a G-invariant K\"ahler metric $\langle, \rangle$ on $M$ by

$\langle X_{n}, X_{m}\rangle=n\delta_{nm}(X_{n}, X_{m})$ $(X_{n}\in m_{n}, X_{m}\in m_{m})$ .

We assume that $m_{i}=2$ . If we set $c=2$ , then conditions (1. 1), (1.2), (1.3),
(1.4) and (1. 5) are satisfied.

COROLLARY 3.1. Let $M=(G/K, J)$ be a Kahler C-space with $b_{2}(M)=1$ .
We assume that $G$ is a compact connected simple Lie group. Further, we assume
that there exists a simple root $\alpha_{i}$ such that $\Pi_{W}=\{\alpha_{i}\}$ and that $m_{i}=2$ , where
$\alpha_{0}=\sum_{j}m_{j}\alpha_{j}$ is the highest root. Let $x(t)$ be a motion of charged particle defined
by $(0.1)$ under the electromagnetic field $\kappa J$ with initial conditions $x(O)=0$ and
$\dot{x}(0)=X_{1}+X_{2}(X_{1}\in m_{1}, X_{2}\in m_{2})$ . Then $x(t)$ is given by

$x(t)=\pi(\exp t(X_{1}+2X_{2}+\kappa W)$ exp $(-t(X_{2}+\frac{\kappa}{2}W)))$ ,

where $W$ is in the center of the Lie algebra $f$ of $K$ .

For instance, $(G, K, \alpha_{i})s$ in the following table satisfy the assumption of
Corollary 3.1. Here we adopt the same notations and numberings of simple
roots given in the Bourbaki’s table[4].
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Here we set

$Sp(r)=\{g\in U(2r)|{}^{t}gJ_{r}g=J_{r}\},$ $J_{r}=\left(-I_{r} & I_{r}\right)$ .

The imbedding of $U(i)\times Sp(r-i)$ into $Sp(r)$ is given by

$\{\left(\begin{array}{llll}Re(x) & & Im(x) & \\ & y_{11} & & y_{12}\\-Im(x) & y_{21} & Re(x) & y_{22}\end{array}\right)|x\in U(i)\left(\begin{array}{ll}y_{11} & y_{12}\\y_{21} & y_{22}\end{array}\right)\in Sp(r-i)\}\subset Sp(r)$ .

The imbedding of $U(i)\times SO(j)$ into $SO(2i+j)$ is given by

$U(i)\times SO(j)=\{\left(\begin{array}{lll}Re(x) & Im(x) & \\-Im(x) & Re(x) & y\end{array}\right)|y\in SO(j)x\in U(i),\}\subset SO(2i+j)$ ,

where $j=2(r-i)$ or $j=2(r-i)+1$ .
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