MOTION OF CHARGED PARTICLES IN KÄHLER C-SPACES

By
Osamu Ikawa*
(Received June 21, 2002; Revised April 8, 2003)

Abstract

Let $(M,\langle\rangle, J$,$) be a Hermitian symmetric space or a Kähler C$-space with second betti number 1 and with a certain condition. We concretely solve the differential equation of the motion of a charged particle under electromagnetic field κJ, which is given by $$
\nabla_{\dot{x}} \dot{x}=\kappa J \dot{x} .
$$

Applying this, we show that if the motion of a charged particle intersects itself, then it is simply closed.

Introduction

Let $(M,\langle\rangle$,$) be a Riemannian manifold and F$ a 2 -form on M. We denote by $\iota(X): \bigwedge^{m}(M) \rightarrow \Lambda^{m-1}(M)$ the interior product operator induced from X and by $\mathcal{L}: T(M) \rightarrow T^{*}(M)$, the Legendre transformation defined by

$$
\mathcal{L}: T(M) \rightarrow T^{*}(M) ; u \mapsto \mathcal{L}(u), \quad \mathcal{L}(u)(v)=\langle u, v\rangle \quad(v \in T(M)) .
$$

A curve $x(t)$ in M is called the motion of a charged particle under electromagnetic field F if it satisfies the following differential equation:

$$
\nabla_{\dot{x}} \dot{x}=-\mathcal{L}^{-1}(\iota(\dot{x}) F),
$$

where ∇ is the Levi-Civita connection of M. This equation originated in theory of general relativity (see [11, p. 112, (19.15)]). When $F=0$, then $x(t)$ is a geodesic. If $x(t)$ is the motion of a charged particle under electromagnetic field F, then the norm $\|\dot{x}\|$ of its velocity vector is a constant. If $x(t)$ is the motion of a charged particle under F, then $y(t)=x(a t)(a$: constant) is the motion of a charged particle under $a F$. If F has an electromagnetic potential A, that is $F=d A$, then we define a functional E_{A} by

$$
E_{A}(x)=\frac{1}{2} \int_{0}^{1}\left(\|\dot{x}\|^{2}+A(\dot{x})\right) d t
$$

[^0]The Euler-Lagrange equation of E_{A} is nothing but the motion of a charged particle under F. When $(M, J,\langle\rangle$,$) is a Hermitian manifold, it is natural$ to take a scalar multiple of Kähler form Ω defined by $\Omega(X, Y)=\langle X, J Y\rangle$ as electromagnetic field F. Since $-\mathcal{L}^{-1}(\iota(X) \Omega)=J X$, a curve $x(t)$ is the motion of a charged particle under electromagnetic field $\kappa \Omega$ if and only if

$$
\begin{equation*}
\nabla_{\dot{x}} \dot{x}=\kappa J \dot{x} \tag{0.1}
\end{equation*}
$$

It is an interesting question, in general, whether a given equation of motion has a periodic solution or not. In this paper, we describe the solution of the equation (0.1) in Hermitian symmetric spaces and Kähler C-spaces with certain conditions (Theorem 1.1, Corollaries 2.1 and 3.1). Applying this we show that if the motion $x(t)$ of a charged particle intersects itself, then it is simply closed (it is known by S . Kobayashi that if a geodesic in a Riemannian homogeneous space intersects itself, then it is simply closed [9, p. 321]). These results are a generalization of a theorem of R. Dohira ([5]).

The author would like to express his thanks to Professor R. Dohira for his valuable suggestions. The author also thanks the referee for helpful comments.

1. Motion of charged particles

In this section we shall construct a Riemannian homogeneous space M with an invariant (1,1)-tensor I and consider the motion of charged particles under electromagnetic field κI.

Let G be a connected Lie group and K a compact subgroup of G. We consider the coset manifold $M=G / K$. We denote by \mathfrak{g} and \mathfrak{k} the Lie algebras of G and K, respectively. Since K is compact, there exists an $\operatorname{Ad}(K)$-invariant subspace \mathfrak{m} of \mathfrak{g} such that

$$
\begin{equation*}
\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{m} \quad \text { (direct sum) } \tag{1.1}
\end{equation*}
$$

We denote by π the natural projection from G onto M, and by $o=\pi(e)$, the origin of M. Then we can identify m with $T_{o}(M)$ through π_{*}. We assume that there exist $\operatorname{Ad}(K)$-invariant subspaces \mathfrak{m}_{1} and \mathfrak{m}_{2} of \mathfrak{m} such that

$$
\begin{equation*}
\mathfrak{m}=\mathfrak{m}_{1} \oplus \mathfrak{m}_{2} \quad \text { (direct sum) } \tag{1.2}
\end{equation*}
$$

and such that

$$
\begin{equation*}
\left[\mathfrak{m}_{1}, \mathfrak{m}_{1}\right] \subset \mathfrak{k} \oplus \mathfrak{m}_{2}, \quad\left[\mathfrak{m}_{2}, \mathfrak{m}_{2}\right] \subset \mathfrak{k}, \quad\left[\mathfrak{m}_{1}, \mathfrak{m}_{2}\right] \subset \mathfrak{m}_{1} \tag{1.3}
\end{equation*}
$$

For X in \mathfrak{g}, we denote by X_{i} the \mathfrak{m}_{i}-component of X. Moreover we assume that there exist a nonzero constant $c \in \boldsymbol{R}$ and $\operatorname{Ad}(K)$-invariant inner product \langle,$\rangle of$ m such that

$$
\begin{equation*}
\mathfrak{m}_{1} \perp \mathfrak{m}_{2} \text { and that }\left\langle[X, Y]_{2}, Z\right\rangle+c\langle X,[Z, Y]\rangle=0\left(X, Y \in \mathfrak{m}_{1}, Z \in \mathfrak{m}_{2}\right) \tag{1.4}
\end{equation*}
$$

If we extend the inner product \langle,$\rangle to a G$-invariant Riemannian metric \langle,$\rangle on$ M, then M is a Riemannian homogeneous space and G acts on M isometrically. We denote by \mathfrak{c} the center of \mathfrak{k}. For W in \mathfrak{c}, we define an endomorphism I of \mathfrak{m} by

$$
\begin{equation*}
I: \mathfrak{m} \rightarrow \mathfrak{m} ; X_{1}+X_{2} \mapsto\left[W, X_{1}\right]+\frac{1}{c}\left[W, X_{2}\right] \quad\left(X_{1} \in \mathfrak{m}_{1}, X_{2} \in \mathfrak{m}_{2}\right) \tag{1.5}
\end{equation*}
$$

Since $\operatorname{Ad}(k) I=I \operatorname{Ad}(k)$ for any k in K, we can extend I to a G-invariant (1,1)tensor I on M. We then have

$$
\langle I X, Y\rangle+\langle X, I Y\rangle=0 \quad(X, Y \in \mathfrak{X}(M))
$$

Let κ be a constant. A curve $x(t)$ is called the motion of a charged particle under electromagnetic field κI, if it satisfies the following differential equation:

$$
\begin{equation*}
\nabla_{\dot{x}} \dot{x}=\kappa I \dot{x} \tag{1.6}
\end{equation*}
$$

When $\kappa=0$, then $x(t)$ is a geodesic.
ThEOREM 1.1. Let $M=(G / K,\langle\rangle$,$) be a Riemannian homogeneous space$ with a G-invariant skew-symmetric (1,1)-tensor I satisfying the conditions (1.1), (1.2), (1.3), (1.4) and (1.5). Let $x(t)$ be the motion of a charged particle defined by (1.6) under electromagnetic field κI with initial conditions $x(0)=o$ and $\dot{x}(0)=X_{1}+X_{2}\left(X_{1} \in \mathfrak{m}_{1}, X_{2} \in \mathfrak{m}_{2}\right)$. Then $x(t)$ is given by

$$
x(t)=\pi\left(\exp t\left(X_{1}+c X_{2}+\kappa W\right) \exp t(1-c)\left(X_{2}+\frac{\kappa}{c} W\right)\right)
$$

If $x(t)$ intersects itself, then it is simply closed.
Remark. In the case where $\kappa=0$, this is a theorem of R. Dohira ([5]).
EXAMPLE 1.2 (geodesics in compact 4-symmetric spaces). Let G be a compact connected Lie group and θ an automorphism of G of order 4. We also denote by θ the differential of θ. We define a closed subgroup K of G by $K=\{g \in G \mid \theta(g)=g\}$. We define a subspace \mathfrak{m} in the Lie algebra \mathfrak{g} of G by

$$
\mathfrak{m}=\left\{X \in \mathfrak{g} \mid\left(\theta^{3}+\theta^{2}+\theta+1\right)(X)=0\right\}
$$

We define subspaces \mathfrak{m}_{1} and \mathfrak{m}_{2} in \mathfrak{m} by

$$
\begin{aligned}
& \mathfrak{m}_{1}=\left\{X \in \mathfrak{m} \mid \theta^{2}(X)=-X\right\}=\left\{X \in \mathfrak{g} \mid \theta^{2}(X)=-X\right\} \\
& \mathfrak{m}_{2}=\left\{X \in \mathfrak{m} \mid \theta^{2}(X)=X\right\}=\{X \in \mathfrak{g} \mid \theta(X)=-X\}
\end{aligned}
$$

Let $F: G / K \rightarrow G$ be a Cartan embedding, which is defined by

$$
F: G / K \rightarrow G ; g K \mapsto g \theta\left(g^{-1}\right)
$$

Take an $\operatorname{Ad}(G)$ and θ invariant inner product (,) on \mathfrak{g}. Then F and (,) induce a G-invariant Riemannian metric \langle,$\rangle on G / K$. Since $F_{*} X=X-\theta X \quad(X \in \mathfrak{m})$, we have

$$
\langle X, Y\rangle=(X-\theta X, Y-\theta Y) \quad(X, Y \in \mathfrak{m})
$$

If we set $c=2$, then the conditions (1.1), (1.2), (1.3) and (1.4) are satisfied. Hence a curve $x(t)$ in $(G / K,\langle\rangle$,$) is a geodesic such that x(0)=o$ and that $\dot{x}(0)=X_{1}+X_{2}\left(X_{i} \in \mathfrak{m}_{i}\right)$ if and only if

$$
x(t)=\pi\left(\exp t\left(X_{1}+2 X_{2}\right) \exp \left(-t X_{2}\right)\right)
$$

In order to prove the theorem above, we show the following lemma.
LEMMA 1.3. Let $x(t)$ be a curve in M such that $x(0)=o$. Let $\alpha(t)$ be a curve in G such that $\alpha(0)=e$ and that $\pi(\alpha(t))=x(t)$. Then

$$
\begin{aligned}
\alpha(t)_{*}^{-1} \nabla_{\dot{x}} \dot{x}= & \frac{d}{d t} \alpha(t)_{*}^{-1} \dot{x}(t)+(c-1)\left[\left(\alpha(t)_{*}^{-1} \dot{x}(t)\right)_{1},\left(\alpha(t)_{*}^{-1} \dot{x}(t)\right)_{2}\right] \\
& +\left[\left(\alpha(t)_{*}^{-1} \dot{\alpha}(t)\right)_{\mathfrak{e}}, \alpha(t)_{*}^{-1} \dot{x}(t)\right]
\end{aligned}
$$

where we denote by $X_{\mathfrak{k}}$ the \mathfrak{k}-component of $X \in \mathfrak{g}$.
Proof of Lemma 1.3. For $X \in \mathfrak{g}$, we define a Killing vector field X^{*} on M by

$$
X_{p}^{*}=\frac{d}{d t} \exp t X p_{\mid t=0} \in T_{p}(M)
$$

Then for $X, Y \in \mathfrak{g}$ and $g \in G$ we have

$$
\begin{equation*}
\left[X^{*}, Y^{*}\right]=-[X, Y]^{*}, \quad g_{*} X^{*}=(\operatorname{Ad}(g) X)^{*} \tag{1.7}
\end{equation*}
$$

By a formula of Koszul ([9, p. 61, Theorem 11]) and the first equation of (1.7) we have $\left(\nabla_{X^{*}} X^{*}\right)_{o}=(c-1)\left[X_{1}, X_{2}\right]$ for $X \in \mathfrak{m}$, where we used (1.3) and (1.4). The decomposition (1.1) defines an invariant connection ∇^{0} on the reductive homogeneous space M (see [8]). Then $\left(\nabla_{X^{*}}^{0} X^{*}\right)_{o}=0$ for $X \in \mathfrak{m}$. We define a tensor field T on M of type (1,2) by $T=\nabla-\nabla^{0}$. Then T is a Riemannian homogeneous structure on M (see [10] for the definition) and $T_{X} X=(c-$ 1) $\left[X_{1}, X_{2}\right]$ for $X \in \mathfrak{m}$. Since

$$
\nabla_{\dot{x}}^{0} \dot{x}=\alpha(t)_{*}\left(\frac{d}{d t} \alpha(t)_{*}^{-1} \dot{x}+\left[\left(\alpha(t)_{*}^{-1} \dot{\alpha}(t)\right)_{\mathfrak{k}}, \alpha(t)_{*}^{-1} \dot{x}\right]\right)
$$

the lemma is proved.

Proof of Theorem 1.1. To begin with, we prove the first half of the theorem. We define a curve $\alpha(t)$ in G by

$$
\alpha(t)=\exp t\left(X_{1}+c X_{2}+\kappa W\right) \exp t(1-c)\left(X_{2}+\frac{\kappa}{c} W\right)
$$

We further define a curve $x(t)$ in M by $x(t)=\pi(\alpha(t))$. It is sufficient to show $\nabla_{\dot{x}} \dot{x}=\kappa I(\dot{x})$. Since

$$
\begin{aligned}
\alpha(t)_{*}^{-1} \dot{\alpha}(t) & =\operatorname{Ad}\left(\alpha(t)^{-1}\right)\left(X_{1}+c X_{2}+\kappa W\right)+(1-c)\left(X_{2}+\frac{\kappa}{c} W\right) \\
& =\operatorname{Ad}\left(\exp t(c-1)\left(X_{2}+\frac{\kappa}{c} W\right)\right) X_{1}+\left(X_{2}+\frac{\kappa}{c} W\right)
\end{aligned}
$$

we have

$$
\alpha(t)_{*}^{-1} \dot{x}(t)=\operatorname{Ad}\left(\exp t(c-1)\left(X_{2}+\frac{\kappa}{c} W\right)\right) X_{1}+X_{2}
$$

which implies that

$$
\frac{d}{d t} \alpha(t)_{*}^{-1} \dot{x}(t)=(c-1)\left[X_{2}+\frac{\kappa}{c} W, \operatorname{Ad}\left(\exp t(c-1)\left(X_{2}+\frac{\kappa}{c} W\right)\right) X_{1}\right]
$$

By using the equations above and Lemma 1.3 we have

$$
\begin{aligned}
\alpha(t)_{*}^{-1} \nabla_{\dot{x}} \dot{x} & =\kappa\left[W, \operatorname{Ad}\left(\exp t(c-1)\left(X_{2}+\frac{\kappa}{c} W\right)\right) X_{1}\right]+\frac{\kappa}{c}\left[W, X_{2}\right] \\
& =\kappa I\left(\alpha(t)_{*}^{-1} \dot{x}(t)\right)
\end{aligned}
$$

Next we prove the latter half of the theorem. The velocity vector $\dot{x}(t)$ of $x(t)$ is given by

$$
\dot{x}(t)=\alpha(t)_{*}\left(\operatorname{Ad}\left(\exp t(c-1)\left(X_{2}+\frac{\kappa}{c} W\right)\right) X_{1}+X_{2}\right)
$$

We assume that there exists a real number t_{0} such that $x\left(t_{0}\right)=o$; that is, $\alpha\left(t_{0}\right) \in K$. Then

$$
\dot{x}\left(t_{0}\right)=\operatorname{Ad}\left(\exp t_{0}\left(X_{1}+c X_{2}+\kappa W\right)\right) X_{1}+\operatorname{Ad}\left(\alpha\left(t_{0}\right)\right) X_{2}
$$

By the way we have

$$
\begin{aligned}
& X_{1}+c X_{2}+\kappa W \\
& =\operatorname{Ad}\left(\exp t_{0}\left(X_{1}+c X_{2}+\kappa W\right)\right)\left(X_{1}+c X_{2}+\kappa W\right) \\
& =\operatorname{Ad}\left(\alpha\left(t_{0}\right) \exp t_{0}(c-1)\left(X_{2}+\frac{\kappa}{c} W\right)\right)\left(X_{1}+c X_{2}+\kappa W\right) \\
& =\operatorname{Ad}\left(\alpha\left(t_{0}\right) \exp t_{0}(c-1)\left(X_{2}+\frac{\kappa}{c} W\right)\right) X_{1}+\operatorname{Ad}\left(\alpha\left(t_{0}\right)\right)\left(c X_{2}+\kappa W\right)
\end{aligned}
$$

Here we obtain

$$
\begin{aligned}
& \operatorname{Ad}\left(\alpha\left(t_{0}\right) \exp t_{0}(c-1)\left(X_{2}+\frac{\kappa}{c} W\right)\right) X_{1} \in \mathfrak{m}_{1} \\
& \operatorname{Ad}\left(\alpha\left(t_{0}\right)\right) c X_{2} \in \mathfrak{m}_{2}, \quad \operatorname{Ad}\left(\alpha\left(t_{0}\right)\right) \kappa W \in \mathfrak{k}
\end{aligned}
$$

which implies that

$$
\operatorname{Ad}\left(\exp t_{0}\left(X_{1}+c X_{2}+\kappa W\right)\right) X_{1}=X_{1}, \quad \operatorname{Ad}\left(\alpha\left(t_{0}\right)\right) X_{2}=X_{2}
$$

Hence we have $\dot{x}\left(t_{0}\right)=\dot{x}(0)$.

2. Charged particles in Hermitian symmetric spaces

In this section we shall apply Theorem 1.1 to the motion of charged particles in Hermitian symmetric spaces. We know that every motion of a charged particle in a Hermitian symmetric space under Kähler electromagnetic field is simple (see [1], [6] or [7]). Let ($G, K, \theta,\langle\rangle,$,$J) be an almost effective Hermitian symmetric$ pair. Then the coset manifold $M=G / K$ is a Hermitian symmetric space. Conversely, every Hermitian symmetric space is obtained in this way. Let

$$
\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{m}
$$

be the canonical decomposition of the Lie algebra \mathfrak{g} of G. We denote by \mathfrak{c} the center of \mathfrak{k}. There exists an element J_{\circ} in \mathfrak{c} such that $J=\operatorname{ad}\left(J_{o}\right)$ is a complex structure on \mathfrak{m}. Setting $\mathfrak{m}_{2}=\{0\}$ and $W=J_{o}$ in Theorem 1.1, we redemonstrate the following.

COROLLARY 2.1 (Adachi-Maeda-Udagawa[1]). Let $M=G / K$ be a Hermitian symmetric space. Let $x(t)$ be the motion of a charged particle defined by (0.1) under the electromagnetic field κJ with initial conditions $x(0)=o$ and $\dot{x}(0)=X \in \mathfrak{m}$. Then $x(t)$ is given by

$$
\begin{equation*}
x(t)=\pi\left(\exp t\left(\kappa J_{o}+X\right)\right) \tag{2.1}
\end{equation*}
$$

Corollary 2.2. Let $x(t)$ be the motion of a charged particle in a Hermitian symmetric space. Its velocity vector $\dot{x}(t)$ can then be extended to a Killing vector field which is an infinitesimal automorphism of J.

Proof. For the motion of a charged particle (2.1), we set $Y=\kappa J_{o}+X \in \mathfrak{g}$. Then we have $Y_{x(t)}^{*}=\dot{x}(t)$.

3. Charged particles in Kähler C-spaces

In this section we shall apply Theorem 1.1 to the motion of charged particles in Kähler C-spaces with certain conditions. We know that every motion of a charged particle in a Kähler C-space under Kähler electromagnetic field is simple (see [6] or [7]). By a C-space we mean a compact simply connected complex homogeneous space, and by a Kähler C-space, a C-space M which admits a Kähler metric such that a group of holomorphic isometries acts transitively on M. We shall construct Kähler C-spaces according to [2, Chap. 8]. Let G be a compact connected semisimple Lie group and W in its Lie algebra \mathfrak{g}. We define a closed subgroup K of G by

$$
K=\{g \in G \mid \operatorname{Ad}(g) W=W\}
$$

Then K is connected, and coset manifold $M=G / K$ is compact and simply connected, which is called a generalized flag manifold. We can identify the tangent space $T_{o}(M)$ at the origin o with $\mathfrak{m}=\operatorname{Im} \operatorname{ad}(W)$.

In order to define a G-invariant complex structure J on M, take a maximal torus T of G such that W is in its Lie algebra \mathfrak{t}. Take a biinvariant Riemannian metric (,) on G. We denote by Δ the set of nonzero roots of $\mathfrak{g}^{\mathbf{C}}$ with respect to $\mathfrak{t}^{\mathbf{C}}$. Take a lexicographic ordering on \mathfrak{t} such that $(W, \alpha) \geq 0$ for any positive root α. We denote by Δ^{+}the set of positive roots. We have the following direct sum decomposition of \mathfrak{g} :

$$
\mathfrak{g}=\mathfrak{t} \oplus \sum_{\alpha \in \Delta^{+}}\left(\boldsymbol{R} F_{\alpha} \oplus \boldsymbol{R} G_{\alpha}\right)
$$

where for each $H \in \mathfrak{t},\left[H, F_{\alpha}\right]=(\alpha, H) G_{\alpha},\left[H, G_{\alpha}\right]=-(\alpha, H) F_{\alpha}$. Set

$$
\Delta_{W}=\{\alpha \in \Delta \mid(\alpha, W)=0\}, \quad \Delta_{W}^{+}=\Delta_{W} \cap \Delta^{+}
$$

then we have

$$
\mathfrak{k}=\mathfrak{t} \oplus \sum_{\alpha \in \Delta_{W}^{+}}\left(\boldsymbol{R} F_{\alpha} \oplus \boldsymbol{R} G_{\alpha}\right), \quad \mathfrak{m}=\sum_{\alpha \in \Delta^{+}-\Delta_{W}^{+}}\left(\boldsymbol{R} F_{\alpha} \oplus \boldsymbol{R} G_{\alpha}\right) .
$$

We define a complex structure J on \mathfrak{m} by

$$
J F_{\alpha}=G_{\alpha}, \quad J G_{\alpha}=-F_{\alpha} \quad\left(\alpha \in \Delta^{+}-\Delta_{W}^{+}\right)
$$

Since $\operatorname{Ad}(k) J=J \operatorname{Ad}(k)$ for any k in K, we can extend J to a G-invariant almost complex structure on M. This almost complex structure J is integrable.

We assume that G is simple. We denote by $\Pi=\left\{\alpha_{1}, \cdots, \alpha_{r}\right\}$ the set of simple roots, and by $\alpha_{0}=\sum m_{j} \alpha_{j}$, the highest root. If we set

$$
\Pi_{W}=\left\{\alpha_{j} \in \Pi \mid\left(\alpha_{j}, W\right)>0\right\}=\left\{\alpha_{i_{1}}, \cdots, \alpha_{i_{s}}\right\}
$$

then it is known that the second betti number $b_{2}(M)$ of M is given by $b_{2}(M)=$ $s=\#\left(\Pi_{W}\right)([3])$. We assume that $b_{2}(M)=1$; that is, $\Pi_{W}=\left\{\alpha_{i}\right\}$. For a natural number n, set

$$
\Delta^{+}\left(\alpha_{i} ; n\right)=\left\{\alpha=\sum n_{j} \alpha_{j} \in \Delta^{+} \mid n_{i}=n\right\}, \quad \mathfrak{m}_{n}=\sum_{\alpha \in \Delta^{+}\left(\alpha_{i} ; n\right)}\left(\boldsymbol{R} F_{\alpha} \oplus \boldsymbol{R} G_{\alpha}\right)
$$

then we have

$$
\Delta^{+}-\Delta_{W}^{+}=\Delta^{+}\left(\alpha_{i}\right)=\bigcup_{n \geq 1} \Delta^{+}\left(\alpha_{i} ; n\right), \quad \mathfrak{m}=\sum_{n \geq 1} \mathfrak{m}_{n}
$$

We set $\mathfrak{m}_{0}=\mathfrak{k}$ for simplicity; then for $n, m \geq 0$ we have $\left[\mathfrak{m}_{n}, \mathfrak{m}_{m}\right] \subset \mathfrak{m}_{n+m}+$ $\mathfrak{m}_{|n-m|}$. If we normalize W so that $\left(W, \alpha_{i}\right)=1$, then we have $n J=\operatorname{ad} W$ on \mathfrak{m}_{n}. We define a G-invariant Kähler metric \langle,$\rangle on M$ by

$$
\left\langle X_{n}, X_{m}\right\rangle=n \delta_{n m}\left(X_{n}, X_{m}\right) \quad\left(X_{n} \in \mathfrak{m}_{n}, X_{m} \in \mathfrak{m}_{m}\right)
$$

We assume that $m_{i}=2$. If we set $c=2$, then conditions (1.1), (1.2), (1.3), (1.4) and (1.5) are satisfied.

Corollary 3.1. Let $M=(G / K, J)$ be a Kähler C-space with $b_{2}(M)=1$. We assume that G is a compact connected simple Lie group. Further, we assume that there exists a simple root α_{i} such that $\Pi_{W}=\left\{\alpha_{i}\right\}$ and that $m_{i}=2$, where $\alpha_{0}=\sum_{j} m_{j} \alpha_{j}$ is the highest root. Let $x(t)$ be a motion of charged particle defined by (0.1) under the electromagnetic field κJ with initial conditions $x(0)=o$ and $\dot{x}(0)=X_{1}+X_{2}\left(X_{1} \in \mathfrak{m}_{1}, X_{2} \in \mathfrak{m}_{2}\right)$. Then $x(t)$ is given by

$$
x(t)=\pi\left(\exp t\left(X_{1}+2 X_{2}+\kappa W\right) \exp \left(-t\left(X_{2}+\frac{\kappa}{2} W\right)\right)\right)
$$

where W is in the center of the Lie algebra \mathfrak{k} of K.
For instance, $\left(G, K, \alpha_{i}\right)$'s in the following table satisfy the assumption of Corollary 3.1. Here we adopt the same notations and numberings of simple roots given in the Bourbaki's table[4].

G	K	α_{i}
$S p(r)$	$U(i) \times S p(r-i)$	$\epsilon_{i}-\epsilon_{i+1}(1 \leq i \leq r-1)$
$S O(2 r)$	$U(i) \times S O(2(r-i))$	$\epsilon_{i}-\epsilon_{i+1}(2 \leq i \leq r-2)$
$S O(2 r+1)$	$U(i) \times S O(2(r-i)+1)$	$\epsilon_{i}-\epsilon_{i+1}(2 \leq i \leq r-1), \epsilon_{r}(i=r)$

Here we set

$$
S p(r)=\left\{\left.g \in U(2 r)\right|^{t} g J_{r} g=J_{r}\right\}, J_{r}=\left(\begin{array}{cc}
& I_{r} \\
-I_{r} &
\end{array}\right)
$$

The imbedding of $U(i) \times S p(r-i)$ into $S p(r)$ is given by

$$
\left\{\left.\left(\begin{array}{cccc}
\operatorname{Re}(x) & & \operatorname{Im}(x) & \\
& y_{11} & & y_{12} \\
-\operatorname{Im}(x) & & \operatorname{Re}(x) & \\
& y_{21} & & y_{22}
\end{array}\right) \right\rvert\, \begin{array}{c}
x \in U(i), \\
\left(\begin{array}{cc}
y_{11} & y_{12} \\
y_{21} & y_{22}
\end{array}\right) \in S p(r-i)
\end{array}\right\} \subset S p(r)
$$

The imbedding of $U(i) \times S O(j)$ into $S O(2 i+j)$ is given by

$$
U(i) \times S O(j)=\left\{\left.\left(\begin{array}{cc}
\operatorname{Re}(x) & \operatorname{Im}(x) \\
-\operatorname{Im}(x) & \operatorname{Re}(x) \\
&
\end{array} \begin{array}{l}
y
\end{array}\right) \right\rvert\, \begin{array}{l}
x \in U(i) \\
y \in S O(j)
\end{array}\right\} \subset S O(2 i+j)
$$

where $j=2(r-i)$ or $j=2(r-i)+1$.

References

[1] T. Adachi, S. Maeda and S. Udagawa, Simpleness and closedness of circles in compact Hermitian symmetric spaces, Tsukuba J. Math. (2000), 24, 1-13.
[2] Besse, Einstein manifolds. Springer-Verlag, Berlin, Heidelberg, 1987.
[3] A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces I, Amer. J. Math. 80 (1958), 458-538.
[4] N. Bourbaki, Groupes et algebres de Lie. Hermann, Paris, 1975.
[5] R. Dohira, Geodesics in reductive homogeneous spaces, Tsukuba J. Math. (1995), 19, 233-243.
[6] O. Ikawa, Hamiltonian dynamics of a charged particle, Hokkaido Math. J. (2003), 32, 661-671.
[7] O. Ikawa, Motion of charged particles in homogeneous Kähler and homogeneous Sasakian manifolds, preprint.
[8] S. Kobayashi and K. Nomizu, Foundations of differential geometry, vol. II. Interscience Publishers, New York, 1969.
[9] B. O'Neill, Semi-Riemannian geometry. Academic Press, New York, 1983.
[10] F. Tricerri and L. Vanhecke, Homogeneous structures on Riemannian manifolds, London Math. Soc. Lecture Notes 83, Cambridge Univ. Press, 1983.
[11] R. Utiyama, Theory of general relativity (in Japanese). Syokabo, Tokyo, 1991.

Department of General Education Fukushima National College of Technology Iwaki, Fukushima 970-8034
JAPAN
E-mail: ikawa@fukushima-nct.ac.jp

[^0]: *Partially supported by Grant-in-aid for Scientific Research No. 14740055
 2000 Mathematics Subject Classification: 83C10, 83C50, 53C30, 53C55.
 Key words and phrases: charged particle, Hermitian symmetric space, Kähler C-space.

