ACHROMATIC NUMBERS OF MAXIMAL OUTERPLANAR GRAPHS

By
Shousaku Hara and Atsuhiro Nakamoto

(Received August 20, 2001)

Abstract

A complete \boldsymbol{k}-coloring of a graph \boldsymbol{G} is a map from the vertices of \boldsymbol{G} to k colors such that any two adjacent vertices get different colors and that any two different colors appear on the two endpoints of some edge. The achromatic number of G is the largest k such that G has a complete k-coloring. In this paper, we give a lower bound for the achromatic numbers of maximal outerplanar graphs.

1. Introduction

We consider only finite, simple, undirected graphs in this paper. We denote the vertex set and edge set of a graph G by $V(G)$ and $E(G)$, respectively. A k-coloring of G is a color-assignment $c: V(G) \rightarrow\{1, \ldots, k\}$ such that any two adjacent vertices of G get different colors. We say that G is k-colorable if G has a k-coloring. The chromatic number of G, denoted by $\chi(G)$, is the smallest k such that G is k-colorable.

Let G be a graph. A k-coloring $c: V(G) \rightarrow\{1, \ldots, k\}$ is said to be complete if for any two distinct colors $i, j \in\{1, \ldots, k\}$, there exists at least one edge whose two endpoints are colored by i and j respectively. We say that G is complete k-colorable if G has a complete k-coloring. The achromatic number of G, denoted by $\psi(G)$, is defined as the largest k such that G is complete k-colorable [2]. We have $\chi(G) \leq \psi(G)$ since any $\chi(G)$-coloring of G is always complete. (If in some $\chi(G)$-coloring, some two colors were not adjacent, then these two colors could be the same, contrary to that G was colored by $\chi(G)$ colors.)

Harary, Hedetniemi and Prins [3] have shown that G has a complete k coloring for any k with $\chi(G) \leq k \leq \psi(G)$. In [6] and [4, 5], general upper and lower bounds of $\psi(G)$ of a graph G have been given. Recently, when G is a tree with bounded maximum degree, a lower bound of $\psi(G)$ has been given in [1]. It seems to be difficult to give a good bound of $\psi(G)$ for a given family of graphs.

A graph G is said to be outerplanar if G is embeddable on the plane so

[^0]that every vertex of G lies on the boundary cycle of the infinite region. An outerplanar graph G is said to be maximal if G has an outerplanar embedding on the plane such that each finite face is bounded by a cycle of length 3 . In this paper, we shall give a lower bound for achromatic numbers of outerplanar graphs, as follows:

THEOREM 1. Let G be a maximal outerplanar graph with $n \geq 4$ vertices. If G has $m+1$ vertices of degree 2 , then

$$
\psi(G) \geq \max \left\{2\left\lfloor\sqrt{\frac{n-m}{2}+\frac{1}{16}}-\frac{1}{4}\right\rfloor+1,2\left\lfloor\sqrt{\frac{n-m+1}{2}}\right\rfloor\right\}
$$

It is easy to see that the set of vertices of degree 2 in a maximal outerplanar graph G is independent if $n \geq 4$ and hence $m+1 \leq\left\lfloor\frac{n}{2}\right\rfloor$. On the other hand, if G is complete N-colorable, then $|E(G)|=2 n-3 \geq N(N-1) / 2$. Solving this for N, we have an upper bound for N. Therefore, we obtain the following corollary from Theorem 1.

Corollary 2. Let G be a maximal outerplanar graph with $n \geq 4$ vertices. Then:

$$
\max \left\{2\left\lfloor\sqrt{\frac{n}{4}+\frac{9}{16}}-\frac{1}{4}\right\rfloor+1,2\left\lfloor\sqrt{\frac{n}{4}+1}\right\rfloor\right\} \leq \psi(G) \leq\left\lfloor\sqrt{4 n-\frac{23}{4}}+\frac{1}{2}\right\rfloor
$$

2. Proof of theorems

Let G and H be two graphs. A homomorphism $h: G \rightarrow H$ is a map from $V(G)$ to $V(H)$ such that if $x y \in E(G)$, then $h(x) h(y) \in E(H)$. This induces a map from $E(G)$ to $E(H)$ naturally. It is easy to see that a complete N-coloring of a graph G corresponds to a homomorphism $h: G \rightarrow K_{N}$, which induces a surjection from $E(G)$ to $E\left(K_{N}\right)$. Such a homomorphism is said to be complete. Thus, a graph G is complete N-colorable if and only if there is a complete homomorphism $h: G \rightarrow K_{N}$.

Let P_{n} denote the path with n vertices. It is clear that a homomorphism $h: P_{n} \rightarrow K_{N}$ is complete if and only if it induces a walk W_{h} in K_{N} which traces each edge at least once. We define $O(d)$ and $E(d)$ to express $\psi\left(P_{n}\right)$, as follows:

$$
\begin{aligned}
& O(d)=\max \left\{N: N \text { is odd, } \frac{N(N-1)}{2} \leq d\right\}=2\left[\sqrt{\frac{d}{2}+\frac{1}{16}}-\frac{1}{4}\right\rfloor+1 \\
& E(d)=\max \left\{N: N \text { is even, } \frac{N^{2}}{2}-1 \leq d\right\}=2\left[\sqrt{\frac{d+1}{2}}\right]
\end{aligned}
$$

Lemma 3. $\psi\left(P_{n}\right)=\max \{O(n-1), E(n-1)\}$.

Proof. Let N be an odd number. Then K_{N} has an euler tour. We can construct a complete homomorphism $h: P_{n} \rightarrow K_{N}$ so that W_{h} covers the euler tour if $N(N-1) / 2 \leq n-1$. Thus, if $\psi\left(P_{n}\right)$ is odd, then it must be the value of N which maximizes $N(N-1) / 2$ under this inequality.

On the other hand, if N is an even number, then consider an independent set $H \subset E\left(K_{N}\right)$ consisting of exactly $(N-2) / 2$ edges. Let K_{N}^{\prime} be the graph obtained from K_{N} by replacing each edge of H with parallel edges. Then, K_{N}^{\prime} has exactly two vertices x, y of odd degree and K_{N}^{\prime} has an euler tour from x to y. Tracing this euler tour, we can construct a complete homomorphism $h: P_{n} \rightarrow K_{N}$ if $N(N-1) / 2+(N-2) / 2=N^{2} / 2-1 \leq n-1$. Conversely, it is easy to see that any walk covering all edges of K_{N} must pass through at least ($N-2$)/2 edges twice or more. Thus, if $\psi\left(P_{n}\right)$ is even, it must be the maximum value of N with $N^{2} / 2-1 \leq n-1$.

LEMMA 4. If H is an induced subgraph of a graph G, then $\psi(G) \geq \psi(H)$.
LEMMA 5. Let G be a graph with vertices v_{1}, \ldots, v_{n} and let G_{i} be the subgraph of G induced by $\left\{v_{1}, \ldots, v_{i}\right\}$, for $i=1, \ldots, n$. Suppose that for each i, the neighborhood of v_{i} in G_{i} induces a complete graph. Then $\psi(G) \geq \psi\left(P_{n-m+1}\right)$, where

$$
m=\left|\left\{i \in\{1, \ldots, n-1\}: v_{i} v_{i+1} \notin E(G)\right\}\right|+1
$$

Proof. Let P be the spanning subgraph in G whose edges are those of the form $v_{i} v_{i-1}$. Then P is a disjoint union of m paths and there is a natural surjective homomorphism $q: P \rightarrow P_{n-m+1}$ such that $q\left(v_{i}\right)=q\left(v_{i+1}\right)$ whenever $v_{i} v_{i+1} \notin$ $E(G)$. Let $\bar{c}: P_{n-m+1} \rightarrow\{1, \ldots, N\}$ be a complete coloring of P_{n-m+1} which attains $\psi\left(P_{n-m+1}\right)(=N)$. First, we define a color-assignment $c_{1}: V(G) \rightarrow$ $\{0,1, \ldots, N\}$ by $c_{1}\left(v_{i}\right)=\bar{c}\left(q\left(v_{i}\right)\right)$. This induces a complete coloring of P, but it might not be a coloring of G yet.

Suppose that $c_{i}: V(G) \rightarrow\{0,1, \ldots, N\}$ has been defined and that c_{i} induces a complete coloring of $G_{i} \cup P-c_{i}^{-1}(0)$ with exactly N colors. It is clear that c_{1} and c_{2} satisfy this condition with $c_{i}^{-1}(0)=\emptyset$. Thus, we suppose that $i \geq 3$ and shall construct color-assignments c_{3}, c_{4}, \ldots with this condition inductively as follows.

Let x_{1}, \ldots, x_{s} be the neighbors of v_{i+1} in G_{i+1}. Since they induce a complete graph in G_{i+1} by the assumption of the lemma, we have $c_{i}\left(x_{j}\right) \neq c_{i}\left(x_{k}\right)$ for any distinct $j, k \in\{1, \ldots, s\}$, unless $c_{i}\left(x_{j}\right)=c_{i}\left(x_{k}\right)=0$. If $c_{i}\left(v_{i+1}\right) \neq c_{i}\left(x_{j}\right)$ for each $j \in\{1, \ldots, s\}$, or if $c_{i}\left(v_{i+1}\right)=0$, then c_{i} induces a coloring of $G_{i+1}-c_{i}^{-1}(0)$. In this case, we can put $c_{i+1}:=c_{i}$.

Suppose that $c_{i}\left(v_{i+1}\right) \neq 0$ and that $c_{i}\left(v_{i+1}\right)=c_{i}\left(x_{j}\right)$ for some j. Let l denote the minimum index k such that $v_{k} v_{k+1} \notin E(G)$ with $k \geq i$. Thus v_{l} is one of ends
of the component of P including v_{i+1}. In this case, we make a color-assignment $c_{i}^{\prime}: V(G) \rightarrow\{0,1, \ldots, N\}$ temporarily by:

$$
\begin{cases}c_{i}^{\prime}\left(v_{k}\right)=c_{i}\left(v_{k}\right) & (1 \leq k \leq i, l+1 \leq k \leq n) \\ c_{i}^{\prime}\left(v_{k}\right)=c_{i}\left(v_{k+1}\right) & (i+1 \leq k \leq l-1) \\ c_{i}^{\prime}\left(v_{k}\right)=0 & (k=l)\end{cases}
$$

Call this deformation of c_{i} a color shift here.
It is clear that a color shift preserves the adjacency of colors $1, \ldots, N$ lying on $G_{i} \cup P-v_{i+1}$, but the adjacency of two colors $c_{i}\left(v_{i+1}\right)$ and $c_{i}\left(x_{k}\right)$ for some k with $k \neq j$ and that of $c_{i}\left(v_{i+1}\right)$ and $c_{i}\left(v_{i+2}\right)$ might be lost. However, these colors are still adjacent on $x_{j} x_{k}$ and $x_{j} v_{i+1}$, and hence c_{i}^{\prime} satisfies the same condition as c_{i}.

Repeat color shifts until $c_{i}^{\prime}\left(v_{i+1}\right)=0$ or until $c_{i}^{\prime}\left(v_{i+1}\right) \neq c_{i}^{\prime}\left(x_{j}\right)$ for all $j \in$ $\{1, \ldots, s\}$. Then we can put $c_{i+1}:=c_{i}^{\prime}$ with the desired condition. Finally, we obtain a color-assignment $c_{n}: V(G) \rightarrow\{0,1, \ldots, N\}$ such that c_{n} induces a complete coloring of $G-c_{n}^{-1}(0)$ with exactly N colors. Since $G-c_{n}^{-1}(0)$ is an induced subgraph of G, we have $\psi(G) \geq \psi\left(G-c_{n}^{-1}(0)\right) \geq N=\psi\left(P_{n-m+1}\right)$ by Lemma 4.

Now we shall prove Theorem 1.
Proof of Theorem 1. It suffices to make a labeling of vertices satisfying the assumptions in Lemma 5 and to evaluate the value of m for a maximal outerplanar graph G with n vertices.

It is easy to see that any maximal outerplanar graph with at least three vertices has a vertex of degree 2, which forms a triangle together with its two neighbors. Let v_{n} be one of vertices of degree 2 in $G_{n}=G$ and put $G_{n-1}=$ $G_{n}-v_{n}$. For $i=n-1, \ldots, 4$, let v_{i} be a vertex of degree 2 in G_{i} chosen in such a way that if there is a vertex of degree 2 in G_{i} which is adjacent to v_{i+1} in G_{i+1}, then we take it as v_{i}, and otherwise, take any vertex of degree 2 in G_{i} as v_{i}. Then, we put $G_{i-1}=G_{i}-v_{i}$. Finally, let v_{2} and v_{3} be the two neighbors of v_{4} in G_{4} and v_{1} the other. This labeling satisfies the condition in Lemma 5 clearly.

Let $Q_{n}=P$ be the same subgraph in $G_{n}=G$ as in Lemma 5, which is a disjoint union of m paths, and let $V_{2}=V_{2}\left(G_{n}\right)$ denote the number of vertices of degree 2 in G_{n}. We shall show that Q_{n} has exactly $V_{2}-1$ components, using induction on n. This implies that $m=V_{2}-1$. If $n=4$, then this holds obviously with $V_{2}=2$. Suppose that $n \geq 5$.

Let x and y be two neighbors of v_{n} in $G=G_{n}$. If v_{n} is isolated in Q_{n}, then $\operatorname{deg}_{G_{n-1}}(x) \geq 3$ and $\operatorname{deg}_{G_{n-1}}(y) \geq 3$, and hence $V_{2}\left(G_{n-1}\right)=V_{2}\left(G_{n}\right)-1$. By induction hypothesis, Q_{n-1} has $V_{2}\left(G_{n}\right)-2$ components and hence Q_{n} has
$V_{2}\left(G_{n}\right)-1$ components.
If v_{n} is not isolated in Q_{n}, then one of x and y, say x, has degree 2 in G_{n-1} and $v_{n-1}=x$ by the definition of labeling of vertices. (If y also had degree 2 in G_{n-1}, then G_{n-1} would be isomorphic to K_{3} and hence $n=4$, contrary to the assumption $n \geq 5$.) Thus, Q_{n-1} has the same number of components as Q_{n} and also has the same number of vertices of degree 2 as Q_{n}. By induction hypothesis, the number of components of Q_{n} is equal to $V_{2}\left(G_{n-1}\right)-1=V_{2}\left(G_{n}\right)-1$. The induction completes.

Therefore, we have $V_{2}=m+1$ and $\psi(G) \geq \psi\left(P_{n-m+1}\right)$ by Lemma 5. The theorem follows from Lemma 3 with this.

Now we discuss the sharpness of estimation in Theorem 1. Let $G=P_{n-1}+$ K_{1}. It is clear that $\psi(G)=\psi\left(P_{n-1}\right)+1$ since the vertex corresponding to K_{1} is adjacent to all other vertices. Assume that

$$
\left|E\left(P_{n-1}\right)\right|=n-2=N(N-1) / 2-1
$$

for some odd number $N \geq 3$. Since G has exactly two vertices of degree 2 , we have $m=1$ and $\psi(G) \geq \psi\left(P_{n}\right)$ by Theorem 1. On the other hand, by the assumption of n, we have $\psi\left(P_{n-1}\right)=N-1$ while $\psi\left(P_{n}\right)=N$. Hence, $\psi(G)=\psi\left(P_{n-1}\right)+1=\psi\left(P_{n}\right)=N=O(n-1)$.

The same arguments as in the proof of Theorem 1 can be used to show a lower bound of $\psi(G)$ for a more general family of graphs, defined as follows. First, put $G_{1}=K_{t+1}$. To obtain a graph G_{i+1} with exactly $t+i+1$ vertices, choose any clique in G_{i} consisting of t vertices and join those t vertices to a new vertex so that they form K_{t+1}. These graphs G_{i} 's are called t-trees. It is easy to see that a t-tree G has minimum degree exactly t, and the vertices of G of degree t are independent if $|V(G)| \geq t+2$. Obviously, an ordinary tree is a 1-tree, and a maximal outerplanar graph is a 2-tree. (Note that there is a 2-tree which is not maximal outerplanar.)

Theorem 6. Let t be a positive integer and let G be at-tree with n vertices and with exactly $m+1$ vertices of degree t. Then, $\psi(G) \geq \max \{O(n-m), E(n-m)\}$.

References

[1] N. Cairnie and K. Edwards, The achromatic number of bounded degree trees, Discrete Math. 188 (1998), 87-97.
[2] F. Harary and S.T. Hedetniemi, The achromatic number of a graph, J. Combin. Theory 8 (1970), 154-161.
[3] F. Harary, S.T. Hedetniemi and G. Prins, An interpolation theorem for graphical homomorphisms, Portugalie Mathematica 26 (1967), 453-462.
[4] P. Hell, and D.J. Miller, On forbidden quotients and the achromatic number, Proceedings of the Fifth British Combinatorial Conference (Univ. Aberdeen, Aberdeen, 1975), 283292. Congressus Numerantium, No. XV, Utilitas Math., Winnipeg, Man., 1976.
[5] P. Hell, and D.J. Miller, Graph with given achromatic number, Discrete Math. 16 (1976), 195-207.
[6] S. Xu, Relations between parameters of a graph, Discrete Math. 89 (1991), 65-88.

Department of Mathematics,
Faculty of Education and Human Sciences, Yokohama National University, 79-2 Tokiwadai, Hodogaya-Ku, Yokohama 240-8501, Japan
E-mail: nakamotoCedhs.ynu.ac.jp

[^0]: 2000 Mathematics Subject Classification: 05C15
 Key words and phrases: achromatic number, maximal outerplanar graphs, \boldsymbol{k}-trees

