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Abstract. A complete k-coloring of a graph $G$ is a map from the vertices of $G$

to $k$ colors such that any two adjacent vertices get different colors and that any
two different colors appear on the two endpoints of some edge. The achrvmatic
number of $G$ is the largest $k$ such that $G$ has a complete k-coloring. In this paper,
we give a lower bound for the achromatic numbers of maximal outerplanar graphs.

1. Introduction

We consider only finite, simple, undirected graphs in this paper. We denote
the vertex set and edge set of a graph $G$ by $V(G)$ and $E(G)$ , respectively. A
k-coloring of $G$ is a color-assignment $c$ : $V(G)\rightarrow\{1, \ldots, k\}$ such that any two
adjacent vertices of $G$ get different colors. We say that $G$ is k-colorable if $G$ has
a k-coloring. The chromatic number of $G$, denoted by $\chi(G)$ , is the smallest $k$

such that $G$ is k-colorable.
Let $G$ be a graph. A k-coloring $c:V(G)\rightarrow\{1, \ldots , k\}$ is said to be complete

if for any two distinct colors $i,j\in\{1, \ldots, k\}$ , there exists at least one edge whose
two endpoints $are$ colored by $i$ and $j$ respectively. We say that $G$ is complete
k-colorable if $G$ has a complete k-coloring. The achromatic number of $G$ , denoted
by $\psi(G)$ , is defined as the largest $k$ such that $G$ is complete k-colorable [2]. We
have $\chi(G)\leq\psi(G)$ since any $\chi(G)$-coloring of $G$ is always complete. (If in some
$\chi(G)$-coloring, some two colors were not adjacent, then these two colors could
be the same, contrary to that $G$ was colored by $\chi(G)$ colors.)

Harary, Hedetniemi and Prins [3] have shown that $G$ has a complete k-
coloring for any $k$ with $\chi(G)\leq k\leq\psi(G)$ . In [6] and $[4, 5]$ , general upper
and lower bounds of $\psi(G)$ of a graph $G$ have been given. Recently, when $G$ is a
tree with bounded maximum degree, a lower bound of $\psi(G)$ has been given in
[1}. It seems to be difficult to give a good bound of $\psi(G)$ for a given family of
graphs.

A graph $G$ is said to be outerplanar if $G$ is embeddable on the plane so
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that every vertex of $G$ lies on the boundary cycle of the infinite region. An
outerplanar graph $G$ is said to be maximal if $G$ has an outerplanar embedding
on the plane such that each finite face is bounded by a cycle of length 3. In
this paper, we shall give a lower bound for achromatic numbers of outerplanar
graphs, as follows:

THEOREM 1. Let $G$ be a maximal $oute\eta lanar$ graph with $n\geq 4$ vertices. If $G$

has $m+1$ vertices of degree 2, then

$\psi(G)\geq\max\{2\lfloor\sqrt{\frac{n-m}{2}+\frac{1}{16}}-\frac{1}{4}\rfloor+1,2\lfloor\sqrt{\frac{n-m+1}{2}}\rfloor\}$ .

It is easy to see that the set of vertices of degree 2 in a maximal outerplanar
graph $G$ is independent if $n\geq 4$ and hence $ m+1\leq L\frac{n}{2}\rfloor$ . On the other hand, if
$G$ is complete N-colorable, then $|E(G)|=2n-3\geq N(N-1)/2$ . Solving this for
$N$ , we have an upper bound for $N$ . Therefore, we obtain the following corollary
from Theorem 1.

COROLLARY 2. Let $G$ be a maximal outerplanar graph unth $n\geq 4$ vertices.
Then:

max $\{2\lfloor\sqrt{\frac{n}{4}+\frac{9}{16}}-\frac{1}{4}\rfloor+1,2\lfloor\sqrt{\frac{n}{4}+1}\rfloor\}\leq\psi(G)\leq\lfloor\sqrt{4n-\frac{23}{4}}+\frac{1}{2}\rfloor$

2. Proof of theorems

Let $G$ and $H$ be two graphs. A $homomo7phismh$ : $G\rightarrow H$ is a map from
$V(G)$ to $V(H)$ such that if $xy\in E(G)$ , then $h(x)h(y)\in E(H)$ . This induces a
map ffom $E(G)$ to $E(H)$ naturally. It is easy to see that a complete N-coloring
of a graph $G$ corresponds to a homomorphism $h$ : $G\rightarrow K_{N}$ , which induces a
surjection from $E(G)$ to $E(K_{N})$ . Such a homomorphism is said to be complete.
Thus, a graph $G$ is complete N-colorable if and only if there is a complete
homomorphism $h:G\rightarrow K_{N}$ .

Let $P_{n}$ denote the path with $n$ vertices. It is clear that a homomorphism
$h:P_{n}\rightarrow K_{N}$ is complete if and only if it induces a walk $W_{h}$ in $K_{N}$ which traces
each edge at least once. We define $O(d)$ and $E(d)$ to express $\psi(P_{n})$ , as follows:

$O(d)=\max\{N:N$ is odd, $\frac{N(N-1)}{2}\leq d\}=2\lfloor\sqrt{\frac{d}{2}+\frac{1}{16}}-\frac{1}{4}\rfloor+1$

$E(d)=\max\{N:N$ is even, $\frac{N^{2}}{2}-1\leq d\}=2\lfloor\sqrt{\frac{d+1}{2}}\rfloor$

LEMMA 3. $\psi(P_{n})=\max\{O(n-1), E(n-1)\}$ .
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Proof. Let $N$ be an odd number. Then $K_{N}$ has an euler tour. We can construct
a complete homomorphism $h$ : $P_{n}\rightarrow K_{N}$ so that $W_{h}$ covers the euler tour if
$N(N-1)/2\leq n-1$ . Thus, if $\psi(P_{n})$ is odd, then it must be the value of $N$

which maximizes $N(N-1)/2$ under this inequality
On the other hand, if $N$ is an even number, then consider an independent

set $H\subset E(K_{N})$ consisting of exactly $(N-2)/2$ edges. Let $K_{N}^{\prime}$ be the graph
obtained ffom $K_{N}$ by replacing each edge of $H$ with parallel edges. Then, $K_{N}^{\prime}$

has exactly two vertices $x,$ $y$ of odd degree and $K_{N}^{\prime}$ has an euler tour from
$x$ to $y.$ hacing this euler tour, we can construct a complete homomorphism
$h$ : $P_{n}\rightarrow K_{N}$ if $N(N-1)/2+(N-2)/2=N^{2}/2-1\leq n-1$ . Conversely, it is
easy to see that any walk covering all edges of $K_{N}$ must pass through at least
$(N-2)/2$ edges twice or more. Thus, if $\psi(P_{n})$ is even, it must be the maximum
value of $N$ with $N^{2}/2-1\leq n-1$ . $\blacksquare$

LEMMA 4. If $H$ is an induced subgraph of a graph $G$ , then $\psi(G)\geq\psi(H)$ . $\blacksquare$

LEMMA 5. Let $G$ be a graph with vertices $v_{1},$ $\ldots,v_{n}$ and let $G_{i}$ be the subgmph
of $G$ induced by $\{v_{1}, \ldots,v_{i}\}$ , for $i=1,$ $\ldots,$

$n$ . Suppose that for each $i$ , the
neighborhood of $v_{i}$ in $G_{i}$ induces a complete graph. Then $\psi(G)\geq\psi(P_{n-m+1})$ ,
where

$m=|\{i\in\{1, \ldots, n-1\} : v_{i}v_{i+1}\not\in E(G)\}|+1$ .

Proof Let $P$ be the spanning subgraph in $G$ whose edges are those of the form
$v_{i}v_{i-1}$ . Then $P$ is a disjoint union of $m$ paths and there is a natural surjective
homomorphism $q$ : $P\rightarrow P_{n-m+1}$ such that $q(v_{i})=q(v_{i+1})$ whenever $ v_{i}v_{i+1}\not\in$

$E(G)$ . Let $\overline{c}$ : $P_{n-m+1}\rightarrow\{1, \ldots, N\}$ be a complete coloring of $P_{n-m+1}$ which
attains $\psi(P_{n-m+1})(=N)$ . First, we define a color-assignment $c_{1}$ : $ V(G)\rightarrow$

$\{0,1, \ldots, N\}$ by $c_{1}(v_{i})=\overline{c}(q(v_{i}))$ . This induces a complete coloring of $P$ , but it
might not be a coloring of $G$ yet.

Suppose that $c_{i}$ : $V(G)\rightarrow\{0,1, \ldots, N\}$ has been defined and that $c_{i}$ induces
a complete coloring of $G_{i}\cup P-c_{i}^{-1}(0)$ with exactly $N$ colors. It is clear that
$c_{1}$ and $c_{2}$ satisfy this condition with $ c_{i}^{-1}(0)=\emptyset$ . Thus, we suppose that $i\geq 3$

and shall construct color-assignments $c_{3},$ $c_{4},$ $\ldots$ with this condition inductively
as follows.

Let $x_{1},$
$\ldots,$

$x_{s}$ be the neighbors of $v_{i+1}$ in $G_{i+1}$ . Since they induce a complete
graph in $G_{i+1}$ by the assumption of the lemma, we have $c_{i}(x_{j})\neq c_{i}(x_{k})$ for any
distinct $j,$ $k\in\{1, \ldots, s\}$ , unless $c_{i}(x_{j})=c_{i}(x_{k})=0$ . If $c_{i}(v_{i+1})\neq c_{i}(x_{j})$ for each
$j\in\{1, \ldots, s\}$ , or if $c_{i}(v_{i+1})=0$, then $c_{i}$ induces a coloring of $G_{i+1}-c_{i}^{-1}(0)$ . In
this case, we can put $c_{i+1}$ $:=c_{i}$ .

Suppose that $c_{i}(v_{i+1})\neq 0$ and that $c_{i}(v_{i+1})=c_{i}(x_{j})$ for some $j$ . Let $l$ denote
the minimum index $k$ such that $v_{k}v_{k+1}\not\in E(G)$ with $k\geq i$ . Thus $v_{i}$ is one of ends
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of the component of $P$ including $v_{i+1}$ . In this case, we make a color-assignment
$d_{i}$ : $V(G)\rightarrow\{0,1, \ldots, N\}$ temporarily by:

$\left\{\begin{array}{ll}d_{i}(v_{k})=c_{i}(v_{k}) & (1 \leq k\leq i, l+1\leq k\leq n)\\d_{i}(v_{k})=c_{i}(v_{k+1}) & (i+1\leq k\leq l-1)\\d_{i}(v_{k})=0 & (k=l)\end{array}\right.$

Call this deformation of $c_{i}$ a color shift here.
It is clear that a color shift preserves the adjacency of colors 1, ..., $N$ lying

on $G_{i}\cup P-v_{i+1}$ , but the adjacency of two colors $c_{i}(v_{i+1})$ and $c_{i}(x_{k})$ for some $k$

with $k\neq j$ and that of $c_{i}(v_{i+1})$ and $c_{i}(v_{i+2})$ might be lost. However, these colors
are still adjacent on $x_{j}x_{k}$ and $x_{j}v_{i+1}$ , and hence $d_{i}$ satisfies the same condition
as $c_{i}$ .

Repeat color shifts until Of $(v_{i+1})=0$ or until $d_{i}(v_{i+1})\neq d_{i}(x_{j})$ for ffi $ j\in$

$\{1, \ldots, s\}$ . Then we can put $c_{i+1}$ $:=d_{i}$ with the desired condition. Finally, we
obtain a color-assignment $c_{n}$ : $V(G)\rightarrow\{0,1, \ldots, N\}$ such that $c_{n}$ induces a
complete coloring of $G-c_{n}^{-1}(0)$ with exactly $N$ colors. Since $G-c_{\overline{n}}^{1}(0)$ is an
induced subgraph of $G$ , we have $\psi(G)\geq\psi(G-c_{n}^{-1}(0))\geq N=\psi(P_{n-m+1})$ by
Lemma 4. $\blacksquare$

Now we shall prove Theorem 1.

Proof of Theorem 1. It suffices to make a labeling of vertices satisfying the as-
sumptions in Lemma 5 and to evaJuate the value of $m$ for a maximal outerplanar
graph $G$ with $n$ vertices.

It is easy to see that any maximal outerplanar graph with at least three
vertices has a vertex of degree 2, which forms a triangle together with its two
neighbors. Let $v_{n}$ be one of vertices of degree 2 in $G_{n}=G$ and put $G_{n-1}=$

$G_{n}-v_{n}$ . For $i=n-1,$ $\ldots,$
$4$ , let $v_{i}$ be a vertex of degree 2 in $G_{i}$ chosen in

such a way that if there is a vertex of degree 2 in $G_{i}$ which is adjacent to $v_{i+1}$

in $G_{i+1}$ , then we take it as $v_{i}$ , and otherwise, take any vertex of degree 2 in $G_{i}$

as $v_{i}$ . Then, we put $G_{i-1}=G_{i}-v_{i}$ . Finally, let $v_{2}$ and $v_{3}$ be the two neighbors
of $v_{4}$ in $G_{4}$ and $v_{1}$ the other. This labeling satisfies the condition in Lemma 5
clearly

Let $Q_{n}=P$ be the same subgraph in $G_{n}=G$ as in Lemma 5, which is a
disjoint union of $m$ paths, and let $V_{2}=V_{2}(G_{n})$ denote the number of vertices of
degree 2 in $G_{n}$ . We shall show that $Q_{n}$ has exactly $V_{2}-1$ components, using
induction on $n$ . This implies that $m=V_{2}-1$ . If $n=4$ , then this holds obviously
with $V_{2}=2$ . Suppose that $n\geq 5$ .

Let $x$ and $y$ be two neighbors of $v_{n}$ in $G=G_{n}$ . If $v_{n}$ is isolated in $Q_{n}$ ,
then $\deg_{G_{n-1}}(x)\geq 3$ and $\deg_{G}$. $1(y)\geq 3$ , and hence $V_{2}(G_{n-1})=V_{2}(G_{n})-1$ .
By induction hypothesis, $Q_{n-1}$ has $V_{2}(G_{n})-2$ components and hence $Q_{n}$ has
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$V_{2}(G_{n})-1$ components.
If $v_{n}$ is not isolated in $Q_{n}$ , then one of $x$ and $y$ , say $x$ , has degree 2 in $G_{n-1}$

and $v_{n-1}=x$ by the definition of labeling of vertices. (If $y$ also had degree 2 in
$G_{n-1}$ , then $G_{n-1}$ would be isomorphic to $K_{3}$ and hence $n=4$ , contrary to the
assumption $n\geq 5.$ ) Thus, $Q_{n-1}$ has the same number of components as $Q_{n}$ and
also has the same number of vertices of degree 2 as $Q_{n}$ . By induction hypothesis,
the number of components of $Q_{n}$ is equal to $V_{2}(G_{n-1})-1=V_{2}(G_{n})-1$ . The
induction completes.

Therefore, we have $V_{2}=m+1$ and $\psi(G)\geq\psi(P_{n-m+1})$ by Lemma 5. The
$th\infty rem$ follows from Lemma 3 with this. $\blacksquare$

Now we discuss the sharpness of estimation in Theorem 1. Let $G=P_{n-1}+$
$K_{1}$ . It is clear that $\psi(G)=\psi(P_{n-1})+1$ since the vertex corresponding to $K_{1}$ is
adjacent to all other vertices. Assume that

$|E(P_{n-1})|=n-2=N(N-1)/2-1$

for some odd number $N\geq 3$ . Since $G$ has exactly two vertices of degree 2,
we have $m=1$ and $\psi(G)\geq\psi(P_{n})$ by Theorem 1. On the other hand, by
the assumption of $n$, we have $\psi(P_{n-1})=N-1$ while $\psi(P_{n})=N$ . Hence,
$\psi(G)=\psi(P_{n-1})+1=\psi(P_{n})=N=O(n-1)$ .

The same arguments as in the proof of Theorem 1 can be used to show a
lower bound of $\psi(G)$ for a more general family of graphs, defined as follows.
First, put $G_{1}=K_{t+1}$ . To obtain a graph $G_{i+1}$ with exactly $t+i+1$ vertices,
choose any clique in $G_{i}$ consisting of $t$ vertices and join those $t$ vertices to a new
vertex so that they form $K_{t+1}$ . These graphs $G_{i}’ s$ are called t-trees. It is easy to
see that a t-tree $G$ has minimum degree exactly $t$ , and the vertices of $G$ of degree
$t$ are independent if $|V(G)|\geq t+2$ . Obviously, an ordinary tree is a l-tree, and
a maximal outerplanar graph is a 2-tree. (Note that there is a 2-tree which is
not maximal outerplanar.)

THEOREM 6. Let $t$ be a posibive integer and let $G$ be a t-tree with $n$ vertices and
utth $exacu_{ym}+1$ vertices of degree $t$ . Then, $\psi(G)\geq\max\{O(n-m), E(n-m)\}$ .

$\blacksquare$

References

[1] N. Cairnie and K. Edwards, The achromatic number of bounded degree trees, Discrete
Math. 188 (1998), 87-97.

[2] F. Harary and S.T. Hedetniemi, The achromatic number of a graph, J. Combm. Theory
8 (1970), 154-161.

[3] F. Harary, S.T. Hedetniemi and G. Prins, An interpolation theorem for graphical $hom\mathfrak{c}\succ$

morphisms, Portugalie Mathematica 26 (1967), 453-462.



186 S. HARA AND A. NAKAMOTO

[4] P. HeU, and D.J. Miller, On forbidden quotients and the achromatic number, Proceedings
of the Fifth British Combinatorial Conference (Univ. Aberdeen, Aberdeen, 1975), 283-
292. Congressus Numerantium, No. XV, Utilitas Math., Winnipeg, Man., 1976.

[5] P. Hell, and D.J. Miller, Graph with given achromatic number, Discrete Math. 16 (1976),
195-207.

[6] S. Xu, Relations between parameters of a graph, Discrete Math. 89 (1991), 65-88.

Department of Mathematics,
Faculty of Education and Human Sciences,
Yokohama Natlonal University,
7&2 Tokiwadai, Hodogaya-Ku,
Yokohama 2408501,
Japan
E-mail: nakanotoO\bullet dhs. ynu. ac. Jp


	1. Introduction
	THEOREM 1. ...

	2. Proof of theorems
	THEOREM 6. ...

	References

