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Abstract. We shall show that two simple graphs embedded on a closed surface
with the same face size distribution can be transformed into each other, up to
homeomorphism, by a sequence of diagonal flips if they have the sufficiently large
number of triangular faces.

1. Introduction

A “diagonal flip” has been defined as a local deformation of triangulations
on surfaces and there is a big stream [3, 4, 7, 8, 17, 19, 20, 21, 22, 23, 26, 27]
of studies on the equivalence over triangulations on surfaces by diagonal flips
in topological graph theory. This began with Wagner’s classical work [26] on
spherical triangulations and Negami’s work [19] opened the way to a general
$th\infty ry$ of diagonal flips. His result states that any two triangulations on a closed
surface with the same and sufficiently large number of vertices can be transformed
into each other, up to homeomorphism, by a sequence of diagonal flips, and its
many variations have been proved. Furthermore, Nakamoto has developed a
theory of “diagonal flips” in quadrangulations on surfaces [12, 13, 14, 15, 16, 18],
some part of which goes in parallel to that for triangulations.

A natural question $ar$ises; what can we say about simple graphs with faces
some of which are triangular and others $are$ quadrangular? In this paper, we
shall answer this question under more general situations, as follows.

Let $G$ be a simple graph 2-cell embedded on a closed surface $F^{2}$ and let
$f_{i}$ denote the number of faces of size $i$ . Then we have $\sum_{i>3}if_{i}=2|E(G)|$ .
We call the sequence $(f_{3}, f_{4}, f_{5}, \ldots)$ the face size distribution$-ofG$ . We denote
the size of a face $A$ by $|A|$ . Let $A_{1}$ and $A_{2}$ be two faces adjacent along an
edge $v_{0}v_{m}$ and let $v_{0}v_{1}\cdots v_{m}\cdots v_{|A_{1}|+|A_{2}|-3}$ be the boundary walk of the region
obtained as $A_{1}\cup A_{2}$ , which is divided into $A_{1}$ and $A_{2}$ by $v_{0}v_{m}$ . A diagonal flip at
$\overline{20\infty}$Mathematics Subject Classlfication: 05Cl0
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$v_{0}v_{m}$ is to replace $v_{0}v_{m}$ with $v_{1}v_{m+1}$ (or $v_{-1}v_{m-1}$ with subscripts taken modulo
$|A_{1}|+|A_{2}|-2)$ . Any diagonal flip does not change the face size distribution
of $G$ . Since we have to stay in the category of simple graphs, a diagonal flip is
forbidden if it produces multiple edges or loops.

A graph $G$ embedded on a closed surface $F^{2}$ is said to be closed 2-cell em-
bedded or strongly embedded on $F^{2}$ if each face of $G$ is bounded by a cycle of
length at least 3. The following theorem is our answer to the above question:

THEOREM 1. Given a closed surface $F^{2}$ and a finite sequence $\varphi=(f_{4}, f_{5}, \ldots)$

of non-negative integers, there exists a natural number $R=R(F^{2}, \varphi)$ such that
two simple graphs closed 2-cell embedded on $F^{2}w\dot{i}th$ the same face size distribu-
tion $(f_{3}, f_{4}, f_{5}, \ldots)$ can be transformed into each other, up to homeomorphism,
by a sequence of diagonal flips if $f_{3}\geq R$ .

Note that triangular faces are $ac$tually necessary For examaple, if $f_{i}=0$ for
all odd number $i$ , there arises an obstruction related to an algebraic invariant
called “the cycle parity”. Any diagonal flip in such graphs preserves their cycle
parities. Thus, they cannot be transformed into each other by a sequence of
diagonal flips if they have different cycle parities. See $[14, 18]$ for the details on
cycle parities.

The property of being closed 2-cell embedded is actually necessary in our
proof of the theorem to make a situation where we can use some results on
triangulations. However, another problem would arise when we neglected this
property. For example, how should we consider “a diagonal flip” of a cut edge?

Finally, we shall show the dual form of Theorem 1. A graph $G$ embedded on
a closed surface $F^{2}$ is said to be semi-polyhedral if each face of $G$ is bounded by
a cycle, possibly of length 2, and if any two faces share at most one edge. Two
faces may share two or more vertices in a semi-polyhedral graph and each vertex
must have degree at least 3. It is easy to see that $G$ is semi-polyhedral if and
only if its dual $G^{*}$ is simple and closed 2-cell embedded on $F^{2}$ .

–

Figure 1 An edge slide along $uv$
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Let xuvy be a path of length 3 in a semi-polyhedral graph $G$ such that xuv
and uvy form two corners of distinct faces of $G$ incident to the edge $uv$ . An edge
slide along $uv$ is to replace two edges $xu$ and $vy$ with $xv$ and $uy$ , respectively,
as shown in Figure 1. We do not carry out an edge slide if it makes a graph not
semi-polyhedral. It is clear that an edge slide in $G$ corresponds to a diagonal
flip in $G^{*}$ . Thus, the following corollary is just an immediate consequence of
Theorem 1:

COROLLARY 2. Two semi-polyhedml graphs on a closed surface with the same
degree sequence can be bunsfomed into each other, up to homeomorphism, by a
sequence of edge si ldes if they have sufficiently many vertiices of degree 3.

2. Proof of the theorem

A surface $F^{2}$ is called a puncturd surface if it has a boundary. Suppose that
each boundary component is assigned a non-negative integer more than or equal
to 3, as its length. A triangulation on such a punctured surface $F^{2}$ is a simple
graph embedded on $F^{Q}$ so that a cycle of the specified length $d$ in $G$ is placed
along each boundary component of length $d$ and that each face is triangular.
Diagonal flips in those triangulations can be defined as in the previous, but we
do not flip edges on the boundary cycles.

Under this situation, Negami’s arguments in [19] work well only with small
changes and conclude the following $th\infty rem$, which can be found in [21]. We
shall prove our main $th\infty rem$ , using this theorem.

THEOREM 3. Given a punctured surface $F^{2}$ utth boundary components ofgzven
lengths, there exists a natural number $D$ such that two triangulations on $F^{2}$ can
be tmnsformed into each other, up to homeomorphism, by a sequence of diagonal
flips if they have the same number of vertices more than $D$ .

Let $G$ be a simple graph closed 2-cell embedded on a closed surface $F^{2}$ with
face size distribution $(f_{3}, f_{4}, f_{5}, \ldots)$ and put $\varphi=(f_{4}, f_{5}, \ldots)$ . A graph $H$ on $F^{2}$

is said to be a $\varphi$-graph if $H$ is simple, closed 2-cell embedded on $F^{2}$ and has
exactly $f_{i}$ i-gonal faces for each $i\geq 4$ . Contraction of an edge $ac$ is to shrink $ac$

into a point $a=c$. In particular, if $ac$ is incident to a triangular face $abc$, then
we have to replace a digonal face bounded by multiple edges $ab$ and $cb$ with a
single edge. Let $G/ac$ denote the graph obtained from $G$ by the contraction of
$ac$. An edge $ac$ of $G$ is said to be $\varphi$-contractible if $G/ac$ is also a $\varphi$-graph. Thus,
any edge incident to a face of size more than 3 is not $\varphi$-contractible while both
sides of any $\varphi$-contractible edge must be triangular faces.
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A $\Psi$-graph $G$ on a closed surface $F^{2}$ is said to be $\varphi$-imducible if $G$ has
no $\varphi$-contractible edge. We call a $\Psi$-irreducible $\varphi$-graph simply a $\varphi$-imducible
gmph. If $\varphi=(0,0, \ldots)$ , then any $\varphi$-irreducible graph of $F^{2}$ is an irreducible
triangulation of $F^{2}$ in the usual sense.

The finiteness of irreducible triangulations of $F^{2}$ in number implies that of
its $\Psi$-irreducible graphs, as in the following lemma. The former has been proved
in many papers [2, 5, 6, 11] and the complete lists of irreducible triangulations
of the sphere, the projective plane, the torus and the Klein bottle have been
already determined in [25, 1, 9, 10], respectively

LEMMA 4. Given a closed surface $F^{2}$ and a finite sequence $\varphi=(f_{4}, f_{5}, \ldots)$ of
non-negative integers, there exist only finitely many $\varphi$ -imducible gmphs of $F^{2}$ ,
up to homeomorphism.

Proof. Let $G$ be any $\varphi$-irreducible graph on $F^{2}$ . Call an edge “a red edge” if it
is incident to a face of size more than 3 and “a black edge” otherwise. Add an
extra vertex to each face of size more than 3 and join it to all vertices lying along
the boundary of the face with “red edges”. Let $\hat{G}$ be the resulting triangulation
on $F^{2}$ . The property of $G$ being closed 2-cell embedded gu\"arantees that $\hat{G}$ is a
simple graph.

Since $G$ is $\varphi$-irreducible, all black edges are not contractible in $\hat{G}$ while red
edges might be contractible. Contract edges, red or black, until we obtain an
irreducible triangulation $T_{0}$ of $F^{2}$ . If a black edge and a red edge $are$ identified
in the process, then the resulting edge should be red. We shall show that each
contracion decreases the number of red edges by at least one even if it contracts
a black edge.

Let $ac$ be an edge in $\hat{G}$ , which is contracted in $T_{0}$ . Let $G^{\prime}$ be the triangulation
in which we contract the edge $ac$ in the contracting process. We may assume
that $ac$ is still black in $G^{\prime}$ as well as in $\hat{G}$ . We shall show that one of the facial
cycles sharing $ac$ in $G^{\prime}$ contains two red edges.

Since $ac$ is not contractible in $\hat{G}$, there is a non-facial cycle axc of length 3
in $\hat{G}$ . If axc were essential, then it would survive in $G^{\prime}$ . Thus, axc bounds a
2-cell region $D^{2}$ . Let $H$ be the triangulation of $D^{2}$ with boundary $axc$ , which is
a subgraph of $\hat{G}$ . Since $ac$ can be contracted in $G^{\prime}$ , the region $D^{2}$ shrinks into
either the edge $ac$ or one of the faces sharing $ac$ , say abc in $G^{\prime}$ .

First, suppose that $D^{2}$ shrinks into $ac$ . Let $A$ and $C$ be the sets of vertices in
$H$ which are identified with $a$ and $c$, respectively. Obviously, $A\cup C$ is a partition
of $V(H)$ . Since $ac$ is black in $G^{\prime}$ , any edge $a_{1}c_{1}$ joining $A$ and $C$ , called an $A-C$

edge, is black in $\hat{G}$ and there is a non-facial cycle $a_{1}x_{1}c_{1}$ of length 3 in $\hat{G}$. It is
clear that $a_{1}x_{1}c_{1}$ cannot go outside $D^{2}$ and hence it bounds a 2-cell region $D_{1}^{2}$

inside $D^{2}$ .
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Choose an $A-C$ edge $a_{1}c_{1}$ so that $D_{1}^{2}$ is the innermost among those regions
and let $a_{1}b_{1}c_{1}$ be the face incident to $a_{1}c_{1}$ in $D_{1}^{2}$ . We may assume that $b_{1}\in C$ .
Then the edge $a_{1}b_{1}$ is an $A-C$ edge and must be contained in a non-facial cycle of
length 3 bounding a 2-cell region inside $D_{1}^{2}$ , which is contrary to the minimality
of $D_{1}^{2}$ . Thus, this case does not happen.

Suppose that $D^{2}$ shrinks into a face $abc$ . Let $A,$ $B$ and $C$ be the sets of
vertices in $H$ which are identified with $a,$

$b$ and $c$ , respectively Assume that $bc$

is black in $G^{\prime}$ . Then all $A-C$ edges and all $B-C$ edges are black in $\hat{G}$ and each
of them is contained in a non-facial cycle of length 3 bounding a 2-cell region
inside $D^{2}$ .

As in the previous case, choose an innermost one among those regions, say
$D_{1}^{2}$ . Let $a_{1}c_{1}$ be an $A-C$ or $B-C$ edge on its boundary, which is black, and let
$a_{1}b_{1}c_{1}$ be the face incident to $a_{1}c_{1}$ in $D_{1}^{2}$ . Then we may assume that $a_{1}\in A\cup B$

and $c_{1}\in C$ . However, it is easy to see that either $a_{1}b_{1}$ or $b_{1}c_{1}$ is black in any
case, which is contrary to our choice of $D_{1}^{2}$ , again. Thus, $bc$ must be red in $G^{\prime}$ and
hence so is $ab$ by symmetry. Since these two red edges become one, contracting
$ac$ decreases the number of red edges, as claimed.

Therefore, what we have just proved implies that the number of edges con-
tracted to obtain $T_{0}$ , say $n$ , does not exceed the number of red edges in $\hat{G}$ , which
is bounded by 2 $\sum_{i\geq 4}if_{i}$ . Thus we have $|V(\hat{G})|=|V(T_{0})|+n$ and $n\leq 2\sum_{i\geq 4}if_{i}$ .
These imply that:

$|V(G)|=|V(\hat{G})|-\sum_{i\geq 4}f_{i}=|V(T_{0})|+n-\sum_{\iota\geq 4}f_{i}$

$\leq|V(T_{0})|+2\sum_{i\geq 4}if_{i}-\sum_{i\geq 4}f_{i}=|V(T_{0})|+\sum_{i\geq 4}(2i-1)f_{i}$

Since $|V(T_{0})|$ is bounded by a constant depending only on $F^{2},$ $|V(G)|$ is bounded
by a constant depending on $F^{2}$ and $\varphi$ . $\blacksquare$

LEMMA 5. Let $G$ be a gmph closed 2-cell embedded on a closed surface $F^{2}$ , and
let $v$ be a vertex of $G$ unth neighbors $v_{0},$ $\ldots$ , $v_{m-1}$ lying around it in this cyclic
order. Add a vertex $x$ of degree 3 to $G$ so that $x$ is adjacent to $v,$ $v_{i}$ and $v_{i+1}$ .
Then, the vertex $x$ can be moved by diagonal flips so that $x$ is adjacent to $v,$ $v_{i+1}$

and $v_{i+2}$ . (The subscripts are taken modulo $m.$ )

Proof By diagonal flips, replace $vv_{i+1}$ with $xv_{i+2}$ , and then replace $xv_{i}$ with
$vv_{i+1}$ . $\blacksquare$

In Lemma 5, the vertex $x$ of degree 3 added can be moved through any
triangular faces. However, if no face of $G$ incident to $v$ is triangular, then $x$ can
only be rotated around $v$ .
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Let $\Delta$ be a 2-cell region bounded by a cycle of length 3 on a closed surface
$F^{2}$ and suppose that it is subdivided into triangular faces. Since the subdivision
of $\Delta$ can be regarded as a plane triangulation, it can be transformed into the
“standard form” that can be obtained by adding vertices of degree 3 one by one
to the empty region, in the same way as in the proof of Wagner’s theorem given
in [24]. Using Lemma 5 repeatedly, we can move all vertices in $\Delta$ to the outside
of $\Delta$ by diagonal flips after deforming it into the standard form. So we call each
of those vertices a movable vertex here. That is, a vertex $v$ in a graph $G$ on a
closed surface $F^{2}$ is movable if and only if there is a cycle of length 3 in $G$ which
bounds a triangulated 2-cell region on $F^{2}$ containing $v$ .

Figure 2 The “standard form” and movable vertices

LEMMA 6. Let $C$ be a cycle of length $m$ boundin$g$ a 2-cell region $D^{2}$ which is
subdivided into $tr\dot{i}angular$ faces and one m-gonal face $F$ and suppose that there
is no chord of $C$ in $D^{2}$ . If the inside of $C$ contains at least $m$ vertices, then we
can $tmnsf_{ol}m$ it by diagonal flips so that:

(i) There is a cycle $C^{\prime}$ of length $m$ disjoint frvm $C$ and boundin$g$ an m-gonal
face.

(ii) Each vertex not lying on $C\cup C^{\prime}$ is movable.
(iii) There is no chord of $C$ in $D^{2}$ .

Proof. Let $C^{\prime}$ be the boundary cycle of $F$ and $R$ the region bounded by $C\cup C^{\prime}$

in $D^{2}$ which is triangulated. In this initial stage, $C^{\prime}$ might not be disjoint from
$C$ . We paint movable vertices by red to distinguish them from other vertices,
which are still black.

Suppose that there is a black vertex $v$ in $R-C\cup C^{\prime}$ and let $u_{1}\cdots u_{k}$ be
its link in the black triangulation of $R$ , that is, the cycle of its black neighbors
surrounding $v$ . If $k=3$ , then $v$ is movable and should have been colored by red.
Thus, we have deg $v=k\geq 4$ . Then we can find consecutive four neighbors of
$v$ , say $u_{1}$ to $u_{4}$ , so that $u_{4}$ does not lie on $C$ . For, otherwise, one of edges on
the link $u_{1}\cdots u_{k}$ of $v$ would be a chord of $C$ . Furthermore, we may assume that
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each of triangular faces $vu_{1}u_{2},$ $vu_{2}u_{3}$ and $vu_{3}u_{4}$ does not contain any red vertex,
after moving it, if any, to other triangular faces.

If $u_{1}$ and $u_{3}$ are not adjacent and do not lie on $C$ together, we flip $vu_{2}$ to
$u_{1}u_{3}$ , so that the degree of $v$ will decrease by one and that the new edge $u_{1}u_{3}$ is
not a chord of $C$ . Otherwise, $u_{2}$ and $u_{4}are$ not adjacent by the planarity and
at least $u_{4}$ does not lie on $C$ by our choice of $u_{1}$ to $u_{4}$ . Flip $vu_{3}$ to $u_{2}u_{4}$ , which
will not be a chord of $C$ , in this case. Repeat this procedure as far as possible,
that is, until we have deg $v=3$ , and color the new movable vertex $v$ by red.

By the previous arguments, we can establish Conditions (ii) and (iii). If $C^{\prime}$ is
disjoint from $C$ , then the lemma follows. Suppose not. Since $|V(C^{\prime})-V(C)|<$

$m,$ $R$ must contain at least one red vertex. Then we can find a black triangle
abc in $R$ with $a\in V(C)\cap V(C^{\prime}),$ $ac\in E(C^{\prime})-E(C)$ and $ab\not\in E(C^{\prime})$ such that
we can move a red vertex $x$ into this triangle. We may assume that $x$ is the only
vertex contained in the triangular region bounded by $abc$ . Let $d$ be the neighbor
of $a$ on $C^{\prime}$ other than $c$ . Flip $ac$ to $xd$ and repaint $x$ and $xa,$ $xb$ and $xc$ by black.
Then the new $C^{\prime}$ does not contain $a$ . Repearting this as far as possible, we can
eliminate the intersection of $C$ and $C^{\prime}$ and obtain the final form satisfying (i),
(ii) and (iii). $\blacksquare$

Now we shall prove Theorem 1.

Pmof of Theorem 1. Let $F^{2}$ be a closed surface and let $\varphi=(f_{4}, f_{5}, \ldots)$ be any
sequence of non-negative integers. By Lemma 4, there exist only finitely many
$\varphi irrducIble$ graphs on $F^{2}$ . Thus, we let $I(F^{2}, \varphi)$ be the maximum number of
vertices of them. Put

$\tilde{R}=\tilde{R}(F^{2}, \varphi)=\max\{I(F^{2}, \varphi)+\sum_{i\geq 4}if_{i},$ $D\}$ ,

where $D$ is the integer for which Theorem 3 is guaranteed to hold.
Let $G_{1}$ and $G_{2}$ be two g-graphs on $F^{2}$ such that

(i) $G_{1}$ and $G_{2}$ have the same face size distribution $(f_{3}, f_{4}, f_{5}, \ldots)$ , and
(ii) $|V(G_{1})|=|V(G_{2})|\geq\tilde{R}$ .

Note that the second condition (ii) implies that $f_{3}$ is sufficiently large since $f_{i}$

with $i\geq 4are$ fixed. Actually, we have the following bound for $f_{3}$ , which can be
easily derived from Euler’s formula:

$f_{3}\geq R=2\tilde{R}-2\chi(F^{2})-\sum_{i\geq 4}(i-2)f_{i}$

If all faces of size more than 3 in $G_{i}$ are mutually disjoint, then $G_{i}$ can be
regarded as a triangulation of a punctured surface obtained from $F^{2}$ by removing
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the interior of those faces. In such a case, since $\tilde{R}\geq D$ , Theorem 3 implies that
$G_{1}$ and $G_{2}$ can be transformed into each other, up to homeomorphism, by a
sequence of diagonal flips. Thus, it suffices to show that $G_{1}$ can be deformed by
diagonal flips so that all faces of size more than 3 are mutually disjoint.

Since $G_{1}$ is not $\varphi irreducible$ , we let vu1 be a $\Psi$-contractible edge in $G_{1}$ . Sup-
pose that $u_{1},$ $u_{2},$

$\ldots,$ $u_{m}$ are the neighbors of $v$ lying around it in this cyclic order.
There are two triangular faces $vu_{1}u_{2}$ and $vu_{1}u_{m}$ incident to $vu_{1}$ and we can flip
$vu_{2},$ $vu_{3},$ $\ldots,$ $vu_{m-2}$ to $u_{1}u_{3},$ $u_{1}u_{4},$

$\ldots,$ $u_{1}u_{m-1}$ in order since the resulting graph
$G_{i}^{\prime}$ is isomorphic to $G_{1}/vu_{1}$ with a vertex $v$ of degree 3 added to one face. The
added vertex $v$ is incident to three faces, at least two of which are triangular and
the other might be of size more than 3. Color the vertex of degree 3 to be red.
Other vertices are supposed to be colored black.

Repeat the previous procedure as far as possible. (If a red vertex is adjacent
to both ends of a g-contractible edge $e$ , then move the red vertex to a neighboring
face before contracting $e.$ ) Then we obtain a (black) $\varphi$-irreducible graph $G_{0}$

with extra red vertices added to faces of $G_{0}$ . We denote this graph by $\tilde{G}_{0}$ . Since
$|V(G_{0})|\leq I(F^{2}, \varphi)$ and $|V(G_{1})|\geq I(F^{2}, \varphi)+\sum_{i\geq 4}if_{i},\tilde{G}_{0}$ has at least $\sum_{\iota\geq 4}if_{i}$

red vertices.
We first move these red vertices so that any triangular face of $G_{0}$ contain no

red vertex. Then we can find a face $F$ of $G_{0}$ with $|F|\geq 4$ which contains at
least $|F|$ red vertices. Since each of those red vertices has been added to $F$ as
a vertex of degree 3 incident to at least two triangular faces, $F$ contains only
one $|F|$-gonal face of $\tilde{G}_{0}$ and others are all triangular. By Lemma 6, we can
deform the inside of $F$ so that it contains a cycle $C$‘ of length $|F|$ disjoint from
the boundary cycle $C$ of $F$ , as desribed in the lemma. Color all vertices on $C$‘

by blue. They $are$ not movable now. On the other hand, all movable vertices,
which are red, can run $ff\infty 1y$ through the annular region bounded by $C\cup C^{\prime}$ and
can go to any face adjacent to $F$ by Lemma 5. Sweep out all of them to other
faces of $G_{0}$ which have never had the structure given in Lemma 6 yet. We can
continue the same deformation as in this paragraph if such faces remain.

Therefore, all non-triangular faces in the final form will be bounded by cycles
consisting of only blue vertices, which are mutually disjoint. Thus, the theorem
follows. $\blacksquare$
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