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Abstract. Ehresmann’s theorem of quaternion holomorphy on quaternionic
functions is generalized by considering quaternion differentiability equation and
complex matrix representation of quaternions.

1. Introduction

Let H = R* be the division algebra of quaternions over real numbers R with
the product defined by W.R. Hamilton as follows (see [5]):

Zo Yo ZoYo — T1Y1 — T2Y2 — T3Y3
T Y1 | ._ | Toy1+ TiYyo + T2y3z — x3Y2
T2 v2 | | Zowz + T2yo + Tays — T1ys
T3 Y3 Toys + T3Yo + T1Y2 — T2¥1

For z € H, the conjugate %, the norm |z| and the inverse element ! of z(# 0)
are given as T := diag(1, -1, -1, - 1)z, |z| := Vz=, ! = Z/|z[?. And the
standard basis of H is denoted as follows:

0

€ H.

0
0
1 |0 k=
0

-0 O O

1

ol . (1] .
1"_ 0 ’1"_ O ,J'—‘

0 0

Then H = R1+ Ri + Rj + Rk as a direct sum of real vector subspaces of

H such that ij = —ji = k, jk = —kj = 4, ki = —ik = 5,52 = ;2 =

k* = —1 with the unit element 1 as a real algebra. For fixed positive integers

m,n, let M(m,n; H) be the set of all m x n-matrices with the coefficients in

H, on which the matrix product is considered. By abbreviation, the following

notations are used: M(n, H) := M(n,n; H), H" := M(n, L, H) @ R*™ and
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| X]| = \/E:t‘__l 3 i=11Xij|? € R for X := (X;;) € M(m,n; H). By definition,
a mapping f : H" — H™ is said to be quaternion affine if there exist A €
M(m,n; H) and B € H™ such that f(X) = AX + B for all X € H". For a
mapping f : U — H™ defined on an open subset U of H™ and a fixed point
X €U, f is said to be quaternion differentiable at X (abbrev. Q at X) if

(Q1) f is differentiable at X, that is (cf. [8]), there exists a real linear
mapping f.x : H" - H™Y — f.x(Y) such that

lim X +Y) - F(X) — fx (V)] _ o
Y| =0 Y|

and
(Q2) there exists A € M(m,n; H) such that f.x(Y) = AY (Y € H").

Note that A does not depend on Y or the way that Y tends to 0. However,
A can depend on X in U. In the case whenm =n =1, f: U - H is
quaternion differentiable at  if and only if there exists a € H such that f'(z) :=
limyLo(f(z + y) — f(¥))y~! = a. By W.R. Hamilton [4, Book III, Chapter
I1, §3, No.324], a quadratic function f : H — H;zx — z? is not quaternion
differentiable at z € H if ¢ € R (cf. [2, §3]). In fact, if z € R, then f/(z) =
limyg0(2x0 + Y (212 + 225 + T3k)y ) does not tend to a definite element in H,
so that f is not quaternion differentiable at ¢ R, as required. On the other
hand, any quaternion affine mapping is quaternion differentiable at any point in
an open domain. Conversely, the following result is well-known as a theorem of
Ehresmann (3] (This is stated in Besse [1, p.410, 14.58 Theorem] without proof):

THEOREM 1 (C. Ehresmann). Let f : U — H™ be a differentiable mapping
defined on an open subset U of H". Assume that the differential f.x of f at
any X in U is bijective. If f is quaternion differentiable at any X in U, then f
is quaternion affine.

In Theorem I, the bijective assumption for f.x (X € U) can be omitted. In
fact, the following result was obtained by Sommese [7, Proposition IJ:

THEOREM II (A.J. Sommese). Let m,n be arbitrary positive integers, and f :
U — H™ be a differentiable mapping defined on an open subset U of H™.
Then f is quaternion affine if and only if f is quaternion differentiable at any
X inU.

For a proof of Theorem II, Sommese [7, Lemma III} used the fact that the
zeros of a complex holomorphic function of 2-variables admit no isolated point
and have a structure of a complex manifold if it is not empty (see [6, p.31, Cor.2],
for example). And Sudbery [9, Theorem 1] gave Theorem II in the special
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case when m = n = 1, by the use of Hartogs’s theorem (see [6, Chap.3], for
example). This article gives a new proof of Theorem II, by means of quaternion
differentiability equation and complex matrix representation of quaternions. It
appears that Theorem II can be proved in a very elementary way. After writing
up the manuscript, the author knew the previous works of Sommese and
Sudbery [9] (see Acknowledgement).

2. Quarternion Differentiability Equation.

For the proof, it is crucially important to translate the quaternion differen-
tiability to a differential equation such as the complex differentiability equation
of Cauchy-Riemann. For i € {1,--- ,m}, the i-th canonical projection is denoted
as follows:

1
m H™ — H; X = : — x;.
mm

For je{1,-.-,n} and ¢ € {0, 1,2, 3}, put

Z10 + T112 + T127 + 13k
T je : = Tje,

ZTno + Tp1t + TpoJ + T3k

which gives the canonical coordinates Zj : H* - R; X — z;(X) on H".
And an element Fj, € H" is defined as Zjpr (Fjg) = ;564 with respect to the
Kronecker’s delta: §;; =1 (or 0) if j = j/ (resp. j # j').

LEMMA. Let f:U — H™ be a mapping defined on some open subset U of
H", and fiz a point X € U. Then f is quaternion differentiable at X if and
only if f is differentiable at X and the differential fex of f at X commutes with
Rg” tH" — H" = M(n,1; H);Y — Yz, for any = €H =M(1,H):

(1) Rg")of.x:f*xoRg‘):H’"—-)H’".

Proof. Put A := (L(Fyo),+-,L(F,)) € M(m,n; H) for a real linear mapping
L:H" — H™. Then LoR$) = R{™oL for all x € H if and only if L(Y) = AY
for all Y € H". Taking L = f,x, one has then the result. ® ‘

PROPOSITION 1. Let f: U — H™ be a mapping defined on some open subset
U of H", and fix a point X € U. Assume that f is differentiable at X. Then f
is quaternion differentiable at X if and only if fi :=m;o f: U — H satisfies the
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following equations at X forie {1,---,m}, j€{1,---,n}:
ofi _ Ofi . ofi . Of;

627_7'0 - —693,-11' - _8:1:,-2 o _3$j3 k.

(2)

Proof. BylLemma) fis Q at X ifand only if fix(Yz) = (fixY)xz forallY € H"
and any # € H. Since f is differentiable at X, each f; is differentiable at X.
And fix(Y) = (fr.x(Y), -+, fmex(Y)) for all Y € H". Hence, f is Q at X if
and only if fi.x(Yz) = (fuxY)z forallY € H", z € H and i € {1,---,m}.

Note that Fjo = —Fj12 = —Fj2j = —Fjsk. Taking Y = F}j,, one has that f is Q
at X if and only if :
3) fisx (Fjo) = = fix (Fj1)i = = fixx (Fj2)3 = = fixx (Fj3)k

for je{l,---,n} and i € {1,.-., m}. With respect to the identification: H™ =
Tx H™, the equation (3) is equivalent to the equation (2) at X. m

3. Complex Matrix Representation of Quaternions

Note that H contains a real subalgebra of complex numbers as C := R1+ Rz
such that the complex conjugate T of x € C is same with the conjugate in H.
Then H = C+3C is a direct sum of vector subspaces such that (a+ jb)(c+jd) =
(ac—bd)+j(@d+be) for a,b, c,d € C. And quaternions can be realized by complex
matrixes as follows:

o i (a\_ ([ rala+30) .
K'H_C+JC—_)C2’a+‘7bH<b>—'(n2(a+jb))’

k:H=C+jC — M(2,C);a+ jb— (Z _Zib )

Then k o Rgl) = R§2)|Cz o Kk holds for all z € C. For o,y € H, one has that
k()| = |x|, k(zy) = k(z)k(y) and k(zy) = k(z)E(y).

According to [11, p.463 (1)], a mapping &(m,n) : M(m,n; H) —» M(2m,2n;C)
is defined as follows:

R:(m, n)(A) = (k(aij))ie{l,'--,m},je{l,-'-,n}’
where A = (@ij)ic(1,-,m},je{1,n}- LThen

k(m, k)(AB) = k(m, n)(A)R(n, k)(B)
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for A € M(m,n; H) and B € M(n, k; H). Moreover, a real linear isomorphism
from H™ onto C?" is defined as follows:

z; k(z1)
kK™ H" — C*™ X = : - k™M(X) =
Then ™ o R{™ = R™ |2 © k™ for any z € C. Hence,
K™ (H™ B (2 € ©)) — (C*, BV | gan (2 € C))

is a complex linear isomorphism such as

Tio+z11t \ 2
Zi0 + T11t + X127 + 713k T2 — T13t 2
k(™) : - : =
Tno + Tni1t + TpaJ + Tnak Tpo + Tnit Zon—1
Tp2 — Tp3t 22n

Then «(™ gives the canonical complex coordinates on H™ such that

4) K@) =Y, &™(AY) = &(m,n)(A) k™ (Y)

forY € H™ and A € M(m,n; H). And Z2j-1 = K1(xj), 225 = K2(z;).
PROPOSITION 2. Let f : U —s H™ be a mapping defined on some open

subset U of H™. For a fired X € U, assume that f is quaternion differentiable
at X. Then, for any i € {1,---,m},

Kofi:U—C?% X' — ( (k1 0 f3)(X") )

(k2 0 f3)(X7)
is complez differentiable at X with respect to the complex structure of U given
by the canonical complezx coordinates (21, -, 22n) on H".

Proof. Fix any i € {1,---,m}. By Proposition 1, f; = m; o f is quaternion
differentiable at X. Hence, there exists A € M (1,n; H) such that
lim X +Y) - filX) - AY| _

0.
Y |=0 Y|

Operating « or k(™ in the above formula, by the equation (4), one has that
lim & S)X +Y) — (ko £i)(X) — &(1,n) (4™ (Y)|
|K(m) (Y')| =0 [k (Y)]

Since the mapping : C*" — C?; k™ (Y) - &(1,n)(A)k™(Y) is complex linear,
ko f; is complex differentiable at X, as required. W
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Remark. This representation of quaternions is related to Pauli’s spin matrizes
as 0, 1= —tk(2), 0y := tk(J), 05 := tk(k) (cf. [10, (15.9), (15.10)]).

4. Proof of Theorem 11

Let f: U — H™ be a quaternion holomorphic mapping defined on an open
subset U of H". For i € {1,:--,m} and £ € {1,2}, put

fie :=kpomiof:U - C.

Then, by the quaternion differentiability equation (2), one has that
Ofint+ifie) . O(fa+ J'fiz)j

al'jo 61«'_72

on U for j € {1,---,n}. Note that zj = 5% for z € C. Hence,

(5) Ofn _Oa g Ofa _ 07a U.

= = - on
ox ) ox 2 ox 50 or j2

By Proposition 2, f;; and f;2 are holomorphic on U with respect to the com-
plex coordinates (z1,::+,22,). In particular, 8f;1/0z;0 = 8f;1/0225—1 and
Ofi2/0xjo = Ofiz/0zj_1 are holomorphic, and that 8f;,/0zj2 = Of;p/022;
and 8f;,/0xj2 = Of;1/022; are anti-holomorphic. By the equation (5), they are
both holomorphic and anti-holomorphic on U, which are constants, that is, for
certain a; 24y Qi 2j—-1 € C (] € {1, cee, n}), v

Ofn _0fa _ .~ Ofa_0fn _ . .

6223'-1 - azjo — @4,25-1, 8z2j - 62?3'2 - 1,27
Ofc 8fiz _ Ofie _Ofie __

322]-_1 = 3$jo = a;,2j5, 3721 = -3;,—2_ = Q4,251

on U. Then there exist constants b;;, b;» € C such that

fir(X) = 371 (2512251 — T 25225) + bin
fi2(X) = 377 1 (@i25225-1 + B 2j-1225) + biz

for X =%(x,---,,) with z; = zé,-_1 + jzz;. By the equation (4), one has

fiX) = f(X) + 5fie(X) = @y + b,
Jj=1
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where a;; = a; 31 + Ja;i2; and b; := b;; + jbiz. Hence,
f(X) a;; -+ Qi T by
fo=1 =1 s+
Jm (X) Ami *** Qmp Ty, , br,
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