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Abstract. We study three-dimensional semi-symmetric contact metric mani-
folds, obtaining several classfication results.

1. Introduction

A semi-symmetric space is a Riemannian manifold $(M,g)$ such that its cur-
vature tensor $R$ satisfies the condition

(1. 1) $R(X, Y)\cdot R=0$ ,

for all vector fields $X,$ $Y$ on $M$ , where $R(X, Y)$ acts as a derivation on $R[14]$ .
Such a space is called “semi-symmetric” since the curvature tensor of $(M,g)$

at a point $p\in M,$ $R_{p}$ , is the same as the curvature tensor of a symmetric
space (which may change with the point $p$). So, locally symmetric spaces are
obviously semi-symmetric, but the converse is not true, as it was proved by H.
Takagi [15]. Indeed, in any dimension greater than two do there exist examples
of semi-symmetric space which are not locally symmetric. We can refer to [6] for
a survey.

Even if in general a semi-symmetric space may be not locally symmetric,
semi-symmetry implies local symmetry in several cases (see for example [3], [9]).
So, given a class of Riemannian manifolds, it is worthwhile to investigate whether
in such class semi-symmetry implies local $symm\dot{e}$try or not. In this paper, we
consider such problem in the class of contact metric manifolds $(M, \eta,g, \varphi,\xi)$ .

Semi-symmetric contact metric manifolds have been studied by many au-
thors. In particular, T. Takahashi [16] proved that semi-symmetric Sasakian
manifolds have constant sectional curvature 1. In [10] and [11], B.J. Papantoniu
and the second author classified semi-symmetric contact metric manifolds, of
dimension greater than three, with $\xi$ belonging to the $(k, \mu)$-nullity distribution
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and $R(\xi, \cdot)\xi=-k\varphi^{2}$ , respectively. In dimension three, in [11] it was proved that
if $M$ is semi-symmetric and $h$ is $\xi$-parallel, then either $M$ is flat or is of con-
stant curvature 1. In [10], semi-symmetric contact metric three-manifolds with
$\xi\in(k, \mu)$-nullity distribution were studied. On the other hand, D.E. Blair and
R. Sharma [2] proved that every locally symmetric contact metric three-manifold
has constant curvature $0$ or 1.

The following theorems extend the results proved in dimension three in [11],
[10] and [2].

THEOREM 1. Let $(M, \eta,g, \varphi,\xi)$ be a semi-symmetbric contact metric three-
manifold utth Ricci curvature $\rho(\xi,\xi)$ constant along the characteristic flow.
Then, $M^{3}$ is locally symmeinc. In particular, either $M^{3}$ is flat or it is Sasakian
uith constant curvature 1.

THEOREM 2. Let $(M, \eta,g, \varphi, \xi)$ be a semi-symmetric contact metric three-
manifold unth non-vanishing vertical sectional curvatures at any point. Then
$M^{3}$ is Sasakian utth constant curuature 1.

In the Section 2 we shall recall some basic facts about contact metric thrae-
manifolds, in the Section 3 we shall consider semi-symmetric contact metric
threemanifolds and we shall prove Theorems 1 and 2.

In the Section 4 we shall prove the following

THEOREM 3. Let $(M, G)$ be a Riemannian manifold of dimension two. Then
the unit tangent sphere bundle $T_{1}M$ , equipped unth its standard contact metric
structure, is semi-symmetric if and only if $M$ is flat or has Gaussian curvature 1.

The authors wish to thank the referee for his useful comments about the
original manuscript.

2. Preliminaries

A contact manifold is a $(2n+1)$-dimensional manifold $M$ equipped with a
global l-form $\eta$ such that $\eta\wedge(d\eta)^{n}\neq 0$ everywhere on $M$ . It has an underlying
almost contact structure $(\eta, \varphi, \xi)$ where $\xi$ is a global vector field (called the
characteristic vector fieu) and $\varphi$ a global tensor of type (1.1) such that

$\eta(\xi)=1$ , $\varphi\xi=0$ , $\eta\varphi=0$ , $\varphi^{2}=-I+\eta\otimes\xi$ .

A Riemannian metric $g$ can be found such that

$\eta=g(\xi, \cdot)$ , $d\eta=g(\cdot, \varphi\cdot)$ , $g(\cdot, \varphi\cdot)=-g(\varphi\cdot, \cdot)$ .
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We refer to $(M, \eta, g)$ or to $(M, \eta, g, \xi, \varphi)$ as a contact metric (or Riemannian)
manifold.

In what follows, we shall denote by $\nabla$ the Levi Civita connection of $M$ and
by $R$ the corresponding Riemannian curvature tensor given by

$R_{X,Y}=\nabla_{[X,Y]}-[\nabla_{X}, \nabla_{Y}]$ .

The Ricci tensor of type $(0,2)$ , the corresponding endomorphism field and the
scalar curvature are respectively indicated by $\rho,$ $Q$ and $r$ . By $K(\xi, X)$ we denote
the vertical curvature, that is, the sectional curvature of the plane spanned by $\xi$

and $ X\in ker\eta$ . The tensor

$ h=\frac{1}{2}L_{\xi}\varphi$ ,

where $L$ denotes the Lie derivative, is symmetric and satisfies

(2. 1) $\nabla\xi=-\varphi-\varphi h$ , $\nabla_{\xi}\varphi=0$ , $h\varphi=-\varphi h$ , $h\xi=0$ .

A K-contact manifold is a contact metric manifold such that $\xi$ is a Killing
vector field with respect to $g$ . Clearly, $M$ is K-contact if and only if $h=0$ . If
the almost complex structure $J$ on $M\times R$ defined by

$J(X,$ $f\frac{d}{dt})=(\varphi X-f\xi,$ $\eta(X)\frac{d}{dt})$

is integrable, $M$ is said to be Sasakian. Any Sasakian manifold is K-contact and
the converse ako holds for three-dimensional spaces. It easy to prove that if $M$

is a contact metric three-manifold of constant sectional curvature 1, then $M$ is
necessarily Sasakian. We refer to [1] for more information about contact metric
manifolds.

Next, let $(M, \eta, g, \xi, \varphi)$ be a three-dimensional contact metric manifold. Let
$U$ be the open subset of $M$ where $h\neq 0$ and $V$ the open subset of points $m\in M$

such that $h=0$ in a neighborhood of $m$ . Then, $U\cup V$ is an open dense subset of
$M$ . For any point $m\in U\cup V$ there exists a local orthonormal basis $\{\xi, e, \varphi e\}$ of
smooth eigenvectors of $h$ in a neighborhood of $m$ . On $U$ we put $he=\lambda e$ , where
$\lambda$ is a non-vanishing smooth function which we suppose to be positive. From
(2.1), we have $h\varphi e=-\lambda\varphi e$ . We recall the following:
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LEMMA 2.4 ([8]). On $U$ we have

$\nabla_{\xi}e=-a\varphi e$ ,

$\nabla_{e}\xi=-(\lambda+1)\varphi e$ ,

$\nabla_{\xi}\varphi e=ae$ ,

$\nabla_{\varphi e}\xi=-(\lambda-1)e$ ,

(2.2) $\nabla_{e}e=\frac{1}{2\lambda}\{(\varphi e)(\lambda)+A\}\varphi e$ , $\nabla_{\varphi e}\varphi e=\frac{1}{2\lambda}\{e(\lambda)+B\}e$ ,

$\nabla_{e}\varphi e=-\frac{1}{2\lambda}\{(\varphi e)(\lambda)+A\}e+(\lambda+1)\xi$ ,

$\nabla_{\varphi e}e=-\frac{1}{2\lambda}\{e(\lambda)+B\}\varphi e+(\lambda-1)\xi$ ,

(2. 3) $\nabla_{\xi}h=2ah\varphi+\xi(\lambda)s$ ,

where $a$ is a smooth function, $A=\rho(\xi, e),$ $B=\rho(\xi, \varphi e)$ and $s$ is the $(1,1)$-type
tensor defined by $s\xi=0$ , $se=e$ and $s\varphi e=-\varphi e$ .

Finally, we note that the components of the Ricci operator $Q$ , with respect
to $\{\xi, e, \varphi e\}$ , are given by (see [12])

(2. 4) $\left\{\begin{array}{l}Q\xi=2(1-\lambda^{2})\xi+Ae+B\varphi e,\\Qe=A\xi+(\frac{r}{2}-1+\lambda^{2}+2a\lambda)e+\xi(\lambda)\varphi e,\\Q\varphi e=B\xi+\xi(\lambda)e+(\frac{r}{2}-1+\lambda^{2}-2a\lambda)\varphi e,\end{array}\right.$

from which it follows easily (see also [7])

$(\nabla_{\xi}Q)\xi=-4\lambda\xi(\lambda)\xi+\{\xi(A)+aB\}e+\{\xi(B)-aA\}\varphi e$ ,

(2.5) $(\nabla_{e}Q)e=\{e(A)+(\lambda+1)\xi(\lambda)-\frac{B}{2\lambda}[(\varphi e)(\lambda)+A]\}\xi+$

$+\{e(\alpha+2a\lambda)-\frac{\xi(\lambda)}{\lambda}[(\varphi e)(\lambda)+A]\}e+$

$+\{e\xi(\lambda)+2a(\varphi e)(\lambda)+(2a-\lambda-1)A\}\varphi e$ ,

$(\nabla_{\varphi e}Q)\varphi e=\{(\varphi e)(B)+(\lambda-1)\xi(\lambda)-\frac{A}{2\lambda}[e(\lambda)+B]\}\xi+$

$+\{(\varphi e)\xi\lambda-2ae(\lambda)+(1-\lambda-2a)B\}e+$

$+\{(\varphi e)(\alpha-2a\lambda)-\frac{\xi(\lambda)}{\lambda}[e(\lambda)+B]\}\varphi e$ ,

where $\alpha=z^{-1}r+\lambda^{2}$ .
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3. Three-dimensional semi-symmetric contact metric manifolds

Let $(M, \eta,g, \varphi, \xi)$ be a contact metric three-manifold. If $M$ is Sasakian and
semi-symmetric, then it has constant sectional curvature 1 [16]. So, in what
follows we shall assume $M$ is not Sasakian. We now write down the condi-
tions satisfied by a semi-symmetric contact metric three-manifold, proving the
following

LEMMA 3.1. Let $(M, \eta,g, \varphi, \xi)$ be a non-Sasakian contact metric three-manif-
old. Then $M$ is semi-symmetric if and only if

(3. 1) $B(\lambda^{2}-1+2a\lambda)=A\xi(\lambda)$ ,
(3. 2) $A(\lambda^{2}-1-2a\lambda)=B\xi(\lambda)$ ,
(3. 3) $AB+\xi(\lambda)(\frac{r}{2}+2\lambda^{2}-2)=0$ ,

(3.4) $B^{2}-[\xi(\lambda)^{2}]+(\lambda^{2}-1-2a\lambda)(\frac{r}{2}+3\lambda^{2}-3+2a\lambda)=0$,

(3.5) $A^{2}-[\xi(\lambda)^{2}]+(\lambda^{2}-1+2a\lambda)(\frac{r}{2}+3\lambda^{2}-3-2a\lambda)=0$ .
Proof Since dimM $=3$ , we have the well-known formula
(3. 6) $R(X, Y)Z=g(X, Z)QY-g(Y, Z)QX+\rho(X, Z)Y-\rho(Y, Z)X+$

$-\frac{r}{2}\{g(X, Z)Y-g(Y, z)X\}$ ,

for all $X,$ $Y,$ $Z$ vector fields on $M$ . Therefore, we can use (2.4) and (3.6) to
compute the components of $R$ with respect to the $\Psi$-basis $\{\xi, e, \varphi e\}$ . We get

$R(\xi, e)\xi=-(\lambda^{2}-1-2a\lambda)e+\xi(\lambda)\varphi e$ ,
$R(\xi, \varphi e)\xi=\xi(\lambda)e-(\lambda^{2}-1+2a\lambda)\varphi e$ ,
$R(e, \varphi e)\xi=-Be+A\varphi e$ ,
$R(\xi, e)e=(\lambda^{2}-1-2a\lambda)\xi-B\varphi e$ ,

(3.7) $R(\xi, \varphi e)e=-\xi(\lambda)\xi+A\varphi e$ ,

$R(e, \varphi e)e=B\xi+(\frac{r}{2}+2\lambda^{2}-2)\varphi e$ ,
$R(\xi, e)\varphi e=-\xi(\lambda)\xi+Be$ ,
$R(\xi, \varphi e)\varphi e=(\lambda^{2}-1+2a\lambda)\xi-Ae$ ,

$R(e, \varphi e)\varphi e=-A\xi-(\frac{r}{2}+2\lambda^{2}-2)e$ .
These are all the possibly non-vanishing components of $R$ , up to changes in the
order of the vectors fields. (1.1) is equivalent to $R(X, \xi)\cdot R=0$ , for all vector
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field $X$ on $M$ , that is,

(3.8) $R(X,\xi)R(Y, Z)V-R(R(X, \xi)Y,$ $Z$)$V-R(Y, R(X,\xi)Z)V+$

$-R(Y, Z)R(X,\xi)V=0$ ,

for all $X,$ $Y,$ $Z,$ $V$ vector fields on $M$ . We now apply (3.8) taking $X=e,$ $Y=\xi$ ,
$Z=\varphi e$ and $ V=\xi$ . Using (3.7), we get

$ 0=(R(e, \xi)\cdot R)(\xi, \varphi e)\xi$

$=\{-A\xi(\lambda)+B(\lambda^{2}-1+2a\lambda)\}e+2\{B\xi(\lambda)-A(\lambda^{2}-1-2a\lambda)\}\varphi e$ ,

from which (3.1) and (3.2) follow at once.
In the same way, we use (3.8) taking $X=e,$ $Y=e,$ $Z=\varphi e$ and $ V=\xi$ and

using (3.7). We obtain

$0=(R(e, \xi)\cdot R)(e, \varphi e)\xi=\{-AB-\xi(\lambda)(\frac{r}{2}+2\lambda^{2}-2)\}e+$

$+\{[\xi(\lambda)]^{2}-B^{2}-(\lambda^{2}-1-2a\lambda)(\frac{r}{2}+3\lambda^{2}-3+2a\lambda)\}\varphi e$

and so, (3.3) and (3.4) hold. Finally, we put $X=\varphi e,$ $Y=\varphi e,$ $Z=e$ and $ V=\xi$

in (3.8) and, making use of (3.7), we get

$0=(R(\varphi e, \xi)\cdot R)(\varphi e, e)\xi=\{[\xi(\lambda)]^{2}-A^{2}-(\lambda^{2}-1+2a\lambda)(\frac{r}{2}+3\lambda^{2}+$

$-3-2a\lambda)\}e+\{-AB-\xi(\lambda)(\frac{r}{2}+2\lambda^{2}-2)\}\varphi e$ ,

from which (3.5) follows.
Note that all the other possible choices of the vector fields in the $\varphi$-basis

$\{\xi, e, \varphi e\}$ , give again equations $(3.1)-(3.5)$ . So, if $(3.1)-(3.5)$ hold, then (3.8)
holds, that is, $M$ is semi-symmetric. $\square $

Proof of Theorem 1. If $M$ is Sasakian then the result follows from [16]. So, let
$M$ be non-Sasakian. Then, $(3.1)-(3.5)$ hold. Note that, because of (2.4), the
constancy of $\rho(\xi, \xi)$ along the characteristic flow means exactly $\xi(\lambda)=0$ . Hence,
if $a=0$, then $\nabla_{\xi}h=0$ , as it follows from (2.3), and the result then follows from
[11]. To end the proof, we shall prove that the case $a\neq 0$ can not occur.

In fact, assume $a\neq 0$ and consider a point $p$ at $M$ such that $a(p)\neq 0$ . Then,
there exists a neighbourhood $W$ of $p$ such that $a\neq 0$ on $W$ . We first multiply
(3.1) by $B$ and (3.2) by $A$ and we get

(3. 9) $B^{2}(\lambda^{2}-1+2a\lambda)=AB\xi(\lambda)$ ,
(3. 10) $A^{2}(\lambda^{2}-1-2a\lambda)=AB\xi(\lambda)$ .
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We substract (3.9) from (3.10) and we use (3.4) and (3.5) to express $B^{2}$ and $A^{2}$ ,
respectively. We obtain

$4a\lambda\{(\lambda^{2}-1)^{2}-4a^{2}\lambda^{2}-[\xi(\lambda)]^{2}\}=0$ ,

from which, since $a\lambda\neq 0$ , it follows

(3. 11) $[\xi(\lambda)]^{2}=(\lambda^{2}-1)^{2}-4a^{2}\lambda^{2}$ .
Since $\xi(\lambda)=0,$ $(3.11)$ gives $\lambda^{2}-1\pm 2a\lambda=0$ . Thus, suppose

(3. 12) $\lambda^{2}-1+2a\lambda=0$.

(If $\lambda^{2}-1-2a\lambda=0$, we proceed in the same way. Note that, since $a\neq 0$ , the
two conditions can not hold simultaneously).

Since $\xi(\lambda)=0,$ $(3.3)$ also yields $AB=0$ , that is, either $A=0$ or $B=0$
(locally). We assume $A=0$ and we prove that $\lambda$ is constant and $B=0$ (if we
assume $B=0$ , we proceed in the same way).

Differentiating (3.12) with respect to $\xi$ , we get $\xi(a)=0$ . Next, differentiating
(3.12) with respect to $e$ , we obtain

(3. 13) $\lambda(e(\lambda)+e(a))=-ae(\lambda)$ .

We recall the well-known formula

(3. 14) $\frac{1}{2}X(r)=\sum_{i=1}^{n}g((\nabla_{e:}Q)e_{i}, X)$ ,

which holds for any vector field $X$ of a n-dimensional Riemannian manifold.
Here, $\{e_{i}\}$ is an arbitrary orthonormal basis. With respect to our $\varphi$-basis, we
can apply (3.14) and (2.5) to compute $\frac{1}{2}e(r)$ and- $(\varphi e)(r)$ . We obtain

$2\lambda\{e(\lambda)+e(a)\}=(\lambda+a-1)B$ ,

that is, using (3.13),

(3. 15) $2ae(\lambda)=(1-\lambda-a)B$ .
Differentiating (3.15) by $\xi$ , since $\xi(\lambda)=\xi(a)=0$ , we get

2$a\xi e(\lambda)=(1-\lambda-a)\xi(B)$ .
We now use (3.14) and (2.5) to compute $\frac{1}{2}(\varphi e)(r)$ and we obtain the following
formula for $\xi(B)$ :

(3. 16) $\xi(B)=2\lambda\{(\varphi e)(a)-(\varphi e)(\lambda)\}$ .
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Therefore, we get

$a\xi e(\lambda)=\lambda(\lambda+a-1)\{(\varphi e)(\lambda)-(\varphi e)(a)\}$ .
From $\xi(\lambda)=0$ it then follows

$a[\xi, e](\lambda)=a\xi e(\lambda)=\lambda(\lambda+a-1)\{(\varphi e)(\lambda)-(\varphi e)(a)\}$ .
On the other hand, using (2.2) we also have

$a[\xi, e](\lambda)=a(\nabla_{\xi}e-\nabla_{e}\xi)(\lambda)=a(\lambda-a+1)(\varphi e)(\lambda)$ .
Therefore,

(3. 17) $a(\lambda-a+1)(\varphi e)(\lambda)=\lambda(\lambda+a-1)\{(\varphi e)(\lambda)-(\varphi e)(a)\}$ .
Differentiating (3.12) with respect to $\varphi e$ , we obtain

$\lambda\{(\varphi e)(a)+(\varphi e)(\lambda)\}=-a(\varphi e)(\lambda)$

and so, (3.17) becomes

$(\lambda^{2}+a^{2}+a\lambda-\lambda-a)(\varphi e)(\lambda)=0$ .
Moreover, from (3.12) we have $a=\frac{1-\lambda^{2}}{2\lambda}$ and so, the last formula becomes

$(3\lambda^{4}-2\lambda^{3}-2\lambda+1)(\varphi e)(\lambda)=0$ .
It is now easy to conclude that $(\varphi e)(\lambda)=0$ . In fact, if we assume $(\varphi e)(\lambda)\neq 0$ ,
then $3\lambda^{4}\rightarrow 2\lambda^{3}-2\lambda+1=0$ and, differentiating by $\varphi e$ , we conclude again that
$(\varphi e)(\lambda)=0$ , which contradicts our assumption. Hence, $(\varphi e)(\lambda)=0$ . Since
$\xi(\lambda)=0$ , we also have

$0=[\xi, \varphi e](\lambda)=(\lambda+a-1)e(\lambda)$

and so, $e(\lambda)=0$ . In fact, if we assume $e(\lambda)\neq 0$ , then $\lambda+a-1=0$, which,
taking into account (3.12) and differentiating by $e$ , permits to conclude easily
that $e(\lambda)=0$, against our assumption. Thus, $e(\lambda)=(\varphi e)(\lambda)=0$ and so, $\lambda$

is constant. Moreover, $B=0$ . In fact, if $B\neq 0$ , then from (3.15) we get
$\lambda+a-1=0$ , which, together with (3.12), gives $a=0$ , which can not occur.
Then, necessarily $B=0$ .

Finally, we compute $R(e, \varphi e)e$ using (2.2) and we compare with (3.7). Using
(3.12), we then get

(3. 18) $r=4a(\lambda-1)$ .
Using (3.18) in (3.4), and taking into account (3.12), we can conclude that $a=0$ ,
against our assumption. $\square $
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REMARK 3.2. Note that formula (3.11) holds for any non-Sasakian semi-
symmetric contact metric three-manifold. In fact, if $a=0$ and $\xi(\lambda)\neq 0$ (other-
wise $\nabla_{\xi}h=0$ and the result follows from [11]), then either $AB\neq 0$ (in this case,
(3.11) follows at once $hom(3.1)$ and (3.2)), or $AB=0$. Suppose for example
$A=0$ . Then (3.3) gives $r=4(1-\lambda^{2})$ , which, together with (3.5), again gives
(3.11). Note also that from (3.4), (3.5) and (3.11) it follows

(3. 19) $A^{2}+B^{2}=r(1-\lambda^{2})-4(1-\lambda^{2})^{2}$ .

The following Lemma has interesting applications and it will also be used in
the proof of Theorem 3.

LEMMA 3.3. A semi-symmetric contact metric manifold $(M^{3}, \eta,g, \varphi, \xi)$ satis-
fying $A=0$ or $B=0,\dot{\alpha}ther$ is flat or has constant curvature 1.

Proof Without loss of generality, assume $A=0$ . Consider $ W_{1}=\{p\in M/\xi(\lambda)\neq$

$0$ at $p$} and $W_{2}=$ {$p\in M/\xi(\lambda)=0$ in a neighbourhood of $p$}.
On $W_{1}$ , from (3.3) we get

$\frac{r}{2}=2-2\lambda^{2}$ ,

from which, differentiating by $\xi$ , we obtain $\xi(r)=-8\lambda\xi(\lambda)$ . On the other hand,
Using (3.13) and (2.5) to compute $\xi(r)$ , we also get $\xi(r)=-4\lambda\xi(\lambda)$ . Therefore,
$\xi(\lambda)=0$ on $W_{1}$ , which can not occur. Therefore, $W_{1}$ is empty.

In the open subset $W_{2}$ , proceeding as in the proof of Theorem 1, we can show
that $B=0$ . On $W_{2}$ we now have $\xi(\lambda)=A=B=0$ and the conclusion follows
as in the proof of $Th\infty rem1$ . $\square $

The class of contact metric manifolds for which the characteristic vector field
is an eigenvector field of the Ricci tensor naturally appeared in many problems
and examples in contact geometry (see also [8]). Taking into $ac$count (2.4), as
an immediate consequence of Lemma 3.3, we have the following

COROLLARY 3.4. A semi-symmetric contact metric manifold $(M^{3}, \eta,g, \varphi, \xi)$ ,
whose chamcteristic field is an eigenvector of the Ricci tensor, either is flat or
has constant curvature 1.

REMARK 3.5. Theorem 1 extends and corrects Theorem 3.4, b) of [10]. In
fact, if $\xi\in(k, \mu)$-nullity distribution, then necessarily $\xi(\lambda)=0$ .

Prvof of Theorem 2.. If $M$ is Sasakian, then the conclusion follows from [16].
Next, we assume $M$ is not-Sasakian, that is, $U=\{p\in M : \lambda(p)\neq 0\}$ is not
empty, and we prove that this case can not occur.
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We first compute the eigenvalues of the Ricci operator $Q$ on $M$ . Using (2.4),
we get the characteristic equation

$x^{3}-b_{2}x^{2}+b_{1}x-b_{0}=0$ ,

where $b_{0}=\det Q,$ $b_{1}=\sum_{i}Q_{ii},$ $b_{2}=trQ=r,$ $Q_{ii}$ being the algebraic complement
of $\rho_{ii}$ in the matrix of $Q$ . Using (3.4),(3.5) and (3.11) we obtain easily $b_{0}=0$ ,
while using (3.11) and (3.19) we get $b_{1}=\frac{r^{2}}{4}$ Thus, the eigenvalues of $Q$ are
$\lambda_{1}=0$ and $\lambda_{2}=\frac{r}{2}$ , of multiplicity 1 and 2, respectively (see also [6], Prop. 11.2).
Next, let $Y$ be the orthogonal projection of $\xi$ on the distribution $ V(\frac{r}{2})=\{X\in$

$TM$ : $QX=\frac{r}{2}X$ }. If $Y=0$ on $U$ , then $Q\xi=0$ and from (2.4) it follows that
$\lambda=1$ on $U$ . This implies easily that $U$ is flat and hence, the vertical curvatures
all vanish at any point of $U$ , against the hypothesis.

So, let $p$ be a point of $U$ such that $Y_{p}\neq 0$ . Consider an orthonormal basis
$\{e_{1}, e_{2}, e_{3}\}$ of $T_{p}M$ , where $Qe_{1}=0$ and $e_{2}=\Pi^{\frac{Y}{Y}}T$ Clearly, $\{e_{i}\}$ is a basis of
eigenvectors of $Q$ at $p$ , with $Qe_{1}=0,$ $Qe_{2}=\frac{r}{2}e_{2}$ and $Qe_{3}=\frac{r}{2}e_{3}$ . Then, the
sectional curvature $K_{12}$ vanishes, where by $K_{ij}$ we denote the sectional curvature
of the plane spanned by $(e_{i}, e_{j})$ . With respect to $\{e_{i}\}$ , we have $\xi_{p}=\alpha e_{1}+\beta e_{2}$ .
Put $W=\beta e_{1}-\alpha e_{2}$ . Since $W$ is orthogonal to $\xi_{p},$ $ W\in ker\eta$ . The sectional
curvature of the plane spanned by $\xi_{p}$ and $W$ is

$K(\xi_{p}, W)=R(\xi_{p}, W,\xi_{p}, W)=(\alpha^{2}+\beta^{2})K_{12}=K_{12}=0$ .

Hence, the vertical curvature $K(\xi_{p}, W)$ vanishes at $p$ and this contradicts the
hypothesis. $\square $

4. Three-dimensional semi-symmetric unit tangent sphere bundles

Let $(M, G)$ be a Riemannian manifold and $\overline{\pi}$ : $TM\rightarrow M$ its tangent bundle.
If $X$ is a vector field on $M$ , we denote by $X^{h}$ and $X^{v}$ respectively the horizontal
and the vertical lift of $X$ on $TM$ . The Sasaki metric $g_{s}$ on $TM$ is defined by

$g_{s}(\overline{X},\overline{Y})=G(\overline{\pi}_{\star}\overline{X},\overline{\pi}_{\star}\overline{Y})+G(K\overline{X}, K\overline{Y})$

where $\overline{X},\overline{Y}$ are vector field on $TM$ and $K$ is the connection map corresponding to
the Levi-Civita connection of $(M, G)$ . $TM$ admits an almost complex structure
$J$ defined by $JX^{h}=X^{v}$ and $JX^{v}=-X^{h}$ .

The tangent sphere bundle $\pi:T^{1}M\rightarrow M$ is considered as the hypersurface
of $TM$ defined by $\{(p, v)\in TM : G(v, v)=1\}$ . The vector field $N=v^{i}(\frac{\partial}{\partial v})=$

$v^{i}(\frac{\partial}{\partial x})^{v}$ is an unit normal, as well as the position vector for a point $z=(p, v)$ .
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Let $g^{\prime}$ be the metric on $T^{1}M$ induced from $g_{s}$ . On $TM$ there is a horizontal
vector field $\xi^{\prime}$ called geodesic flow of $(M, G)$ , which is defined by

$\xi^{\prime}=-JN=v^{i}(\frac{\partial}{\partial x^{i}})^{h}$

Since $\xi_{z}^{\prime}$ , for $z\in T^{1}M$ , is tangent to $T^{1}M,$ $\xi^{\prime}$ can be considered as a vector
field on $T^{1}M$ . Let $\eta^{\prime}$ be the l-form on $T^{1}M$ dual to $\xi^{\prime}$ with respect to $g^{\prime}$ , and
$\varphi^{\prime}$ the $(1,1)$ tensor given by $\varphi^{\prime}X=JX-\eta^{\prime}(X)N$ . Then

$(\eta,\xi, g, \varphi)=(\frac{1}{2}\eta^{\prime},$ $2\xi^{\prime},$ $\frac{1}{4}g^{\prime},$
$\varphi^{\prime)}$

is the standard contact metric structure on $T^{1}M$ .
We are now ready to give the

Proof of Theorem S.. Using isothermal local coordinate $(x^{1}, x^{2})$ on $M$ , the Rie-
mannian metric $G$ is given by

$G=e^{2f}((dx^{1})^{2}+(dx^{2})^{2})$

where $f$ is a $ c\infty$ function on $M$ . The immersion of $T^{1}M=\{z=(p, v)\in TM$ :
$e^{2f}((v^{1})^{2}+(v^{2})^{2})=1\}$ into $TM$ is defined by

$(y^{1},y^{2}, \theta)\rightarrow(x^{1}, x^{2}, v^{1},v^{2})=(y^{1}, y^{2}, e^{-f}cos\theta, e^{-f}sin\theta)$ .
Setting $ f_{1}=\overline{\partial}x\partial\neq$ and $f_{2}=A_{\partial x}^{\partial}$ , we find

$\frac{\partial}{\partial\theta}=-v^{2}\frac{\partial}{\partial v^{1}}+v^{1}\frac{\partial}{\partial v^{2}},$
$\frac{\partial}{\partial y^{1}}=\frac{\partial}{\partial x^{1}}-f_{1}N,$ $\frac{\partial}{\partial y^{2}}=\frac{\partial}{\partial x^{2}}-f_{2}N$,

and

$\xi^{\prime}=v^{1}\frac{\partial}{\partial y^{1}}+v^{2}\frac{\partial}{\partial y^{2}}+(v^{1}f_{2}-v^{2}f_{1})\frac{\partial}{\partial\theta}$ .

$Since\frac{v_{\partial}e}{\partial\theta}=u^{v},td\xi v,whereu=-v_{\partial x}^{2\partial}Mor\infty r,$$wefindg^{\prime}(\frac{\partial}{\partial\theta,=},\frac{\partial}{\partial\theta,h})=g^{\prime}(\xi^{\prime},\xi^{\prime})=1\neg+v^{1}\frac{\partial}{\partial x}\pi$

, and $v=v_{\partial x}^{1\partial}\neg+v_{\overline{\partial}^{\nabla}x}^{2\partial}$ ,
then

$U=u^{h}=-v^{2}\frac{\partial}{\partial y^{1}}+v^{1}\frac{\partial}{\partial y^{2}}-(v_{2}f_{2}+v_{1}f_{1})\frac{\partial}{\partial\theta}$

is g’-unitary and orthogonal to $\varpi\partial\xi^{\prime}$ and $N$ . Thus, $(_{\varpi}\partial U, \xi^{\prime})$ is a g’-orthogonal
basis of vector fields tangent to $T^{1}M$ . On the other hand, $\varphi U=\varphi u^{h}=u^{v}-$

$ G(u, v)N=\partial^{\partial}\sigma$ . So, $(\xi, e, \varphi e)=(2\xi^{\prime}, 2U, 2_{\partial\sigma}^{\partial})$ is an orthonormal $\varphi$-basis for
$(T^{1}M, \eta,g)$ .
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We now determine $h$ . By (2.1), $h=\varphi\nabla\xi+\varphi^{2}$ , where the covariant derivates
$\nabla\xi$ are given by [B1]

$(\nabla_{W}\xi)_{z}=-(R(\pi_{\star}W, v)v)^{v}$ , $(\nabla_{V}\xi)_{z}=-2\phi V-(R(KV, v)v)^{h}$ .

Here $W$ (resp. $V$) is a horizontal (resp. vertical) vector field tangent to $T^{1}M$

and $R$ is the curvature tensor of $(M, G)$ . Then, we get

(4. 1) $hU=(k-1)U$, $h(\frac{\partial}{\partial\theta})=(1-k)(\frac{\partial}{\partial\theta})$ ,

where the Gaussian curvature $k$ considered as a function on $T^{1}M$ is defined by
$k(p, v)$ $:=k(p)$ . Hence, $\{\xi, e, \varphi e\}$ is a $\Psi$-basis of eigenvectors of $h$ , with $\lambda=1-k$ .

The Ricci tensor of $(T_{1}M,g^{\prime})$ has been computed in [4]. Taking into account
that $g$ and $g^{\prime}are$ homothetic, it is easy to prove that the Ricci tensor $\overline{\rho}$ of
$(T_{1}M,g)$ satisfies

$\overline{\rho}_{(}p,$ $v$) $(X^{h},Y^{h})=\rho_{p}(X, Y)-\frac{1}{2}\sum_{i=1,2}G_{p}(R(v, E_{i})X,R(v, E_{i})Y)$ ,

where $\rho$ is the Ricci tensor of $M$ and $\{E_{i}\}$ is an orthonormal basis of $T_{p}M$ . In
particular, taking $\{u, v\}$ as an orthonormal basis of $T_{p}M$ , we obtain

$A=\overline{\rho}_{(p,v)}(\xi, e)=\rho_{(p,v)}(2v^{h}, 2u^{h})=$

$=4\rho_{p}(v, u)-2G_{p}(R(v,u)v,$ $R(v,u)u)=-k(p)^{2}G_{p}(v, u)=0$.

Therefore, if $T_{1}M$ is semi-symmetric, then, since $A=0$ , Lemma 3.3 implies
that $T^{1}M$ has constant sectional curvature $0$ or 1. Hence, (4.1) yields $\lambda=1$ or
$\lambda=0$ respectively, and $(M, G)$ has constant Gaussian curvature $k=0$ or $k=1$

respectively
Conversely, if $(M, G)$ has constant sectional curvature $0$ or 1, then $T^{1}M$ is

locally symmetric (see for example [12]). In particular, it is semi-symmetric. $\square $
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