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Abstract. We study in detail the exact asymptotic behaviour of the expected
number of particles of an age-dependent branching process. We take into account
the influence of the characteristic equation on the asymptotic behaviour being
investigated. Expansions for the renewal measure are also obtained and the exact
asymptotic behaviour of the remainder terms is established.

1. Introduction

Let {Z(t),t > 0} be an age-dependent branching process. The random vari-
able Z(t) is the number of particles at time t. The process is characterized by
a generating function f(s) = >~  p,s™ governing particle production and by
a distribution, say F, concentrated on [0, 00) of the lifetime of a single particle.
The evolution of the process {Z(t),t > 0} is an follows [2, Chapter IV]. At time
t = 0 there is one particle which lives for time T, and after that it produces
k particles with probability pi. These particles have lifetimes T}, ..., Tix and
thereafter, in their turn, produce offspring according to the probability distribu-
tion {p,}, and so on. All the lifetimes are independent random variables with
distribution F. Particle production is independent of both the present state and
past history of the process; moreover, the lifetimes and offspring numbers are in-
dependent. A mathematically rigorous construction of the process {Z(t), t > 0}
may be found in 8, Chapter VI].

The aim of the present paper is to investigate in detail the asymptotic be-
haviour of the expected number of particles u(t) ' Ez (t) as t — oo.

Recall some well-known facts. Suppose that the expected number, say m,
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of offspring produced by a single particle is finite: m def

Malthusian parameter a = a(m, F) is defined (when it exists) as the real root of
the equation :

> heq kpr < co. The

m/ e F(dy) =1
0

and plays a central role in the asymptotic behaviour of u(t). It is well known
that u(t) = 1 for m =1 [2, Chapter IV, Theorem 3A]. If m > 1, then

pu(t) ~ ce*, t— oo, 1)

where a is the Mathusian parameter and

m-—1
am? [J° ye~vF(dy)

c=

If m < 1, if the Mathusian parameter a exists and if f0°° ye~“YF(dy) < oo, then
relation (1) holds; in this case a < 0 [2, Chapter IV, Theorem 3A and 3B].

Consider now some known results concerning the asymptotic behaviour of
p(t) when the Malthusian parameter does not exist. If the distribution F’ belongs
to the class S(v), ¥ > 0, (see the definition in section 2) and if m [° €7 F(dz) <
1, then (see [4, Theorem 1])

1-m
[1-m f09° ez F(dz)]?

p(t) ~ [1- F(t)] as t— oo. (2)
In the subemponential case, i.e. when F € §(0), relation (2) was obtained by
Chistyakov [3, Theorem 5] under the assumption ‘

‘1-F(t-vy)
/___Fd,
mT > | T Fg L)

and, more generally, Theorem 3B(ii) in [2, Chapter IV, Section 5| says that in
the subexponential case F' € §(0) relation (2) holds for all m < 1.

In the present paper, we obtain refinements of the above results, when m # 1
and the tail of F’ can be compared with the tail of an arbitary distribution from
the class S(y),y > 0; in particular, when the disribution F itself belongs to S(v).
In the simplest situations, the results obtained are of the form

pu(t) = ce®* +r(t),

where a is the Malthusian parameter, c is a well-defined constant and the limit as
t — oo of the ratio r(t)/[1—F(t)] is expressed explicitly in terms of the underlying
lifetime distribution F’' € S(y) and the average number m of offspring.
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It is well known [2, Chapter IV, Section 5, Theorem 1] that the function u(t)
is the unique solution of the renewal equation

t
u(t) = [1- F(t)] +m / u(t - y)F(dy). 3)
0
This solution may be represented in the form

) = 1= FO] s Un() 2 [ ‘L= F(t - 9)Un(dy),

where Uy, (t) & Y reo mEF¥*(t) is the renewal function; here F** is the k-fold

convolution of F. Therefore, we shall spend a considerable amount of time in
studying the asymptotic properties of the renewal measure U, = 3 po , m*¥ F**.
In this connection a special emphasis is laid on the influence of the roots of the
characteristic equation

1-m /0 ~ e F(dz) = 0 )

on the asymptotic behaviour of the renewal measure U,,. (Note that if the
Malthusian parameter o exists, then s = —a is a root of equation (4).) The
proofs of the renewal theorems will be based on the Banach algebraic techniques
introduced in papers by Chover, Ney and Wainger [5], Essén [6] and Rogozin
[10].

The further plan of the paper is as follows. In Section 2, we list some necessary
facts from the theory of Banach algebras of measures and prove two results
about the Laplace transforms of measures. Section 3 deals with the asymptotic
properties of the renewal measure U,,. In Section 4, we study the asymptotic
behaviour of the expected number of particles u(t) as t — co.

2. Preliminaries

DEFINITION 1. A probability distribution G concentrated on [ 0, c0) belongs
to the class S(v), v > 0, if

(a) G((z,0)) >0 Vz >0,

. Gz+y,00)  _ \
(b) zlglgo (@oo) — e Yy e R,
. G*xG((z,00)) o
(c) zllr’go (=, 0)) _2/0 e"*G(drx) < oo.
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The class §(0) has been intoroduced by Chistyakov [3], and the classes S(v)
for positive v were first considered by Chover, Ney and Wainger [4, 5]. These
classes of probability distribution proved very useful in studying the exact asymp-
totic behaviour of various quantities of interest in numerous areas of probability
theory (see, e.g. the references in [1J).

In what follows we shall need some knowledge about Banach algebras of
measures with preassigned tail behaviour.

Let S(v',7), v/ < 0 < +, be the collection of all complex-valued o-finite
measures v defined on the o-algebra B of Borel subsets of R such that

] % /R max(e”, &%) |v|(dz) < oo,

where |v| stands for the total variation of v. Then S(v/,7) is a Banach algebra
with respect to the norm |v|| and the usual operations of addition and scalar
multiplication of measures; the product of two measures v and k from S(v/,%)
is defined as their convolution v * k. The unit element of the algebra S(v,7) is
the Dirac measure 4, i.e. the measure of unit mass concentrated at the origin.
The Laplace transform (s) of any element v € S(v/,7) is defined as

v(s) et /R exp(sz)v(dz).

This integral converges absolutely with respect to the measure |v| for all s lying
in the strip

I(Y,7) ¥ {seC: v <Rs <},

where C is the field of complex numbers.

Let us state explicitly from the beginning that the paramenter 4/ < 0 will
play an auxiliary role and will be chosen so that all the roots of the charasteristic
equation (4) lie in the strip II(+/,y). Such arbitrary choice of 4’ will not affect
the final shape of the results themselves.

Now choose an arbitrary distribution G € S(v). Set 7(z) def G((z, 00)).
Define a functional @ by the formula

Q) ¥ Sup I—'i%oi)l v € 5(0,7).

Consider the collection GI(7) of all measures v € S(0,~) such that Q(v) < oo
and there exists the limit

1) % lim K((T—f’(%f’-)l ecC.
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As shown in [13, Proposition 2], &((7) is a Banach algebra with respect to some
norm [|v||’, equivalent to the norm |[v|| + Q(v). The algebraic operations in
SI(7) are the same as in S(v',7), and the measure § is the unit element of
SI(7). Moreover, for any two elements v, k € GI(7) the following equality holds:

I(v * k) = L)R(Y) + U(K)D(7). (5)
The collections of measures
&(1) ' {v € 5(0,7) : Q(v) < o0},
Go(r) ¥ {u € 6(7) : lim M((z,00)) _ 0}

s 7(a)

are also Banach algebras with respect to the norm ||v||’ and the usual operations
of addition and scalar multiplication of measures [13, Proposition 2).

Let A be an arbitrary complex commutative Banach algebra with unit ele-
ment e. The spectrum o(a) of an element a € A is the set of all complex numbers
A such that the element a — Ae does not have an inverse. If f(2) is an analytic
function in a domain containing the spectrum of the element a € A, then there
exists an element f(a) € A such that for each homomorphism m : A — C the
following relation holds: m(f(a)) = f(m(a)) [15, Section 3]. The element f (a)
is called the value of the analytic function f(z) at the elementa € A .

We shall need the following result concerning the values of analytic functions
at elements of the Banach algebras &1(7), §(7) and So(7) [13, Theorem 3].

THEOREM 1. Let f(z) be an analytic function in a domain containing the
spectrum o (v) of an element v € S(v,7), and let f(v) be the value of f(z) at
vE€S(,). If v € 6I(7), then f(v) € SI(7) and the following relation holds:

Uf @)l = f' ()] - Uv).
Similar statements are also valid for the Banach algebras S(1) and So(7).

In studying the influence of the roots of the characteristic equation (4) on
the asymptotic behaviour of the expected number of particles u(t), we shall
make repeated use of the following usefull property of the Laplace transforms of
measures from &((7).

THEOREM 2. Let v € 6I(7) N S(v,7) and v < RE <y, If RE =4, then
assume additionally that ffoo |z|e'?|v|(dz) < co. Then the function

v(s) — v(§)

/
s=¢ s € II(v',7),
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is the Laplace transform of some measure k € SI(7) N S(v,7); moreover,

Uk) = 1)/ (v - §).
Proof. Consider the measure xk with the density

£) def | — ffoo efW2y(dy) for z <0,
| [P eEEydy)  for z>0.

T

v(z; (6)

A direct verification shows that k € S(v/,~) and

Rie) = 228 engy,y

| -£
(at point s = £ the value &(s) is difined by continuity as [, ret*v(dr)). Let, for
example, ¢ = +'. Then

0 , 0 , 0 ,
[ i) = [ oo [ e i) < o

— 00 —00 —00

Next,

(o o] [o o} ’ o0 ,
[ et < [ eoe [T orpyiaas
0 0 T

1 © ’
— /0 (€ — V) |v|(dy) < co.

We show that k € &I(7). Interchanging the order of integration, we get

k((t,00)) = / ” / ™ e€2)y (dy)

= _51. lw ef(y—t)y(dy) _ V((t’goo» ]

An integration by parts yeilds

k((t, 00)) = /t ) £ @=D((y, 00))dy.

Hence

K((t,00)) _ /°° vVt +y )Tt +y) (7)
0

7(t) T(t+y) 7(t)
LEMMA 1. Let G € §(),7 > 0. Then, for each 8 < v, there erists a constant

- C(B) =2 1 such that

T(y)e’¥ < C(P)T(x)e’® Wy >z >0. (8)
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A proof of Lemma 1 may be found in [12]. We return to the proof of Theorem
2. Let v > 0. Choose 8 € (R¢,7). In view of Lemma 1, the integrand in (7) is
bounded in absolute value by the integrable function

C(B)Q)exp[(RE - B)yl, y>0.

In case v = 0, one may take the function Q(v)exp(R€y),y > 0, to bound the
integrand in (7). Passing to the limit under the integral sign in (7), we get

l(n)_l(V)/ eE—MNvdy = l(u)

Finally, we show that Q(x) < co. Let ¥ > 0. In virtue of (7) and (8), we
have

[£l((t,0)) _ QU)C(B) _

sup < 00.

>0 T(t) = B —RE

If v =0, then

W60 _ oy [ cnengy — Q)
A ) SQ"/O W= Tng <

The proof of Therom 2 is complete. B

In connection with [Theorem 2 we introduce the following notation. Let
€ € C, and let v be a o-finite measure such that the measure [, €2 v(dz),
A € B, is finite. Define a measure T'(¢)v by the formula

T(€)v(A) = / v(z; €)dxz, AeB,
A
- Where the function v(z;¢),z € R, is given by (6). If
/ |z|e®|v|(dx) < oo,
R
then the Laplace transform of the measure 7'(¢)v is of the following form:

[TE)V]"(s) = w

s Rs = R¢;

at point s = £ we set

[T (¢) % / zety(dz).

R

In case £ =« Theorem 2 is meaningless. However, the following result holds.
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LEMMA 2. Letv e S(Y,7) be a non-negative measure such that
/ |z|e"*v(dx) < oo.
R .
If T(v)v € &1(T), then v € &I(T); moreover, l(v) =

Proof. Let A(x) et T(v)v((z,0)) —e"T(y)v((z+ 1, 00)). Since T'(y)v € SI(7),
it is clear that A(x)/7(z) — 0 as £ — co. Further,

Az) = / ~ e / v e"*v(dz)dy

/ f “Wdyv(dz) = (& 1)1/(’()[9: L)),

Hence Q(v) < o0 and v((z, 0))/7(x) — 0 as x — oo, completing the proof of

Lemma 2. B

3. Renewal theorems

Consider the renewal measure of the following type:
(e o}
Un dof Z mka*,
k=0

where m > 0 and F is a probability distribution concentrated on [0, c0). Let v >
0 and F(’y) < 00. Suppose that the set, say Z, of the roots of the characteristic
equation 1 — mF(s) = 0 lying in the half-plane {Rs < v} is finite. Denote the
elements of Z by 81,82,...,5. Let n; be the multiplicity of the root s;; this
means that 1 —mF(s) = (s—s;)™ Fj(s), where F;(s;) #0. f s€ Z,thens € Z
and the root 3 has the same multiplicity as s.

Let v be a comlex-valued measure concentrated on [0, c0) such that [5°e®
|v|(dz) < co0. Denote by ZZ":l(——l)kB%) /(s — s;)¥ the principal part of the
Laurent series expansion of the analytic function

O (5)(s) = %(——)

about the isolated smgular point s = s; € Z. Note that the set Z, the roots
s; and the coefficients B( v) depend on m. For brevity, we shall not indicate the

se{Rs<1N\Z,

dependence on m in the notations Z, s; and Bj(.k). Denote by £; the complex-
valued measure with the density 1 oo)(z)e™%* (1 4(z) is the indicator of the set
A); the Laplace transform of this measure is equal to 1/(s; — s), R(s — s;) < 0.
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The absolutely continuous part of an arbitrary distribution F’ will be denote
by F, and its singular component by F, : F, = F — F,.

THEOREM 3. Let a measure v and a probability distribution F consentrated on
[0, 00) be elements of the Banach algebra S1(7). Suppose that m™(F™* )5(y) <1
for some integer n > 1 and mF(s) # 1 for Rs =~. Then the convolution v+U,,
admits the representation

1 n;
viUn=3 3 BSEF + Rym, )

i=1k=1
where the remainder term R, ,, belongs to the Banach algebra SI(7);moreover,
) |, PO)miF)
1-mF(y) [1-mF(>»)p
Proof. Fir§1\; of all, we observe that the set Z is finite. This follows from the ana-
lyticity of F(s) in the half-plane {®s < v} and the hypotheses m™(F™)7(y) < 1

for some n > 1 and mF(s) # 1 for Rs = v [7]. Choose r > . Set p & 23:1 n;
and ;

l(Ru,m) = (10)

aef [1 - mF’(s)](s —7r)P
y Rs<,
H.l7=1 (S - s.?)n”

u(s) =

defining the values of u(s) at the points s € Z by continuity. We show that
the function u(s) is the Laplace transform U(s) of some measure U € SI(7).
Representing a rational function as a sum of partial fractions, we have

u(s) = [1 mF(s)] [1+ZZ( E'J:j)k:l’

i=1k=1

‘where Cj; are constants.

Choose ~/ < Rs;¥Vj =1,...,1. It is clear that F € S(7/,7v). Consider the
expression [mF(s) — 1]/ (s— .s'J)’c for 1 < k < n;. By [Theorem 2, this expression
is the Laplace transform of the measure mT(s;)* F belonging to both &((7) and

S(v',7). Consequently, u(s) = U(s), where U € S&I(7). Moreover, U € S(v/,7).
By Theorem 2, we have

UU) = —mi(F) 1+ZZ (7_3 L

J=1k=1

_ —mi(F)(y=r)?
B Hg':l(’Y—Sj)"" .

By means of standard arguments it is not difficult to show that there exists
an inverse element U~! in the Banach algebra S(v/,7) (see, e.g. the proof of
Theorem 1 in -) For completeness, we reproduce the corresponding reasoning.
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Let M be the space of maximal ideals of the Banach algebra S(v/, 7). Each
maximal ideal M € M induces a homomorphism, say h, of the Banach algebra
S(v’,v) onto the filed of complex numbers C, and M is the kernel of this ho-
momorphism. For an arbitrary element v € S(v/,%), denote by v(M) the value
of the homomorphism h at v. An element v € S(v/,7) has an inverse if and
only if v is not in any maximal ideal M € M. In other words, the element v is
invertible if and only if v(M) # 0 for every M € M.

The space M is split into two subsets: M = M; U Mz, where M, is the set
of all maximal ideals which do not contain the collection L(+’, ) of all absolutely
continuous measures from S(v/,y) and My = M\ M;. If M € M, then the
homomorphism S(v’,7) — C induced by M is of the form v — ¥(sy), where
so € II(7',7). In this case M = {v € S(v,v) : ¥(sg) = 0} [9, Chapter IV,
Section 4]. If M € M,, then v(M) = 0 for each absolutely continuous measure
veSH,n). ‘

We show that U(M) # 0 for every M € M, thus we will prove the existence
of an inverse element U~! € S(v,7v). Actually, if M € M;, then we have
UM) = U(so) # 0 for some so € II(7,7). Let now M € Ma. Applying a
theorem about the structure of homomorphisms of S(v/, y) onto C [11, Theorem
1], we have '

h(v) = /R x(@, v) exp(B) v(da), v e S(\), (11)

where 8 € [y/,v] and the function x(z,v) of the two variables r € R and v €
S(v',7) is a generalized character; here we mention only one relevant property
of a generalized character: |v| — ess sup,c g |x(x, V)| < 1.

The condition m™(F™* ),(v) < 1 implies the inequality m™(F™*)3(8) < 1 for
all 8 € [v,~]. By(11), for some 8 € [y, ], we have

ImFQM)[* = [m" F™ (M)| = [m™(F™)(M)]
e / x(@, (M F™*),) exp(Bz) (F™) (dz)

< mn / exp(Bz)(F™) (dz) < 1.

Since T'(s;)*F € L(v',v)Vj, k, we conclude that [U(M)| = |1 — mF(M)| > 0.
Thus, U(M) # 0 for all M € M. This means that there exists an inverse
element U~! € S(v/,v) and, in particular, the function 1/u(s),y < Rs < v, is
the Laplace transform of the element U—!. By [Theorem 1 with f(z) = 1/z, we
have W ¥ U-! € 6((r) and

ST G
U2 [1—mF)P(y—r)?

(W) = (12)
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Obviously,
= DEW(s)(s—TP = L3 Cx
Un(8)V(s) = M (- V(s)W(s) |1+ ;kZl Gy —Js,-)k .
We write
D(s)W(s) _ D(s;))W(s;) |, D(s)W(s) — ()W (s)
(s—sj)k (S — s;5)k (s — s5)*
— Z wz,Js(s)Jk) - + Wy 5 (S),
where wo,;(s) = v(s)W(s), 055(5) 2 (p1,5(6) = wpo1(s1)1/ (5 = 5), p =

L,...,k. By[Theorem2, wy, j(s) is the Laplace transform of the measure W, ; %

T(s;)P(v+xW) e 6[(7') and [(Wp ;) = l(v* W) /(v — s;)P. As a result, we have,
by the uniqueness of the Laurent series expansion, that

BW l

u(s>w<s>z:§j(s = ZZ( Ve ’;° )k+ZZCkak,,(s>

J=1k=1 J=1k=1 J=1lk=1

We set Ry & v W + Zg.:l Y %i, CixT(s;)*(v * W). Then, by the above,
(:)
Un(s)P(s) = Z Z( 1)’° X — + Rym(s); (13)

Jj=1k=1

moreover, R, ,, € &[(7) and

l(Ru,m)-—l(V*W)[l"‘ZZ s)k]_l(u*W) O (1

Pt 3=1(7 = 85)"™
In virtue of (5) and (12), we have

v * W) = L)W (7) + D()I(W)
O =)™ [ 1) | P(y)mi(F)
(y=r)P 1- mﬁ(’y) 1- mﬁ(’y)"’] ’

Passing in from the Laplace transforms to the corresponding measures, we
get the reprensentation (9). Substituting the value I(v * W) into (14) gives [10).
This completes the proof of Theorem 3. ®
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Setting v = & in [Theorem 3, we obtain a representation for the renewal
measure Up,.

COROLLARY 1. Let 337, (~1)*Bjk /(s —s;)* be the principal part of the Lau-
rent series expansion of the analytic function Um(s) = 1/[1 — mF(s)] about the
point s = s; € Z, and let the hypotheses of Theorem 3 be satisfied. Then

l

Un = Z ZJ BjkEF* + Ry, (15)

j=1lk=1
where Ry, € SI(1) and I(R,,) = mI(F)/[1 — mF(y)]2.

REMARK 1. The condition m™(F™* )5(y) < 1, which we used in the proof of the
invertibility of the element U, — call it condition (&) — is also necessary in order
that the remainder term R,, in satisfy the inequality [5° €® |Rp|(dz) < 00
implied by R,, € &I(7). Actually, suppose that f0°° €"® |Rp|(dz) < o0, but
condition (&) does not hold. Then there exist sets Ay, of Lebesgue measure zero
such that

mk/ e (F**),(dz) > 1, k=12,...
A

Put A = Ug2, Ax. The set A has Lebesgue measure zero. On the one hand,
' o0
[ @ Untez) 2 Somt [ er=(ph), (o) =
A k=1 Ax

and on the other hand (see [(15)),
/ e U, (dx) = / € R, (dx) < / e"*|Rp|(dx) < oo.
A A R

This contradiction shows that condition (&) is necessary for R,, € &I(7).
The next theorem deals with the case mF(y) = 1 for v > 0. First we prove,
however, the following simple lemma.

LEMMA 3. Let 1 and v be some measures. Suppose that the integrals [ r Tl
e'%|v|(dz) and [g, |x|e*®|u|(dz) are finite. Then

T(y)(u*v) = [T(y)u] * v+ w(y)T(y)v.

Proof. The assertion of the lemma follows from the equality

A&P(s) = BOIP0) _ [AGs) = AO)IRGs) | BO)IR(s) = D))
. S§—7 s—7 : s—y
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Denote by £, the measure with the density 1(0,00) ()™=

THEOREM 4. Suppose that mF(y) = 1 for v > 0, Jo° z2e"® F(dz) < oo and
m™(F™)5(v) < 1 for some i > 1. Let v, and v, be non-negative measures and
vV =uv, —1,. If the measures T(y)v1, T(y)v2 and T(y)?F belong to the Banach
algebra &I(T), then the convolution v x U,, admits the representation

V % Um = B,(yu)g'y + Ry,m, (16)

where BSY = 5(v)/[mF'(v)] and Ry, € SI(r); moreover,

v UT()?*F] _ UT(m)v] (17)
m[F'(Y)]2 mF'(y)

Proof. Choose r > v and consider the function

(Rym) =

def 1- mﬁ(s)](s -7)

u(s) —

0<Ms <.

The value u(y) is defined by continuity as mF’ (7)(r — v).We have u(s) = 1 —
mF(s) + (r — y)m[T(y)F]"(s). By both the measure T'(y)F and the
distribution F' belong to the Banach algebra SI1(7); moreover, [[T'(v)F] = I(F) =
0. Hence u(s) is the Laplace transform ﬁ(s) of some measure U € SI(7) with

I(U) = 0. Using standard arguments (see the proof of [Theorem 3), we see that

there exists an inverse element W & -1 ¢ S(0,v) with Laplace transform

equal to 1/u(s). By W € &I((7) and (W) = 0. Further,

v(s)s—r D(s) U(s)y-r
u(s)s—vy  u(s)  u(s)s—~n

vs) v)y-r  [P(s) Py)]y-r
achEor=tabe ths—v' 19)

We set Ry, m % 1« W +T(y)(v*W)(vy —r). Then relation can be rewritten
as

U (s)P(s) =

~ BW
Um(8)U(s) = ——2— + R, ;m(5).
s—=7
Passing in this equality from the Laplace transforms to the corresponding mea-
sures, we establish the desired relation [[16). It remains to show that Rym €
SI(7) and verify the validity of (17). In view of and the hypotheses of
the theorem, we have '

T(V)U = =mT(Y)F + (r — v)mT(7)*F € &I(7)
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and I[T'(y)U] = (r — y)ml[T(y)2F). Note that T(y)W = —W = T'(y)U/u(7). In
fact,

[ 1 1 ] 1 _ 1 u(y) —u(s) _ (W T(y)U]"(s)
u(s) u(n)]s—-7  ululy) s—7 u(7) '
By

T(y)(v*W) = [T(y)v] * W + V(7)T (v )W
= [T(v)V] * W — D(v)W * T(7)U/u().

Consequently, the hypotheses of the theorem and equality (5) imply that T'(7y) (v*
W) € &I(7) and

o - 8-

e ){I[Tw)v] m(r — ) 2

v(v)
u(7)

Taking into account the equalities I(W) = I(v) =0, we have [(v* W) = 0. As a
result, we obtain

l[T(v)zF]}-

v(),

(Rym) = {l[T(v)] mir ) 2T () F]}

( )

Réca.lling that u(y) = mF'(y)(r — 7), we see that holds. The proof of the
theorem is complete. B

4. The expected number of particles

Let Z(t) be the number of particles at time ¢, and let F' be the lifetime
distribution of a single particle. The expectation u(t) = EZ(t) satisfies the.
renewal equation (3). Recall that m = f/(1), where f(s) = Y po, Pks* is the
generating function of the offspring number generated by a single particle. The
function u(t) = fot [1 — F(t — y)]JUn(dy) is a solution of the equation (3). We
shall assume that m # 1 since otherwise u(t) = 1.

THEOREM 5. Suppose the distribution F belongs to the Banach algebra &I(7).
Assume that m™(F™),(7) < 1 for somen > 1 and mF(s) # 1 for Rs = ~.
Then

u(t) = Ze—s, 23(5 F)

>+ (1), (19)
p=0 .7
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where

CeTl)  -mEe)P

Proof. We apply with v = 6§ — F. Put p(t) = —Rs_pm((t,00)). We
obtain :

I nj
w(t) = (6= F)«Un((0,4]) = 3" BG V€8 ((0,4]) + Rs—pm ([0, 00)) + p(2).

j=1k=1

To complete the proof, it remains to note that

e [ 1=F) K By
Rs_pm([0, 00)) _}}%{m;—)- —;;( 1) (.S‘—Sj)k

and
k—1
tP 1
EF(0,8) = —eut 3 4 2
J ) k— ok
p=oPls; " 85

The proof of the theorem is complete. m

REMARK 2. If the Malthusian parameter a = a(m, F) exists (this means that
Z #0), then makes more precise the assertions of Theorems 3A and
3B in [2, Chapter IV] under the additional assumptions: (i) the tail of F can be
compared with the tail of some distribution from the class S(v),y =0, and (ii)
m™(F™);(v) < 1 for some n > 1. In this case a = —81, n1 = 1 and equality
may be rewritten in the form

l n; k-1
(m — 1)e>t st (6—~F) tP
u(t) = - ) e% B; — + p(t).
CEISITE Y DU DL M Wrn

REMARK 3. When F € S(v) and mF(y) < 1, Theorem 5 contains
from [4] as a particular case. To see this, it suffices to note that in this case Z — 0,
the condition m™(F™)(y) < 1 is automatically fulfilled for n = 1, u(t) = p(t)
and relation coincides with (2). Here we can take the distribution F itself
as the “normalizing” distribution G, which implies I(F) = 1.

Consider the situation when the Malthusian parameter is equal to —-.
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THEOREM 6. Suppose mﬁ(’y) =1 for vy > 0, f0°° e F(dx) < oo and
m"(F™),(7) < 1 for some n > 1. If the measure T(y)*F belongs to the Banach
algebra SI(T), then

F(v) -1

~—e " + p(t),
ymEF'(7y)

u(t) =

where

o P@) _ Fy-1 e [y fu € F(dv)dudy
t=oo T(t)  m[F/(y)2 t—% 7(2) '

Proof. Apply Theorem 4 with v =6 — F. Put p(t) = —Rs_p,m((t, oo)) We get
u(t) = BEPIE5([0,4]) + Rs_rm ([0, 00)) + p(t)-

Further,

Rs_pm([0,00)) = lim

—0

{ 1- F(s) N BSf"F)} _By _Fm-1
1-mF(s) $—7 - ymF'(y)

Finally,

[F(y) — IT(7)*F]

() _ 1
m[F’(y)]?

~l(Rs_pm) =

since, by I[T(7)(6 = F)] = =1[T'(y)F] = 0. This completes the proof
of the theorem. B

REMARK 4. makes more precise the assertions of Theorems 3A
and 3B from [2, Chapter IV] in case the Malthusian parameter is equal to v and
m"(F™); (y) < 1 for somen > 1.

REMARK 5. The results of the present paper will remain valid if in their state-
ments we replace the Banach algebra GI(7) with &(7) (or with Go(7)). In this
case the formula for p(t) in takes on the following form: p(t) = O(7(t))
(or p(t) = o(7(t))) as t — co. Moreover, the total variation of the function p(x)
in the interval (t, o) behaves like O(7(t)) (or o(7(t))) as t — oo if F € &(7) (or
F € 60(7)). A similar remark applies to Theorem 6 if we assume T'(y)*F € &(7)
(or T(y)?F € So(1)). '
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