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Abstract. For a properly nested normal immersion of the unit l-sphere into
the plane, Titus [3] gave a necessary and sufficient condition to extend to an
immersion of the unit disk into the plane. Francis [1] also proved the uniqueness
of the extension up to topological equivalence using the result of Blank [2]. In
this paper we give an elementary proof of these two theorems by using a system
of inequalties and the mean value theorem,

1. Preliminary and Main Theorem

We work in piecewise smooth category.
An immersion of a l-sphere into the plane is sai$d$ to be normal if the map is

in general position. Hence the singularities of the map consist of double points.
For a smooth immersion $f$ of a l-sphere into the plane, the tangent utnding

number of the map $f$ is the mapping degree of the map $f^{\prime}(x)=\frac{(gradf)_{x}}{||(gradf)_{x}||}$ .
The tangent winding number is also defined for a piecewise smooth immersion
by smoothing corners.

Let $D$ denote a disk in the plane. Let $S$ be the positively oriented boundary
of $D$ . We assume that the boundary $S$ possesses a suitable parameter function
$\delta$ of the closed interval $[0,2\pi]$ onto $S$ such that the map $\delta$ is injective on the set
$[0,2\pi)$ and that the orientation of $S$ coincides with that of $S$ induced from the
standard orientation of $[0,2\pi]$ by $\delta$ .

Let $f$ be a normal immersion of $S$ into the plane. Let

$ f_{*}=fo\delta$.
Any normal immersion in this paper is assumed to satisfy the following additional
two conditions:
(A1) $f_{*}(O)$ is not a double point, and
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(A2) $f_{*}(O)$ is a boundary point of the complementary unbounded region of the
image of $f$ .

Let $P_{1},$ $P_{2},$
$\cdots,$

$P_{n}$ be the double points of the map $f$ . For each double point
$P_{i}$ , let $ 0<t_{i}<t_{i}^{\prime}<2\pi$ be the real numbers with $f_{*}(t_{i})=f_{*}(t_{i}^{\prime})=P_{i}$ . Without
loss of generality we can assume that $ 0<t_{1}<t_{2}<\cdots<t_{n}<2\pi$ . There exists
a positive real number $\epsilon$ such that

(B1) for each $i=1,2,$ $\cdots,$ $n$ , two arcs $\alpha_{i}=f_{*}([t_{i}-\epsilon, t_{i}+\epsilon])$ and $\beta_{i}=f_{*}([t_{i}^{\prime}-$

$\epsilon,$
$ t_{i}^{\prime}+\epsilon$]) are simple (see Figure 1),

(B2) both of the arcs $\alpha_{i}$ and $\beta_{i}$ contain only one double point of the map $f,which$

is $P_{i}$ , and
(B3) $(\alpha_{i}\cup\beta_{i})\cap(\alpha_{j}\cup\beta_{j})=\emptyset$ $(i\neq j)$ .

Figure 1

For each $j=1,2,$ $\cdots,$ $n$ , let

$I_{j}=$ the closed interval $[t_{j}, t_{j}^{\prime}]$ .

The map $f$ is said to be properly nested provided that for each pair of integers
$1\leqq j<k\leqq n$ , only one of following cases occurs: $I_{j}\supset I_{k},$ $I_{j}\subset I_{k}$ , or $ I_{j}\cap I_{k}=\emptyset$ .
In the words of graph theory, the map $f$ is properly nested if each double point
is a cut point of the graph $f_{*}([0,2\pi])$ . From now on we assume that all the maps
are properly nested.

Now Titus defined the two kinds of functions $\mu(P_{i}, f)$ and $\lambda(P_{i}, f)$ for the
immersion $f$ as follows: The map $f$ naturally induces the orientations of the $ar$cs
$\alpha_{i}$ and $\beta_{i}$ from that of the l-sphere $S$ . If $\beta_{i}$ crosses $\alpha_{i}$ from left to right with
respect to the direction of $\alpha_{i}$ , we define $\mu(P_{i}, f)=+1$ , otherwise $\mu(P_{i}, f)=-1$

(see Figure 2). The function $\lambda(P_{i}, f)$ is defined to be
$\sum_{I_{j}\subset I}\mu(P_{j}, f)$

.
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$\mu(P_{1},f)=+1$ $\mu(P_{1}, f)=-1$

Figure 2

A double point $P_{i}$ is said to be maximal if $ I_{i}\cap I_{j}\neq\emptyset$ implies $I_{i}\supset I_{j}$ . We
say that a properly nested normal immersion $fs$atisfies Titus Condition if the
map satisfies the following two conditions:
(TC1) for any maximal double point $P_{i},$ $\lambda(P_{i}, f)=0$, and
(TC2) for any double point $P_{j},$ $\lambda(P_{j}, f)\leqq 0$ .

Let
$I_{O}=[0,2\pi]$ and

$C_{i}=f_{*}(Cl(I_{i}-\bigcup_{:,\neq}I_{j}))I_{j}\subset I(i=0,1, \cdots, n)$

where $Cl(\cdots)$ means the closure of $(\cdots)$ .
Each simple closed curve $C_{i}$ possesses the orientation induced from the one of
$I_{0}$ by the map $f_{*}$ . We define $\tau(C_{i})=+1$ if the orientaion of the circle $C_{i}$ is
positive, otherwise $\tau(C_{i})=-1$ . Then we have

the tangent winding number of $f=\sum_{i=0}^{n}\tau(C_{i})$ .

Then we have the following three propositions.

PROPOSITION 1. If the properly nested normal immersion $f$ satisfies Condi-
tion (A1) and (A2), then we have

$\mu(P_{i}, f)=\tau(C_{i})(i=1,2, \cdots, n)$ .

PROPOSITION 2. If the properly nested normal immersion $f$ satisfies Titus
Condition, then for every double point $P_{i}$ on the circle $C_{0}$ , we have $\mu(P_{i}, f)=$

$+1$ .
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PROPOSITION 3. If the properly nested normal immersion $f$ satisfies Titus
Condition, then we have

the tangent wznding number of $f=\tau(C_{0})$ .
The circle $C_{0}$ is called the TWN circle of the map $f$ . By Proposition 3, the

tangent winding number of the properly nested normal immersion $f$ with Titus
Condition is $\pm 1$ . Further if the map $f$ extends to an orientation preserving
immersion of the unit disk into the plane, the tangent winding number of the
map $fis+1$ . Therefore throughout this paper, we assume the following condition
for the tangent winding number.

TWN Condition : The tangent utndin$g$ number of the map $fis+1$ .
Note. By Proposition 3 we have $\tau(C_{0})=+1$ . This means that if the map $f$

extends to an immersion of the unit disk into the plane, then the extended map
is orientation preserving.

THEOREM 1 (Titus [3]). A properly nested $no7mal$ immersion $f$ of the unit
l-sphere into the plane extends to an orientation preserving immersion of the
unit disk into the plane if and only if the map satisfies Titus Condition.

THEOREM 2 (Francis [1]). If a properly nested normal immersion $f$ of the unit
l-sphere into the plane extends to an immersion of the unit disk into the plane,
the extension is unique up to topological equivalence.

If the properly nested normal immersion $f$ does not have any double point,
the above two theorems are true. Hence we assume that the map possesses a
double point. Since the tangent winding number of the map $fis+1$ , the map
$f$ must have a double point $P$ with $\mu(P, f)=-1$ . Let $\nu$ be the integer with
$\mu(P_{i}, f)=+1(0<i<\nu)$ but $\mu(P_{\nu}, f)=-1$ . The arc $f_{*}([0, t_{\nu}])$ is called the
principal arc. Any double point $P_{i}$ on the principal arc is said to be prencipal
provided that $ 0<i<\nu$ and $I_{i}\not\subset[0, t_{\nu}]$ (See Figure 3).

Let $\gamma_{f}$ be an embedding of the unit interval $[0,1]$ into the plane such that
(C1) $\gamma_{f}(0)=f_{*}(t_{\nu}^{\prime}-\epsilon)$ where $\nu$ is the number defined just above, and $\epsilon$ is the

positive real number satisfies $(B1)\sim(B3)$ ,
(C2) $\gamma_{f}(1)$ lies in the complementary unbounded region of the image of $f$ ,
(C3) the image of $\gamma_{f}$ is situated on the right side of the principal arc, and
(C4) the intersection of the image of $\gamma_{f}$ and the image of $f$ is equal to the set

{ $f_{*}(t_{i}^{\prime}+\epsilon)|P_{i}$ is principal} $\cup\{f_{*}(t_{\nu}^{\prime}-\epsilon)\}$ .
The simple arc $\gamma_{f}$ is called an associated principal arc. The set $\{P_{1},$ $P_{2}$ ,

$P_{\nu},$
$\gamma_{f}$ } is called a principal set of the map $f$ (see Figure 4)

If the map $f$ satisfies Titus Condition, we have
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Figure 3 The heavier graph: the principal arc. $P_{1},$ $P_{4}$ are the principal but
$P_{2},$ $P_{3}are$ not.

(D1) $\nu\geqq 2$ ,
(D2) $f_{*}([0, t_{\nu}])$ is a simple $arc$ , and
(D3) all the double point $P_{i}(0<i<\nu)$ is principal.
For, if $I_{i}\subset[0, t_{\nu}]$ for some $ 0<i<\nu$ , then $\mu(P_{j}, f)=+1$ for any double point
$P_{j}$ on $f_{*}(I_{i})$ . Hence $\lambda(P_{i}, f)>0$ . This contradicts to Condition (TC2). Hence
all the double point $P_{i}(0<i<\nu)$ is principal. Thus $f_{*}([0, t_{\nu}])$ is a simple arc.

Titus used two types of cuts to split an immersion (cf. [4]). A cut of Type I
uses a double point of the immersion. A cut of Type II uses a simple curve. We
do not use a cut of Type I, but a special curve for a cut of type II as follows.
For each $i$ with $P_{i}$ principal, let

$s_{i}=\gamma_{f}^{-1}of_{*}(t_{i}^{\prime}+\epsilon)$ ,
$G_{i}=\delta([t_{\nu}^{\prime}-\epsilon, t_{i}^{\prime}+\epsilon])$ , and
$H_{i}=the$ complementary arc of $G_{i}$ in the l-sphere $S$.

Let $g_{i}$ and $h_{i}$ be normal immersions of $S$ into the plane such that
(E1) the maps $g_{i}$ and $f$ coincide on $G_{i}$ ,
(E2) the maps $h_{\ell}$ and $f$ coincide on $H_{i}$ ,
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Figure 4 The heavier graph: an associated principal arc. If the map $f$ satisfies
Titus Condition, $P_{i+1}$ and $P_{i+2}$ do not exist.

(E3) $g_{i}(H_{i})=h_{i}(G_{i})=\gamma_{f}([0, s_{i}])$ , and
(E4) $g_{i}(\delta(0))$ is situated very close to $f_{*}(t_{i}^{\prime}+\epsilon)$ .
We say that the maps $g_{i}$ and $h_{i}$ are obtained by splittin$g$ the map $f$ utth respect
to the double point $P_{i}$ and the associated $p$rincipal arc $\gamma_{f}$ . This is a Titus’ cut
of Type II (see Figure 5).

Note that the number of the double points of $g_{i}$ and $h_{i}are$ strictly less than
that of the double points of $f$ . Since the map $f$ is properly nested, so are the
maps $g_{i}$ and $h_{i}$ .

Now our main $th\infty rem$ is the following.

THEOREM 3. Let $f$ be a prvperly nested nornal immersion which satisfies Ti-
tus Condition. Let $\{P_{1}, P_{2}, \cdots, P_{\nu}, \gamma_{f}\}$ be a principal set of $f$ . Then there exists
exacdy one integer $ 0<i<\nu$ such that the two maps $g_{i}$ and $h_{i}$ , obtained by split-
ting the map $f$ with respect to $P_{i}$ and $\gamma_{f}$ , are properly nested nornal immersions
and satisfy Titus Conditiion and TWN Condition.
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$(b)$ The heavier graph : The image of the map $g_{1}$

$(a)$ The images of the maps $f$ and $\gamma$’

$(c)$ Tbe heavier graph; The image of the map fu

Figure 5

2. Proof of propositions

We use all the notations in \S 1.

Prvof of $P\mathfrak{w}posib_{\dot{i}}on1$ . Let $D_{i}$ be the disk bounded by the simple closed curve
$C_{i}$ . Since the map $f$ is properly nested, we have that $ f_{*}(I_{i})\cap f_{*}([0,2\pi]-I_{i})=\emptyset$ .
Namely

$ C_{i}\cap f_{*}([0,2\pi]-I_{i})=\emptyset$

The condition $f_{*}(O)=f_{*}(2\pi)$ implies that $f_{*}([0,2\pi]-I_{i})$ is connected and con-
tains the point $f_{*}(O)$ . On the other hand, $f_{*}(O)$ must be outside of the disk $D_{i}$

by Condition $(A2)$ . Thus the set $f_{*}([0,2\pi]-I_{i})$ belongs to the outside of the
disk $D_{i}$ . Therefore the orientation of the simple closed curve $C_{i}$ is positive if
$\mu(P_{i}, f)=+1$ , and the orientation of the simple closed curve $C_{i}$ is negative if
$\mu(P_{i}, f)=-1$ (see Figure 6). $\blacksquare$

Prvof of Proposition 2. We use contradiction. Suppose $\mu(P_{i}, f)=-1$ for a
double point $P_{i}$ on the simple closed curve $C_{0}$ . Let $P_{i_{1}},$ $P_{i_{2}},$

$\cdots,$ $P_{i_{k}}$ be the other
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$\mu(P_{i}, f)=-1$

Figure 6

double points on $C_{i}$ . Now

$\lambda(P_{i}, f)$

$=\sum_{:I_{j}\subset I}\mu(P_{j}, f)$

$=\mu(P_{i}, f)+\sum_{I_{jk^{\neq}}\subset I:}\mu(P_{j}, f)$

$=\mu(P_{i}, f)+\sum_{t=1}\sum_{I_{j}\subset I:_{t}}\mu(P_{j}, f)$

$=\mu(P_{i}, f)+\sum_{t=1}^{k}\lambda(P_{i_{t}}, f)$

Since the point $P_{i}$ is maximal, we have $\lambda(P_{i}, f)=0$ by Condition (TC1). Hence
we have

$\sum_{\ell=1}^{k}\lambda(P_{i_{\iota}}, f)=-\mu(P_{i}, f)=1>0$

Therefore at least one of $\lambda(P_{i_{1}}, f),$ $\lambda(P_{i_{2}}, f),$
$\cdots,$ $\lambda(P_{i_{k}}, f)$ must be positive. This

contradicts to Conditon (TC2). $\blacksquare$

Proof of Proposition 3. Recall that $C_{1},$ $C_{2},$
$\cdots,$

$C_{n}$ are simple closed curves cor-
responding to the double points of the map $f$ . Let $P_{i_{1}},$ $P_{i_{2}},$ $\cdots$ , $P_{i_{k}}$ be the double
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points of $f$ on the simple closed curve $C_{0}$ . Then

the tangent winding number of $f$ $=\sum_{j=0}^{n}\tau(C_{j})$

$=\tau(C_{0})+\sum_{j=1,n}^{n}\tau(C_{j})$

$=\tau(C_{0})+\sum\mu(P_{j}, f)$

$=\tau(C_{0})+\sum_{t=1Ij}^{k}\sum_{:_{t}\subset I}\mu(P_{j}, f)j=1$

$=\tau(C_{0})+\sum_{t=1}^{k}\lambda(P_{i}., f)$

Since each $P_{i_{t}}$ is maximal, we have $\lambda(P_{i_{\ell}}, f)=0$ . Therefore the tangent winding
number of $f=\tau(C_{0})$ . $\blacksquare$

3. Proof of Theorem 3

We use all notations defined in \S 1.
Since the map $f$ satisfies Titus Condition, the arc $f_{*}([0, t_{\nu}])$ is simple by

Condition (TC2). Hence all the double points $P_{1},$ $P_{2},$
$\cdots,$ $P_{\nu-1}are$ principal.

For each $j=1,2,$ $\cdots,$ $\nu-1$ , let

(1)
$Q_{j}=f_{*}(t_{j}^{\prime}+\epsilon)$ .

For each $i=1,2,$ $\cdots,$ $\nu-1$ , let

$X_{i}=thesetofthedoublepoIntsofg_{i}$

$Y_{i}=the$ set of the double points of $h_{i}$ , and
$Z_{i}=\{P_{1}, P_{2}, \cdots, P_{i-1}, P_{\nu+1}, P_{\nu+2}, \cdots, P_{n}\}$ .

Then we have the followings (see Figure 5):

$X_{i}\cup Y_{i}=Z_{i}\cup\{Q_{i+1}, Q_{i+2}, \cdots, Q_{\nu-1}\}$ ,
$X_{i}\supset\{Q_{i+1}, Q_{i+2}, \cdots, Q_{\nu-1}\}$ ,
$Y_{i}\supset\{P_{1}, P_{2}, \cdots, P_{i-1}\}$ , and

$ X_{i}\cap Y_{i}=\emptyset$ .
Hence the numbers of double points of $g_{i}$ and $h_{i}$ are strictly less than that of
the double points of $f$ .

Now we shall find the integer $i$ so that
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(1) $\lambda(Q_{i+1},g_{i})=0$ , and $\lambda(Q_{j},g_{i})\leqq 0(j=i+2, \cdots, \nu-1)$

i.e. Titus Condition for the double points $Q_{i+1},$ $Q_{i+2},$ $\cdots,$ $Q_{\nu-1}$ of the map
$g_{i}$ ,

(2) $\lambda(P,g_{i})=\lambda(P, f)=0$ for all the maximal double point $P$ of $g_{i}$ on the arc
$f_{*}([t_{i+1}^{\prime}+\epsilon, t_{i}^{\prime}))$ ,
i.e. Titus Condition for the double points of the map $g_{i}$ on the simple arc
$f_{*}([t_{i+1}^{\prime}+\epsilon, t_{i}^{\prime}))$ , and

(3) $\lambda(P_{1}, h_{i})=0$ , and $\lambda(P_{j}, h_{i})\leqq 0(j=2,3, \cdots, i-1)$ ,
$i.e$. Titus Condition for the double points $P_{1},$ $P_{2},$

$\cdots,$ $P_{i-1}$ of the map $h_{i}$ .
Note that Titus Condition is satisfied for the other double points of the map
$h_{i}$ , because the map $f$ satisfies Titus Condition. Similarly Titus Condition is
satisfied for the other double points of the map $g_{\ell}$ except the maximal double
points of $g_{i}$ which lie on the arc $f_{*}([t_{i+1}^{\prime}+\epsilon, t_{i}))$ .

Let

$u=\sum_{I_{q}\subset I_{\nu},\neq}\mu(P_{q}, f)$

, and
$v_{0}=\sum_{I_{q}\not\subset I_{1}}\mu(P_{q}, f)$

.

For each $j=1,2,$ $\cdots,$ $\nu-1$ , let

$v_{j}=\sum_{I_{q}\subset J_{j}}\mu(P_{q}, f)$
, where $J_{j}=I_{j}-I_{j+1}$ .

Note that $u\leqq 0,$ $v_{0}=0,$ $v_{j}\leqq 0(j=1,2, \cdots, \nu-1)$ by Titus Condition. From
Titus Condition for the map $f$ , we have the followings:

$(F_{2})(F_{1})$

$\lambda(P_{\nu-1}, f)$ $=$ $u+v_{\nu-1}\leqq 0$ ,
$\lambda(P_{\nu-2}, f)$ $=$ $u+v_{\nu-1}+v_{\nu-2}+1\leqq 0$ ,

. . .
$(F_{j})$ $\lambda(P_{\nu-j}, f)$ $=$ $u+v_{\nu-1}+v_{\nu-2}+\cdots+v_{\nu-j}+j-1\leqq 0$,

: : .
$(F_{\nu-2})$ $\lambda(P_{2}, f)$ $=$ $u+v_{\nu-1}+v_{\nu-2}+\cdots+v_{2}+\nu-3\leqq 0$ ,
$(F_{\nu-1})$ $\lambda(P_{1}, f)$ $=$ $u+v_{\nu-1}+v_{\nu-2}+\cdots+v_{1}+\nu-2=0$ ,
$(F_{\nu})$ $v_{0}=0$ .

That is

$(F_{j})^{*}$ $u+v_{\nu-1}+v_{\nu-2}+\cdots+v_{\nu-j}\leqq-(j-1)$ $(j=1,2, \cdots, \nu-2)$ ,
$(F_{\nu-1})^{*}$ $u+v_{\nu-1}+v_{\nu-2}+\cdots+v_{1}=-(\nu-2)$ ,
$(F_{\nu})^{*}$ $v_{0}=0$ .

Under the condition that the map $f$ satisfies Titus Condition, the map $g_{i}$
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satisfies Titus Condition if and only if the following $\nu-i$ conditions are satisfied:

$(G_{1}^{i})$ $\lambda(Q_{\nu-1}, g_{i})$ $=$ $v_{\nu-1}+1\leqq 0$ ,
: : :.

$(G_{j}^{\ell})$ $\lambda(Q_{\nu-j}, g_{i})$ $=$ $v_{\nu-1}+v_{\nu-2}+\cdots+v_{\nu-j}+j\leqq 0$ ,
: : :

$(G_{\nu-i^{-}2}^{\ell})$ $\lambda(Q_{i+2}, g_{i})$ $=$ $v_{\nu-1}+v_{\nu-2}+\cdots+v_{i+2}+\nu-i-2\leqq 0$ ,
$(G_{\nu-i^{-}1}^{i})$ $\lambda(Q_{i+1},g_{i})$ $=$ $v_{\nu-1}+v_{\nu-2}+\cdots+v_{i+1}+\nu-i-1=0$,
$(G_{\nu-i}^{i})$ $v_{i}=0$ .

where the last condition $v_{i}=0$ comes from Titus Condition for all the maximal
double points on the set $f_{*}([t_{i+1}^{\prime}+\epsilon, t_{i}^{\prime}))$ of the map $g_{i}$ . That is

$(G_{j}^{i})^{*}$ $v_{\nu-1}+v_{\nu-2}+\cdots+v_{\nu-j}\leqq-j$ $(j=1,2, \cdots, \nu-i-2)$ ,
$(G_{\nu-i-1}^{i})^{*}$ $v_{\nu-1}+v_{\nu-2}+\cdots+v_{i+1}=-(\nu-i-1)$ ,
$(G_{\nu-i}^{i})^{*}$ $v_{i}=0$ .

Under the condition that the map $f$ satisfies Titus Condition, the map $h_{i}$

satisfies Titus Condition if and only if the following $i$ conditions $are$ satisfied:

$(H_{1}^{i})$ $\lambda(P_{i-1}, h_{i})$ $=$ $u+v_{i-1}+1\leqq 0$ ,
: : :

$(H_{j}^{i})$ $\lambda(P_{i-j}, h_{i})$ $=$ $u+v_{i-1}+v_{i-2}+\cdots+v_{i-j}+j\leqq 0$,
: : :.

$(H_{i-2}^{i})$ $\lambda(P_{2}, h_{i})$ $=$ $u+v_{i-1}+v_{i-2}+\cdots+v_{2}+i-2\leqq 0$,
$(H_{i-1}^{i})$ $\lambda(P_{1}, h_{i})$ $=$ $u+v_{i-1}+v_{i-2}+\cdots+v_{1}+i-1=0$,
$(H_{i}^{i})$ $v_{0}=0$ .

where the last condition is Titus Conditon for maximal double points. That is

$(H_{j}^{i})^{*}$ $u+v_{i-1}+v_{i-2}+\cdots+v_{i-j}\leqq-j$ $(j=1,2, \cdots, i-2)$ ,
$(H_{t-1}^{i})^{*}$ $u+v_{i-1}+v_{i-2}+\cdots+v_{1}=-(i-1)$ ,
$(H_{i}^{i})^{*}$ $v_{0}=0$ .

Now we need two lemmata.

LEMMA 1. Under the condition that the map $f$ sabisfies Titus Condition, if the
map $g_{1}$ sabsfies Titus Condition, so does the map $h_{i}$ .



126 T. NAGASE AND M. TSUKUI

Proof. From $(G_{\nu-i^{-}1}^{i})^{*}$ and $(G_{\nu-i}^{i})^{*}$ for the map $g_{i}$ , we have the following equa-
tion:

$v_{\nu-1}+v_{\nu-2}+\cdots+v_{i}=-(\nu-i-1)$ .
For $j=1,2,$ $\cdots,$ $i-1$ , put the equation into $(F_{\nu}-i+j)^{*}$ to get $(H_{j}^{i})^{*}$ for the map
$h_{i}$ . $\blacksquare$

LEMMA 2. Under the condition that the map $f$ satisfies Titus Condition,
among the maps $g_{1},$ $g_{2},$ $\cdots,$ $g_{\nu-1}$ , at most one map $g_{i}$ is able to satisfy Titus
Condition.

Proof. Suppose that $g_{i}$ and $g_{k}(i\neq k)$ satisfy Titus Condition. Without loss
of generality we can assume that $i<k$ . Then from Condition $(G_{\nu-k^{-}1}^{k})^{*}td$

$(G_{\nu-k}^{k})^{*}$ for the map $g_{k}$ , we have the following equation:

$v_{\nu-1}+v_{\nu-2}+\cdots+v_{k+1}+v_{k}=-(\nu-k-1)$ .

But by Condition $(G_{\nu-k}^{i})^{*}$ for the map $g_{i}$ we have

$v_{\nu-1}+v_{\nu-2}+\cdots+v_{k+1}+v_{k}\leqq-(\nu-k)$ .

$Hence-(\nu-k-1)\leqq-(\nu-k)$ . This is a contradiction. $\blacksquare$

To finish the proof of $Th\infty rem3$ we must find a map $g_{i}$ satisfies Titus Con-
dition. There are two cases.
Case 1. $v_{\nu-1}=0$ . In this case, $g_{\nu-1}$ is the desired map. For, Condition $(G_{1}^{\nu-1})^{*}$

for the map $g_{\nu-1}$ is to be checked. Since Condition $(G_{1}^{\nu-1})^{*}$ for the map $g_{\nu-1}$ is
$v_{\nu-1}=0$. So nothing is to be checked.
Case 2. $v_{\nu-1}\leqq-1$ . Let $A_{0}=(0, v_{\nu-1})$ . For $j=1,2,$ $\cdots$ , $\nu-1$ , let

$B_{j}=$ $(j , v_{\nu-1}+v_{\nu-2}+\cdots+v_{\nu-j})$ , and
$A_{j}=(j, v_{\nu-1}+v_{\nu-2}+\cdots+v_{\nu-j}+v_{\nu-j-1})$ .

Let $L$ be the broken line connecting the points $A_{0},$ $B_{1},$ $A_{1},$ $B_{2},$ $A_{2},$ $\cdots$ , $A_{\nu-2},$ $B_{\nu-1}$

in succesion. Let

$U=\{(x, y)|x+y>0\}$ , and
$V=\{(x, y)|x+y<0\}$ .

Then the point $A_{0}$ belongs to the region $V$ . Since $u\leqq 0$ , Condition $(F_{\nu-1})^{*}$

implies

$\nu-1+v_{\nu-1}+v_{\nu-2}+\cdots+v_{1}=\nu-1-u-\nu+2=1-u>0$ .
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Thus the point $B_{\nu-1}$ belongs to the region $U$ . Since the broken line $L$ is descend-
ing from $A_{0}\in V$ to $B_{\nu-1}\in U$ at each step width $=1$ and each step height $\geqq 0$ ,
the broken line $L$ must penetrate the line $y=-x$ from the region $V$ to the region
$U$ . Let $B_{\nu-i-1}$ be the highest penetration point, where $1\leqq\nu-i-1<\nu-1$
(see Figure 7). Then we have

$B_{\nu-i-1}=A_{\nu-i-1}=(\nu-i-1, -(\nu-i-1))$ .
Since $\nu-(\nu-i-1)=i+1$ , we have

Figure 7

$B_{\nu-i-1}=(\nu-i-1, v_{\nu-1}+v_{\nu-2}+\cdots+v_{i+1})$ , and
$A_{\nu-i-1}=(\nu-i-1, v_{\nu-1}+v_{\nu-2}+\cdots+v_{i+1}+v_{i})$ .

Thus $B_{\nu-i-1}=A_{\nu-i-1}$ implies $v_{i}=0$ . Hence the map $g_{i}$ satisfies Condition
$(G_{\nu-i}^{i})^{*}$ . And $B_{\nu-i-1}=(\nu-i-1, -(\nu-i-1))$ implies

$v_{\nu-1}+v_{\nu-2}+\cdots+v_{i+1}=-(\nu-i-1)$ .
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Hence the map $g_{i}$ satisfies Condition $(G_{\nu-i^{-}1}^{i})^{*}$ . Since $B_{1},$ $B_{2},$ $\cdots$ ,
$B_{\nu-i-1-1}$ belong to the closure of $V$ , we have

$v_{\nu-1}+v_{\nu-2}+\cdots+v_{\nu-j}\leqq-j$ $(j=1,2, \cdots, \nu-i-2)$ .

Thus the map $g_{i}$ satisfies Condition $(G_{1}^{i})^{*}\sim(G_{\nu-t-2}^{i})^{*}$ . Therefore the map $g_{i}$

satisfies Titus Condition. Looking at TWN circles of the two maps $g$ and $h$ , it is
easy to check that the two maps satisfy TWN Condition by Proposition 3. This
completes the proof of $Th\infty rem3$ . $\blacksquare$

4. Proof of Theorem 1 and Theorem 2

First we shall prove Theorem 1. Let $f$ be a properly nested normal immersion
of the unit l-spehre into the plane. Let $D$ be the unit disk. Let $n$ be the number
of double points of the map $f$ . We use the induction argument on the number
of double points of $f$ .

Suppose that the properly nested normal immersion $f$ satisfies Titus Condi-
tion. If $n=0$ , then the map $f$ easily extends to an immersion of the disk $D$

into the plane. Suppose $n>0$ . Let $\{P_{1}, P_{2}, \cdots , P_{\nu}, \gamma_{f}\}$ be a principal set of the
map $f$ . By Theorem 3 for some integer $ 0<i<\nu$ , the maps $g_{i}$ and $h_{i}$ , obtained
by splitting the map $f$ with respect to $P_{i}$ and $\gamma_{f}$ , satisfy Titus Condition and
TWN Conditon. Since the numbers of the double points of $g_{i}$ and $h_{i}are$ less
than that of double points of $f$ , the maps $g_{i}$ and $h_{i}$ extend to immersions $\tilde{g}_{i}$ and
$\tilde{h}_{i}$ of $D$ into the plane by the induction hypothesis. Thus the map $f$ extend to
an immersion of $D$ into the plane by using the two maps $\tilde{g}_{i}$ and $\tilde{h}_{i}$ .

Conversely suppose that the map $f$ extends to an orientation preserving
immersion $\tilde{f}$ of $D$ into the plane. Then the map $f$ is regularly homotopic to the
inclusion map of $D$ into the plane. Hence the tangent winding number of $f$ is
+1. If $n=0$, then the map $f$ clearly satisfies Titus Condition. Suppose $n>0$ .
Since the tangent winding number of the map $fis+1$ , the map $f$ must have a
double point $P$ with $\mu(P)=-1$ . Let $\{P_{1}, P_{2}, \cdots , P_{\nu}, \gamma_{f}\}$ be a principal set of
the map $f$ .

Now we use the notations in \S 1. Let $L$ be the image of $\gamma_{f}$ . Then $\tilde{f}^{-1}(L)$

consists of simple arcs in $D$ . One of the arcs connects the point $\delta(t_{\nu}^{\prime}-\epsilon)$ and
a point $\delta(t_{i}^{\prime}+\epsilon)$ for some integer $ 0<i<\nu$ . This $arc$ assures that the maps
$g_{i}$ and $h_{i}$ , obtained by splitting the map $f$ with respect to $P_{i}$ and $\gamma_{f}$ , extend
to orientaion preserving immersions of $D$ into the plane. Hence the two maps
satisfy TWN Conditon. Of course, the numbers of double points of $g_{i}$ and
$h_{i}are$ less than that of double points of $f$ . Thus the maps $g_{i}$ and $h_{i}$ satisfy
Titus Condition by the induction hypothesis. Since the map $h_{i}$ satisfies Titus
Condition, $f_{*}([0, t_{\nu}])$ is a simple arc. Hence all the points $P_{1},$ $P_{2},$

$\cdots,$
$P_{\nu-1}$ are
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principal with respect to the map $f$ .
Now we use the notations $u$ and $v_{i}$ $(i=0,1, \cdots , \nu-1)$ in \S 2. Since the maps $g_{i}$

and $h_{i}$ satisfy Titus Condition, all the double points of $f$ , except $P_{1},$ $P_{2},$
$\cdots,$

$P_{\nu}$ ,
satisfy Titus Condition. Thus we have that $u\leqq 0,$ $v_{i}\leqq 0(0<i<\nu)$ . To prove
the map $f$ satisfies Titus Conditon, we have to show that Condition $(F_{j})^{*}(j=$

$1,2,$ $\cdots,$ $\nu-1$) in \S 2 hold. That is

$(F_{\nu-1})^{*}(F_{j})^{*}$

$u+v_{\nu-1}+v_{\nu-2}+\cdots+v_{1}=-(\nu-2)$ ,
$u+v_{\nu-1}+v_{\nu-2}+\cdots+v_{\nu-j}\leqq-(j-1)$ $(j=1,2, \cdots, \nu-2)$ ,

$(F_{\nu})^{*}$ $v_{0}=0$ .
Since the maps $g_{i}$ and $h_{i}$ satisfy Titus Condition, the same conditions

$(G_{j}^{i})^{*}(j=1,2, \cdots, \nu-i)$ and $(H_{j}^{i})^{*}(j=1,2, \cdots, i)$ in \S 2 hold. That is

$(G_{j}^{i})^{*}$
$v_{\nu-1}+v_{\nu-2}+\cdots+v_{\nu-j}\leqq-j$ $(j=1,2, \cdots, \nu-i-2)$ ,

$(G_{\nu-i^{-}1}^{i})^{*}$ $v_{\nu-1}+v_{\nu-2}+\cdots+v_{i+1}=-(\nu-i-1)$ ,
$(G_{\nu-i}^{i})^{*}$ $v_{i}=0$,
$(H_{j}^{i})^{*}$ $u+v_{i-1}+v_{i-2}+\cdots+v_{i-j}\leqq-j$ $(j=1,2, \cdots, i-2)$ ,
$(H_{i-1}^{i})^{*}$ $u+v_{i-1}+v_{i-2}+\cdots+v_{1}=-(i-1)$ ,
$(H_{i}^{\ell})^{*}$ $v_{0}=0$ .

For each $j=1,2,$ $\cdots,$ $\nu-i-1$ , Condition $(G_{j})^{*}tdu\leqq 0$ implies $(F_{j})^{*}$ .
From $(G_{\nu-i-1}^{i})^{*}$ and $(\dot{G}_{\nu-i})^{*}$ we have the following equation:

$v_{\nu-1}+v_{\nu-2}+\cdots+v_{i+1}+v_{i}=-(\nu-i-1)$ .

The equation and $u\leqq 0$ implies $(F_{\nu-i})^{*}$ .
For each $j=1,2,$ $\cdots,$ $i-1$ , the above equation and $(H^{i})^{*}$ impli\’e $(F_{\nu-i+}\cdot)^{*}$ .

Thus all the points $P_{1},$ $P_{2},$
$\cdots,$ $P_{\nu-1}$ satisfy Titus ConditionJ $g$

The point $P_{\nu}$ clearly satisfies Titus Condition, because the fact $u\leqq 0$ implies
$\lambda(P_{\nu}, f)=s_{4}-1<0$ . Therefore the map $f$ satisfies Titus Condition. This
completes the proof of $Th\infty rem1$ .

Now we shall prove Theorem 2. We shall prove only the case that the map
$f$ is a properly nested normal immersion of the l-sphere into the plane which
extends to an orientation preserving immersion of the unit disk $D$ into the plane.
Again we use the induction argument on the number of double points of the map
$f$ . Let $n$ be the number of double points of $f$ . If $n=0$ , then Theorem 2 is trivial.
Suppose $n>0$ . Suppose that the map $f$ extends to immersions $f$ and $f$ of $D$

into the plane. Then the map $f$ satisfies Titus Condition by Theorem 1. Let
$\{P_{1}, P_{2}, \cdots, P_{\nu}, \gamma_{f}\}$ be a principal set of the map $f$ . By the same way as the one
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in the proof of Theorem 1, the immersion $f$ determines an integer $i(1\leqq i<\nu)$

such that the maps $g_{i}$ and $h_{i}$ , obtained by splitting the map $f$ with respect
to $P_{i}$ and $\gamma_{f}$ , extend to immersions $\tilde{g}_{i}$ and $\tilde{h}_{i}$ of $D$ into the plane respectively
Similarly the immersion $f$ determines an integer $j$ such that the maps $g_{j}$ and $h_{j}$ ,
obtained by splitting the map $f$ with respect to $P_{j}$ and $\gamma_{f}$ , extend to immersions
$\hat{g}_{j}$ and $\hat{h}_{j}$ of $D$ into the plane respectively Then the maps $g_{i},$ $h_{i},$

$g_{j}$ , and $h_{j}$ satisfy
Titus Conditon by $Th\infty rem1$ . Hence by Theorem 3, we have $i=j$ . Thus the
immersion $g_{i}$ extends to immersions $\tilde{g}_{i}$ and $\hat{g}_{j}$ of $D$ into the plane. Since the map
$g_{i}$ satisfies Titus Condition and the number of the double points of each map
is less than $n$ , the maps $\tilde{g}_{i}$ and $\hat{g}_{j}are$ topologically equivalent by the induction
hypothesis. Similarly maps $\tilde{h}_{i}$ and $\hat{h}_{j}$ are topologically equivalent. Therefore
maps $f$ and $f$ are topologically equivalent. This completes the proof of $Th\infty rem$

2.
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