Y OKOHAMA MATHEMATICAL
JourNAL VoL. 49, 2002

ON PROPERLY NESTED NORMAL IMMERSIONS
OF THE CIRCLE INTO THE PLANE
WITH TITUS CONDITION

By
TERUO NAGASE AND MASAKI TSUKUI

(Received August 25, 1999; Revised: December 12, 2001)

Abstract. For a properly nested normal immersion of the unit 1-sphere into
the plane, Titus gave a necessary and sufficient condition to extend to an
immersion of the unit disk into the plane. Francis [1] also proved the uniqueness
of the extension up to topological equivalence using the result of Blank 2] In
this paper we give an elementary proof of these two theorems by using a system
of inequalities and the mean value theorem.

1. Preliminary and Main Theorem

We work in piecewise smooth category.
An immersion of a 1-sphere into the plane is said to be normal if the map is
in general position. Hence the singularities of the map consist of double points.

For a smooth immersion f of a 1-sphere into the plane, the tangent winding
(grad f)s

[|(grad f)z||’

The tangent winding number is also defined for a piecewise smooth immersion
by smoothing corners. ‘ ~

Let D denote a disk in the plane. Let S be the positively oriented boundary
of D. We assume that the boundary S possesses a suitable parameter function
6 of the closed interval [0, 27] onto S such that the map § is injective on the set
[0,27) and that the orientation of S coincides with that of S induced from the
standard orientation of [0, 27] by é.

Let f be a normal immersion of S into the plane. Let

fu= f od.
Any normal immersion in this paper is assumed to satisfy the following additional

two conditions:

(A1) £.(0) is not a double point, and
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number of the map f is the mapping degree of the map f'(x) =
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(A2) f£.(0) is a boundary point of the complementary unbounded region of the
image of f.

Let Py, P, - -, P, be the double points of the map f. For each double point
P;, let 0 < t; < t; < 27 be the real numbers with f.(t;) = f.(t}) = P;. Without
loss of generality we can assume that 0 < t; < t; < --- < t, < 27. There exists
a positive real number € such that

(B1) for each i =1,2,---,n, two arcs a; = f.([t; — €,t; +€]) and §; = f. ([t} —
g, t, + ¢€]) are simple (see Figure 1),

(B2) both of the arcs a; and 3; contain only one double point of the map f,which
is P;, and

(B3) (s UB)N(ajUB;)) =0 (i# 7).

ECER T

ft(ti - 8)0
1

Figure 1
Foreach j=1,2,---,n, let

I; = the closed interval [t;,t}].

The map f is said to be properly nested provided that for each pair of integers
1 < j < k £ n, only one of following cases occurs: I; D Iy, I; C Iy, or I;NI = 0.
In the words of graph theory, the map f is properly nested if each double point
is a cut point of the graph f.(]0, 27]). From now on we assume that all the maps
are properly nested.

Now Titus defined the two kinds of functions u(P;, f) and A(P;, f) for the
immersion f as follows: The map f naturally induces the orientations of the arcs
a; and f; from that of the 1-sphere S. If §; crosses a; from left to right with
respect to the direction of a;, we define u(P;, f) = +1, otherwise u(B;, f) = —1
(see Figure 2). The function A(B;, f) is defined to be Z u(Pj, ).

I;CI;
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Figure 2

A double point P; is said to be mazimal if I; N I; # @ implies I; D I;. We
say that a properly nested normal immersion f satisfies Titus Condition if the
map satisfies the following two conditions:

(TC1) for any maximal double point P;, A(P;, f) = 0, and
(TC2) for any double point P;, A(P;, f) <0.
Let
Io =[0,27] and
Ci=f(CUL- | ] I;))(i=0,1,---,n)
Ijglg
where CI(---) means the closure of (---).

Each simple closed curve C; possesses the orientation induced from the one of
Io by the map f,. We define 7(C;) = +1 if the orientaion of the circle C; is
positive, otherwise 7(C;) = —1. Then we have

n
the tangent winding number of f = ZT(C,;).
i=0
Then we have the following three propositions.

PROPOSITION 1. If the properly nested normal immersion f satisfies Condi-
tion (A1) and (A2), then we have

M(R,f) :T(Ci) (Z: 1’2”"’")'

PROPOSITION 2. If the properly nested normal immersion f satisfies Titus
Condition, then for every double point P; on the circle Cy, we have w(P;, f) =
+1.
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PROPOSITION 3. If the properly nested normal immersion f satisfies Titus
Condition, then we have

the tangent winding number of f = 7(Cp).

The circle Cy is called the TWN circle of the map f. By [Proposition 3, the
tangent winding number of the properly nested normal immersion f with Titus
Condition is +1. Further if the map f extends to an orientation preserving
immersion of the unit disk into the plane, the tangent winding number of the
map f is +1. Therefore throughout this paper, we assume the following condition
for the tangent winding number.

TWN Condition : The tangent winding number of the map fis +1.

Note. By [Proposition 3 we have 7(Cy) = +1. This means that if the map f
extends to an immersion of the unit disk into the plane, then the extended map
is orientation preserving.

THEOREM 1 (Titus [3]). A properly nested normal immersion f of the unit
1-sphere into the plane extends to an orientation preserving immersion of the
unit disk into the plane if and only if the map satisfies Titus Condition.

THEOREM 2 (Francis [1]). If a properly nested normal immersion f of the unit
1-sphere into the plane extends to an immersion of the unit disk into the plane,
the extension is unique up to topological egquivalence.

If the properly nested normal immersion f does not have any double point,
the above two theorems are true. Hence we assume that the map possesses a
double point. Since the tangent winding number of the map f is +1, the map
f must have a double point P with u(P, f) = —1. Let v be the integer with
u(P;, f) = +1 (0 < i < v) but u(P,, f) = —1. The arc f,([0,%,]) is called the
principal arc. Any double point P; on the principal arc is said to be principal
provided that 0 < i < v and I; ¢ [0,¢t,] (See Figure 3).

Let v be an embedding of the unit interval [0, 1] into the plane such that

(C1) ~v4#(0) = f.(t, — €) where v is the number defined just above, and ¢ is the
positive real number satisfies (B1) ~ (B3),
(C2) ~v£(1) lies in the complementary unbounded region of the image of f,
(C3) the image of ~y is situated on the right side of the principal arc, and
(C4) the intersection of the image of s and the image of f is equal to the set
{f«(t; + &) | P; is principal } U {f.(t, — ¢)}.
The simple arc vy is called an associated principal arc. The set {Py, P,
-++, P, s} is called a principal set of the map f (see Figure 4)
If the map f satisfies Titus Condition, we have
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Figure 3 The heavier graph: the principal arc. P,, P, are the principal but
P, P3 are not,.

(D1) v > 2,

(D2) f.([0,¢,]) is a simple arc, and

(D3) all the double point P; (0 < i < v) is principal.

For, if I; C [0,t,] for some 0 < ¢ < v, then u(P;, f) = +1 for any double point

Pj on f.(I;). Hence A\(P;, f) > 0. This contradicts to Condition (TC2). Hence

all the double point P; (0 < i < v) is principal. Thus f,([0,,]) is a simple arc.
Titus used two types of cuts to split an immersion (cf. [4]). A cut of Type I

uses a double point of the immersion. A cut of Type II uses a simple curve. We

do not use a cut of Type I, but a special curve for a cut of type II as follows.
For each i with P; principal, let

$i =770 fu(ti +¢),
G = 8([tl, — &, t, +¢]), and
H; = the complementary arc of G; in the 1-sphere S.

Let g; and h; be normal immersions of S into the plane such that

(E1) the maps g; and f coincide on Gj,
(E2) the maps h; and f coincide on H;,
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Figure 4 The heavier graph: an associated principal arc. If the map f satisfies
Titus Condition, P;4; and P;;2 do not exist.

(E3) gi(H;) = hi(Gi) = v£([0, s4]), and
(E4) ¢:(8(0)) is situated very close to f. (¢, + ¢).

We say that the maps g; and h; are obtained by splitting the map f with respect
to the double point P; and the associated principal arc 4. This is a Titus’ cut
of Type 1I (see Figure 5). |

Note that the number of the double points of g; and h; are strictly less than
that of the double points of f. Since the map f is properly nested, so are the
maps g; and h;.

Now our main theorem is the following.

THEOREM 3. Let f be a properly nested normal immersion which satisfies Ti-
tus Condition. Let {Py, Py,---, P,,~vs} be a principal set of f. Then there ezists
ezactly one integer 0 < i < v such that the two maps g; and h;, obtained by split-
ting the map f with respect to P; and ¢, are properly nested normal immersions
and satisfy Titus Condition and TWN Condition.
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(a) The images of the maps f and v

(c) The heavier graph : The image of the map h;

Figure 5
2. Proof of propositions
We use all the notations in §1.

Proof of Proposition 1. Let D; be the disk bounded by the simple closed curve
Ci. Since the map f is properly nested, we have that f,(;) N f. ([0,27] - L;) = 0.
Namely

Cin f£u([0,27] - ;) = 0

The condition f,(0) = f.(27) implies that f£, ([0, 27] — I;) is connected and con-
tains the point f£,(0). On the other hand, f,(0) must be outside of the disk D;
by Condition (A2). Thus the set f,([0,27] — I;) belongs to the outside of the
disk D;. Therefore the orientation of the simple closed curve C; is positive if
u(P;, f) = 41, and the orientation of the simple closed curve C; is negative if
p(P;, f) = —1 (see Figure 6). m

Proof of Proposition 2. We use contradiction. Suppose u(P;, f) = —1 for a
double point P; on the simple closed curve Co. Let P;, Py, -, P;, be the other
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Figure 6
double points on C;. Now

MPLf) = 3 (P, f)

I;CI;

=Py )+ 3 u(Py, f)

Ijgli

" k
Zu(Pi,f)‘l"Z Z M(Pjif)

t=1I;CI;,

k
= p,(Pi,f) +Z:A(Piuf)
t=1

Since the point P; is maximal, we have A\(P;, f) = 0 by Condition (TC1). Hence
we have

k
t=1

Therefore at least one of A(P;,, f), A(P;,, f), -+, A(P;,, f) must be positive. This
contradicts to Conditon (TC2). m

Proof of LProposition 3 Recall that C1,Cy, - -+, Cy, are simple closed curves cor-
responding to the double points of the map f. Let P;, P;,,---, P;_ be the double
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points of f on the simple closed curve C,. Then

n
the tangent winding number of f = Z 7(Cj)
Jj=0

=7(Co) + 3 7(Cy)

= T(CO) +Z/"/(Pjsf)

3=1

k
=7(Co)+ Y > u(Pyf)

t=1 IJ'CIi't
k
= T(CO) + Z A(-ID‘I"u f)
t=1

Since each P;, is maximal, we have A(Py,, f) = 0. Therefore the tangent winding
number of f = 7(C;). m

3. Proof of Theorem 3

We use all notations defined in §1.

Since the map f satisfies Titus Condition, the arc f.([0,t,]) is simple by
Condition (TC2). Hence all the double points Py, Pp,---,P,_; are principal.
For each j =1,2,---,v — 1, let
(1) Qs = fu(t) + ).

Foreachi=1,2,-o-,u-—1, let

Xi = the set of the double points of g;
Y; = the set of the double points of h;, and
Z‘i = {PlaP'b"'vf)i——l,Pu+1,Pu+21"’aPn}'

Then we have the followings (see Figure 5):

XiUYi = Z; U{Qi+1, Qivz,++, Qu_1},
Xi D{Qi+1,Qiv2, -+, Qu_1},
Y, D {P,P,---,P,_1},and
X;NY; =0.

Hence the numbers of double points of gi and h; are strictly less than that of
the double points of f.

Now we shall find the integer  so that
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(l) A(Qi-l-lagi) - 09 and A(Qjag’l«) § 0 (.7 =i+ 2’ e,V — 1)
i.e. Titus Condition for the double points Q;+1, Qi+2," -+, @, —1 of the map
9i,

(2) A(P,gi) = A(P, f) = 0 for all the maximal double point P of g; on the arc
f*([t§+1 +¢,t)), k ,
i.e. Titus Condition for the double points of the map g; on the simple arc
f*([t£+1 +-€’ t;;)), and

(3) A(IDfl’h"l:) :0’ and A(PJ’h‘b) § 0 (j:2’39""7:— 1)9
i.e. Titus Condition for the double points Py, P,, -+ -, P;_1 of the map h;.

Note that Titus Condition is satisfied for the other double points of the map
h;, because the map f satisfies Titus Condition. Similarly Titus Condition is
satisfied for the other double points of the map g; except the maximal double
points of g; which lie on the arc f,([t;,, + €, t])).

Let

u= ) wPyf), andvo= Y Py f).

quI,, I,z

Foreach j=1,2,---,v—1, let

’Uj = Z M(Pq,f), where Jj = Ij - Ij+1-
I,CJ;

Note that u £ 0,90 =0,v; £0(j =1,2,---,v — 1) by Titus Condition. From
Titus Condition for the map f, we have the followings:

(Fl) A(P,,_l, f) = utv, g 0,
(Fz) )\(PV_2, f) = utv_a+v,2+1 g 0,
(F5)  MPo—jf) = utveatovea+--+v53+5-150,

(Fu“"2) /\(Pg,f) u+v,,_1+vy_2+...+v2+y_3§0,
(Fu-l) )\(Pl,f) u+vll—1'+vv—2+"'+’01+V—-2:O,
(FV) vo = 0.

Il

Il

That is

(Fs)* u+’Uy_]_+'U,,__2+-°'+'U,,_j§—(j—l) (j:1,2,---,1/-2),
(Fu—l)* u+v,_1+v,2+:--+0vy = —(V——Q),
(Fu)* Vo =0.

Under the condition that the map f satisfies Titus Condition, the map g;
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satisfies Titus Condition if and only if the following v — i conditions are satisfied:

(Gi) ’\(Qu-—l, gi) = v_1+1 é 0,

(G;) )‘(Qu—j, gz') = Uy1+uvy_2+---+ Vy—j + J § 0,
(Gioica) MQiv2,91) = Ve 1+vy o+ 4 v +v—i—2 <0,
(Gf,—,--1) MQi+1,8) = V14 v o+ rFvyp+r—i—1= 0,
(C"i --;) v; = 0.

where the last condition v; = 0 comes from Titus Condition for all the maximal
double points on the set f,([t},, +&,t})) of the map g;. That is

(Gg)* Vp-1 + Vy—_2 + .. + 'Uu—j é _'.7 (.7 - 1’ 2’ B ) V—i-z)’

(Gioi))' vui4 vy o+ Fvip = —(v—i-1),
(Gi -i)* v; = 0.

Under the condition that the map f satisfies Titus Condition, the map h;
satisfies Titus Condition if and only if the following i conditions are satisfied:

(H))  MPip,hi) = utoy 41 <0,
(H;) . A(Pi._j, h,) = u+ Vi—1 + Vi—2 +-- 4 'Ui—j +.7 § 0,
(H2)  MPphi) = wtvii+v g+ +u3+i-250,

(H'?‘l) A(Pl,hi) u+v; 1+v o+---+11 +i1—-1=0,
(H:) Vo = 0.

where the last condition is Titus Conditon for maximal double points. That is

(H;:)*' utvia+vigo+-+u_ ;< —j (j:122""’i_2)’

(Hii"l)* U+ v 1+ vi o+ v =—(i— 1),
(Hii)* vo = 0.

Now we need two lemmata.

LEMMA 1. Under the condition that the map f satisfies Titus Condition, if the
map g; satisfies Tz'tus’ Condition, so does the map h;.
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Proof. From (G%_,_,)* and (G¢_,)* for the map g;, we have the following equa-
tion:

V1t v+ to=—(v-i-1).
For j=1,2,...,i—1, put the equation into (F,-;+;)* to get (H})* for the map
h;. m

LEMMA 2. Under the condition that the map f satisfies Titus Condition,
among the maps gi1,92,+-+,gv—1, at most one map g; is able to satisfy Titus
Condition.

Proof. Suppose that g; and gx (¢ # k) satisfy Titus Condition. Without loss
of generality we can assume that i < k. Then from Condition (Gl’f_k_l)* and
(Gﬁ_k)* for the map g, we have the following equation: '

Vy1+ V2t -+t =—-(v-k-1).
But by Condition (G%_,)* for the map g; we have

Vy—1+vy2+ -+ g1+ < —(v—k).

Hence —(v — k — 1) £ —(v — k). This is a contradiction. m

To finish the proof of Theorem 3 we must find a map g; satisfies Titus Con-
dition. There are two cases.
Case 1. v,_; = 0. In this case, g, is the desired map. For, Condition (GY 1)
for the map g,_; is to be checked. Since Condition (G¥~*)* for the map g,_; is
vy—1 = 0. So nothing is to be checked.
Case 2. v,_; £ -1 Let 4o = (0,v,—1). For j =1,2,--.,v—1, let

B;= G, o1 +vp2+--+ v,_;), and
Aj: (.7 y Up—1 + Vy—2+-+ 'Uy_j + vy_.j_l).

Let L be the broken line connecting the points Ag, By, Ay, Bs, A, -+, Ay_2, By_1
in succesion. Let

U= {(z,y) | z+y > 0}, and
V={(z,9) |z +y <0}

Then the point Ao belongs to the region V. Since u < 0, Condition (F},-;)*
implies

v—-14+v, 14+ o+---+vr1=v—-—1—-u—-v+2=1—u>0.
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Thus the point B, _; belongs to the region U. Since the broken line L is descend-
ing from Ao € V to B,_; € U at each step width = 1 and each step height > 0,
the broken line L must penetrate the line y = —z from the region V' to the region
U. Let B,_;_1 be the highét penetration point, where 1 S v—-i-1<v -1
(see Figure 7). Then we have

B, i1=Aia=wV-i-1,-(v-i-1)).
Since v — (v —i— 1) = i + 1, we have

AY
0 Z

\ 4

B, = (1,v,)

A= (0, V1)

Al = (1, V-1 + ’Uy_z)

Figure 7

B, i 1=(v—-i-1Lv,_1+4+v, 2+ - +v41), and

Ay i 1=V —i—=Lvy_1 +vp_g + - + Vg1 + ;).

Th}ls By, i1 = Ay,_;_1 implies v; = 0. Hence the map g; satisfies Condition
(G,_;)*- And B,_;_; = (v—i—1,—(v—i— 1)) implies

Vy1t+vy_2+ - Fvip=—-(v—i-1).
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Hence the map g; satisfies Condition (G? -j=1)*. Since By, By, -,
B, _;_1-1 belong to the closure of V', we have

b gt S =) (G=1,2,-,0-i-2).

Thus the map g; satisfies Condition (G%)* ~ (G’_,_,)*. Therefore the map g;
satisfies Titus Condition. Looking at TWN circles of the two maps g and h, it is

easy to check that the two maps satisfy TWN Condition by [Proposition 3| This
completes the proof of Theorem 3. W

4. Proof of Theorem 1 and Theorem 2

First we shall prove Let f be a properly nested normal immersion
of the unit 1-spehre into the plane. Let D be the unit disk. Let n be the number
of double points of the map f. We use the induction argument on the number
of double points of f.

Suppose that the properly nested normal immersion f satisfies Titus Condi-
tion. If n = 0, then the map f easily extends to an immersion of the disk D
into the plane. Suppose n > 0. Let {Py, P,,---, P,,7v} be a principal set of the
map f. By[Theorem 3 for some integer 0 < i < v, the maps g; and h;, obtained
by splitting the map f with respect to P; and vy, satisfy Titus Condition and
TWN Conditon. Since the numbers of the double points of g; and h; are less
than that of double points of f, the maps g; and h; extend to immersions §; and
h; of D into the plane by the induction hypothesis. Thus the map f extend to
an immersion of D into the plane by using the two maps g; and 7;,-.

Conversely suppose that the map f extends to an orientation preserving
immersion f of D into the plane. Then the map f is regularly homotopic to the
inclusion map of D into the plane. Hence the tangent winding number of f is
+1. If n = 0, then the map f clearly satisfies Titus Condition. Suppose n > 0.
Since the tangent winding number of the map f is +1, the map f must have a
double point P with u(P) = —1. Let {Py, P,,---,P,, v} be a principal set of
the map f.

Now we use the notations in §1. Let L be the image of v;. Then f~X(L)
consists of simple arcs in D. One of the arcs connects the point §(t, — €) and
a point §(t] + €) for some integer 0 < i < v. This arc assures that the maps
gi; and h;, obtained by splitting the map f with respect to P; and vy, extend
to orientaion preserving immersions of D into the plane. Hence the two maps
satisfy TWN Conditon. Of course, the numbers of double points of g; and
h; are less than that of double points of f. Thus the maps g; and h; satisfy
Titus Condition by the induction hypothesis. Since the map h; satisfies Titus
Condition, f.([0,t,]) is a simple arc. Hence all the points Py, P,,---, P,_; are
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principal with respect to the map f.

Now we use the notations v and v; (i = 0,1,-+-,v—1) in §2. Since the maps g;
and h; satisfy Titus Condition, all the double points of f, except Py, Ps,---, P,,
satisfy Titus Condition. Thus we have that u £0,v;£0(0<%<v). To prove
the map f satisfies Titus Conditon, we have to show that Condition (F3)* (3=
1,2,---,v — 1) in §2 hold. That is ’

(F.,?),.l 'U,+’U|,_1+'Uy__2+"'+'0y_j§—'(j—l) (j:1,2,"',V—2),
(F-1)* u+v_14v,2+--+v; = —(v-2),
(F,,)* vo = 0.

Since the maps g; and h; satisfy Titus Condition , the same conditions
(Gi)* (j=1,2,---,v-i) and (H})* (j =1,2,---,4) in §2 hold. That is

(G%)* Vpo1t vzt tu < —j (G=1,2 -0, 0-i-2),
(Gi ‘i"l)* Vy_1+Vp_o+---+ Vi+1 = —(V -7 — 1),
(Gi -i)* Vi = 0,

(H;)* 'u+vi_1+vi_2+---+vi_j§—j (G=12---,i-2),
(Hi)* Ut Vi1 + v+ +v=—(i— 1),
(H,:)* Vo =0.

For each j = 1,2,-..,v — i — 1, Condition (G%)* and v < 0 implies (Fj)*.
From (G%_,_,)* and (G -;)* we have the following equation:

V—1t+vy 2+t +vp1to=—(v-i-1).

The equation and u < 0 implies (F,-;)*.

For each j =1,2,---,7 — 1, the above equation and (H})* implies (F,~;)*.
Thus all the points Py, P,,---,P,_, satisfy Titus Condition.

The point P, clearly satisfies Titus Condition, because the fact u < 0 implies
APy, f) = u—1 < 0. Therefore the map f satisfies Titus Condition. Thi
completes the proof of Theorem 1. '

Now we shall prove We shall prove only the case that the map
f is a properly nested normal immersion of the 1-sphere into the plane which
extends to an orientation preserving immersion of the unit disk D into the plane.
Again we use the induction argument on the number of double points of the map
f. Let n be the number of double points of f. If n = 0, then is trivial.
Suppose n > 0. Suppose that the map f extends to immersions f and f of D
into the plane. Then the map f satisfies Titus Condition by [Theorem 1. Let
{P1,P,,---, P,,vf} be a principal set of the map f. By the same way as the one
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in the proof of Theorem 1, the immersion f determines an integer i (1 <i<v)
such that the maps g; and h; , obtained by splitting the map f with respect
to P; and vy, extend to immersions g; and 71,- of D into the plane respectively.
Similarly the immersion f determines an integer j such that the maps g; and h; ,
obtained by splitting the map f with respect to P; and -y, extend to immersions
gj and iz,- of D into the plane respectively. Then the maps g;, i, g;, and h; satisfy
Titus Conditon by Theorem 1. Hence by [Theorem 3, we have i = j. Thus the
immersion g; extends to immersions g; and §; of D into the plane. Since the map
gi satisfies Titus Condition and the number of the double points of each map
is less than n, the maps g; and §; are topologically equivalent by the induction
hypothesis. Similarly maps h; and ﬁj are topologically equivalent. Therefore
maps f and f are topologically equivalent. This completes the proof of Theorem
2.
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