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Abstract. For a Tychonoff space $X$ , the space $C_{p}(X)$ of all real-valued con-
tinuous functions with the topology of pointwise convergence is considered as
a topological lattice, We study about the space $O_{P}C_{p}(X)$ of all continuous
lattice-homomorphisms from $C_{p}(X)$ to $R$ with the topology of pointwise con-
vergence. For example, the subspace of $O_{P}C_{p}(X)$ consisting of open continuous
lattice-homomorphisms is homeomorphic to the product space $X\times C_{p}^{\epsilon i}(R)$ , where
$C_{p}^{\epsilon i}(R)$ is the space of all strictly increasing continuous functions from $R$ to itself
with the topology of pointwise convergence.

1. Introduction

All topological spaces considered here are Tychonoff. For a space $X$ , the set
of all real-valued continuous functions of $X$ is denoted by $C(X)$ . We can consider
various mathematical structures on this set $C(X)$ . In this paper, we study about
the topological lattice structure obtained by combining an order structure and a
topological structure on $C(X)$ . The order on $C(X)$ is defined as follows: $f\leq g$

if and only if $f(x)\leq g(x)$ at every point $x\in X$ . Then it is well-known that
$C(X)$ becomes a lattice under this ordering. The topololy on $C(X)$ considered
here is the topology of pointwise convergence. That is, for $f\in C(X)$ , basic open
neighborhoods of $f$ is given by

$\langle f, \{x_{1}, \ldots, x_{n}\}, \epsilon\rangle=\{g\in C(X):|g(x_{i})-f(x_{i})|<\epsilon, i=1, \ldots, n\}$ ,

where $\{x_{1}, \ldots , x_{n}\}$ is an $ax$bitrary finite subset of $X$ and an arbitrary $\epsilon>0$ .
Concerning the topology of pointwise convergence on $C(X)$ , we can consult [1].
The lattice $C(X)$ with this topology is denoted by $C_{p}(X)$ . Usually $C_{p}(X)$ is
considered as alinear topological space, but $C_{p}(X)$ is a topological lattice in this
paper. Since the operations $\vee and\wedge are$ continuous as maps from $C_{p}(X)\times C_{p}(X)$

to $C_{p}(X)$ , we can call $C_{p}(X)$ to be a topological lattice. In the topological lattice
$C_{p}(X)$ there are important subsets called open prime ideals. A subset $I$ of the
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algebraic lattice $C(X)$ is said to be a prime ideal if the following conditions are
satisfied:

1) If $f\in I$ and $g\leq f$ , then $g\in I$ .
2) If $f,g\in I$ , then $f\vee g\in I$ .
3) If $f\wedge g\in I$ , then $f\in I$ or $g\in I$ .
4) $I\neq\emptyset,$ $I\neq C(X)$ .

In case aprime ideal $I$ of $C_{p}(X)$ is an open set, we call Ito be an open prime
ideal.

A prime ideal $I$ of $C(X)$ is said to be associated with a point $x$ in $X$ if $f\in I$ ,
$g\in C(X)$ and $g(x)<f(x)$ imply $g\in I$ . The following lemma is useful in our
argument.

LEMMA 1. If I is an open prime ideal of $C_{p}(X)$ , then there exists a unique
point $x$ in $X$ such that I is associated with $x$ .

This result is found in [4] or derived from the similar argument used in the
proof of the Kapansky Theorem in [2], [3].

Let $L$ and $M$ be lattices. A map $F$ : $L\rightarrow M$ is called to be a lattice-
homomorphism if $F(a\vee b)=F(a)\vee F(b)$ and $F(a\wedge b)=F(a)\wedge F(b)$ are satisfied
for any $a,$ $b\in L$ . Since $C_{p}(X)$ and the real line $R$ are topological lattices, we
can consider the set of all continuous lattice-homomorphisms from $C_{p}(X)$ into
$R$. We denote this set by $OC_{p}(X)$ . The symbol $O$ is obtained by joining $\vee$ with
$\wedge$ . Further, if the topology of pointwise convergence (i.e. the relative topology of
$C_{p}(C_{p}(X)))$ is given on $OC_{p}(X)$ , then this set becomes a topological space. This
topological space is denoted by $O_{p}C_{p}(X)$ . The subspace of $O_{p}C_{p}(X)$ consisting
of all open continuous latticehomomorphisms will be denoted by $O_{p}^{o}C_{p}(X)$ .

A function $f$ : $R\rightarrow R$ is called to be increasing if $r\leq s$ implies $f(r)\leq f(s)$

for any $r,$ $s\in R$ . In case $f(r)<f(s)$ is satisfied whenever $r<s$ , the function $f$

is called to be strictly increasing. The set of all increasing continuous functions
and the set of all strictly increaring continuous functions are denoted by $C^{i}(R)$

and $C^{si}(R)$ respectively When the relative topologies of $C_{p}(R)$ are given for
these sets, we will denote these spaces by $C_{p}^{i}(R)$ and $C_{p}^{si}(R)$ respectively.

2. Open Continuous Lattice-homomorphisms

Let $X$ be a topological space. For any point $x$ in $X$ , let $\Phi_{x}$ : $C_{p}(X)\rightarrow R$ be
the map defined by $\Phi_{x}(f)=f(x)$ for $f\in C_{p}(X)$ .

PROPOSITION 1. The map $\Phi_{x}$ satisfies the following.
(1) $\Phi_{x}$ is continuous.
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(2) $\Phi_{x}$ is open.
(3) $\Phi_{x}(f\vee g)=\Phi_{x}(f)\vee\Phi_{x}(g)$ and $\Phi_{x}(f\wedge g)=\Phi_{x}(f)\wedge\Phi_{x}(g)$ for any $f,$ $ g\in$

$C_{p}(X)$ .

Generally we can show the following.

PROPOSITION 2. A map $F$ : $C_{p}(X)\rightarrow R$ is an open continuous lattice-
homomorphism if and only if there are a point $x$ in $X$ and an order-isomorphic
($=$ lattice-isomorphic) homeomorphism $\phi$ from $R$ into $R$ which satisfy $F=$
$\phi\circ\Phi_{x}$ . Rurther the point $x$ is uniquely determined by $F$ .

Proof. Let $F:C_{p}(X)\rightarrow R$ be an open continuous lattice-homomorphism. Since
$C_{p}(X)$ is connected, the image $F(C_{p}(X))$ is connected and hence $F(C_{p}(X))$ must
be an open interval $(a, b)$ , where $ a=-\infty$ or $ b=\infty$ are possible. Let $c$ be an
arbitrary number in $(a, b)$ . Let

$I_{c}=\{f\in C_{p}(X) : F(f)<c\}$ .

Then the following are obviously satisfied:
1) if $f\in I_{c}$ and $g\leq f$ , then $g\in I_{c}$ ,
2) if $f,g\in I_{c}$ , then $f\vee g\in I_{c}$ ,
3) if $f\wedge g\in I_{c}$ , then $f\in I_{c}$ or $g\in I_{c}$ ,
4) $ I_{c}\neq\emptyset$ and $I_{c}\neq C_{p}(X)$ .

Since $I_{c}$ is open in $C_{p}(X),$ $I_{c}$ is an open prime ideal of $C_{p}(X)$ . Then there
must be a unique point $x\in X$ such that $I_{c}$ is associated with $x$ by the above
lemma. Further this point $x$ is not depend on the choice of the value $c$ (see [4]
or [2], [3]). So we can express this point $x$ like $x_{F}$ .

Now, let us define the map $\phi$ : $R\rightarrow R$ which satisfies the condition $F=$
$\phi\circ\Phi_{x_{F}}$ . For an arbitrary number $r$ in $R$, let $c_{r}$ be the constant real-valued
function of $X$ with the value $r$ . Then the map $\phi$ is defined by

$\phi(r)=F(c_{f})$ .

Since $F$ is a latticehomomorphism, $\phi$ is obviously increasing. The continuity of
$\phi$ is also obvious because $\phi$ can be expressed as the composition of a continuous
map from $R$ into $C_{p}(X)$ and the continuous map $F$ . Hence it suffices to show
that $\phi$ is strictly increasing.

(1) if $f,$ $g\in C(X)$ and $f(x_{F})<g(x_{F})$ , then $F(f)\leq F(g)$ .
In fact, assume that $F(f)>F(g)$ . Let $c=F(f)$ . If we take the open

prime ideal $I_{c}=\{h\in C_{p}(X) : F(h)<c\}$ , then $f\not\in I_{c}$ . But, since $g\in I_{c}$ and
$f(x_{F})<g(x_{F}),$ $f$ must be a member of $I_{c}$ . This is a contradiction.

(2) If $r_{1}<r_{2}$ , then $\phi(r_{1})<\phi(r_{2})$ .
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Assume that $\phi(r_{1})=\phi(r_{2})$ . Let

$U=\{f\in C_{p}(X):r_{1}<f(x_{F})<r_{2}\}$ .

Then $U$ is an open subset of $C_{p}(X)$ . Since

$c_{r_{1}}(x_{F})<g(x_{F})<c_{r_{2}}(x_{F})$

for any $g\in U$ and $F(c_{r_{1}})=\phi(r_{1})=\phi(r_{2})=F(c_{r_{2}}),$ $F(U)$ must be a one-point
set in $R$ by (1). But this is a contradiction since $F$ is an open map.

It has been already proved that $\phi$ is a strictly increasing function. Further
the above (1) shows that $F(f)=\phi(f(x_{F}))$ for any $f\in C(X)$ . That is,

(3) $F=\phi 0\Phi_{x_{F}}$ .
The reverse implication is obvious since the composition of any two open

continuous lattice-homomorphisms is an open continuous lattice-homomorphism.

THEOREM 1. The space $O_{p}^{o}C_{p}(X)$ is homeomorphic to the product space $ X\times$

$C_{p}^{si}(R)$ .

Proof. By the above proposition, we know that there is a one-to-one correspon-
dence between $O_{p}^{o}C_{p}(X)$ and $X\times C_{p}^{si}(R)$ . That is,

$F\leftrightarrow(x, \phi)$

where $F=\phi 0\Phi_{x}$ . We will show that this correspondence is a homeomorphism.
It suffices to show the following two claims:

(1) For any subbasic open neighborhood

$\langle F;\{f\}, \epsilon\rangle=\{G\in O_{p}^{o}C_{p}(X) : |G(f)-F(f)|<\epsilon\}$

of $F$ in $O_{p}^{o}C_{p}(X)$ , there are an open neighborhood $U$ of $x$ in $X$ and an open
neighborhood $V$ of $\phi$ in $C_{p}^{si}(R)$ such that $U\times V$ corresponds to a subset of
$\langle F;\{f\},$ $\epsilon$).

(2) For any open neighborhood $U$ of $x$ in $X$ and any subbasic open neigh-
borhood $\langle\phi;\{r\}, \epsilon\rangle=\{\psi\in C_{p}^{si}(R) : |\psi(r)-\phi(r)|<\epsilon\}$ of $\phi$ in $C_{p}^{si}(R)$ , there
exists an open neighborhood $W$ of $F$ in $O_{p}^{o}C_{p}(X)$ such that $W$ corresponds to a
subset of $ U\times\langle\phi;\{r\}, \epsilon\rangle$ .

First, we show that (1) is true. Let $r^{-},$
$r^{+}$ be real numbers which satisfy the

following:

$r^{\rightarrow}<f(x)<r^{+}$

$\phi(f(x))-\epsilon/2<\phi(r^{-}),$ $\phi(r^{+})<\phi(f(x))+\epsilon/2$ .

Let $U=\{y\in X:r^{-}<f(y)<r^{+}\}$ and $ V=\langle\phi;\{r^{-}, f(x), r^{+}\}, \epsilon/2\rangle$ .
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In order to prove that $U\times V$ corresponds to a subset of $\langle F;\{f\}, \epsilon\rangle$ , we take
an arbitrary $(y, \psi)\in U\times V$ . Since $y\in U$ ,

$r^{-}<f(y)<r^{+}$ .

Then

$\psi(r^{-})<\psi(f(y))<\psi(r^{+})$ .
Since $\phi(r^{-})-\epsilon/2<\psi(r^{-})$ and $\psi(r^{+})<\phi(r^{+})+\epsilon/2$ , we have

$\phi(r^{-})-\epsilon/2<\psi(f(y))<\phi(r^{+})+\epsilon/2$ .

Therefore, from $\phi(f(x))-\epsilon/2<\phi(r^{-})$ and $\phi(r^{+})<\phi(f(x))+\epsilon/2$ it follows that

$\phi(f(x))-\epsilon<\psi(f(y))<\phi(f(x))+\epsilon$ .

Hence the latticehomomorphism $G$ corresponding to $(y, \psi)$ satisfies that $|G(f)-$

$ F(f)|=|\psi(f(y))-\phi(f(x))|<\epsilon$ . This means that $G\in\langle F;\{f\},$ $\epsilon$ ).
Next, we show the claim (2). In this case we can assume that the image of $\phi$

includes the interval $(\phi(r)-\epsilon, \phi(r)+\epsilon)$ . Let us take $r^{-}\in R$ which satisfies

$\phi(r^{-})=\phi(r)-2\epsilon/3$ .

Then there exists a continuous function $f$ : $X\rightarrow[r^{-}, r]$ such that

(a) $f(x)=r$ ,
(b) $f(y)=r^{-}$ for any $y\in X-U$ .

Now let $c_{r^{-}},$ $c_{r}\in C_{p}(X)$ be the constant functions with the values $r^{-},$ $r$

respectively. Then $f<c_{r}$ and

$F(c_{r^{-}})=\phi(c_{r^{-}}(x))=\phi(r^{-})$ ,
$F(c_{r})=\phi(c_{r}(x))=\phi(r)$ .

Let us take ( $F;\{c_{r^{-}}, f, c_{r}\},$ $\epsilon/3\rangle$ as an open neighborhood $W$ of $F$ in $O_{p}^{o}C_{p}(X)$ .
Then for any $G\in W$ , we can show that the corresponding element $(y, \psi)\in$

$X\times C_{p}^{si}(R)$ satisfies

$(y, \psi)\in U\times\langle\phi;\{r\}, \epsilon\rangle$ .
Note that $(y, \psi)$ is determined by $G(h)=\psi(h(y))$ for any $h\in C_{p}(X)$ . Since
$G(c_{r^{-}})\in(F(c_{r}-)-\epsilon/3, F(c_{r}-)+\epsilon/3)$ , it is satisfied that

$G(c_{r^{-}})\in(\phi(r^{-})-\epsilon/3, \phi(r^{-})+\epsilon/3)$ .



110 T. TERADA

Similarly we can show the following;

$G(f)\in(\phi(r)-\epsilon/3, \phi(r)+\epsilon/3)$ ,
$G(c_{r})\in(\phi(r)-\epsilon/3, \phi(r)+\epsilon/3)$ .

Therefore

$G(c_{r^{-}})<G(f)\leq G(c_{f})$

since $\phi(r^{-})=\phi(r)-2\epsilon/3$ . Hence

$\psi(c_{r^{-}}(y))<\psi(f(y))\leq\psi(c_{r}(y))$ .

This means that $r^{-}<f(y)$ since $\psi$ is strictly increasing. It follows that $y\in U$ .
It remains to show that $\psi\in\langle\phi;\{r\}, \epsilon\rangle$ . Since $G(c_{r})<F(c_{r})+\epsilon/3$ , we have

$\psi(r)<\phi(r)+\epsilon/3$ . On the other hand, ffom $\phi(r^{-})-\epsilon/3<\psi(r^{-})$ , it follows
that $\phi(r)-\epsilon<\psi(r^{-})$ . Hence we conclude that $\phi(r)-\epsilon<\psi(r)<\phi(r)+\epsilon$ . This
shows that $\psi\in\langle\phi;\{r\}, \epsilon\rangle$ .

3. Continuous Lattice-homomorphisms

In this section, we will study about the space $O_{p}C_{p}(X)$ of all continuous
latticehomomorphisms from $C_{p}(X)$ into $R$ , with the topology of pointwise con-
vergence. In this case, the part of all constant lattice-homomorphisms has a
peculiar quality. We denote this set of all constant latticehomomorphisms by
$Con(C_{p}(X))$ .

First, we consider the subspace $O_{p}C_{p}(X)-Con(C_{p}(X))$ . By modifying the
proof of Proposition 2, it is not difficult to show the following.

PROPOSITION 3. A map $F$ : $C_{p}(X)\rightarrow R$ is a non-constant, continuous
lattice-homomorphism if and only if there are a point $x\in X$ and a non-constant,
increasing ($=$ lattice-homomorphic) conbinuous function $\phi$ : $R\rightarrow R$ which sat-
isfy $F=\phi\circ\Phi_{x}$ . thrther the point $x$ is uniquely determined by $F$ .

Then we can prove the following theorem by the similar argument as the
proof of Theorem 1. Here the set of all constant functions from $R$ into itself is
denoted by $Con(R)$ .

THEOREM 2. The space $O_{p}C_{p}(X)-Con(C_{p}(X))$ is homeomorphic to the prod-
uct space $X\times(C_{p}^{i}(R)-Con(R))$ .

Next we consider the entire space $O_{p}C_{p}(X)$ . The set $OC_{p}(X)$ is the disjoint
sum of $OC_{p}(X)-Con(C_{p}(X))$ and $Con(C_{p}(X))$ . And it is obvious that the
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subspace $Con(C_{p}(X))$ of $O_{p}C_{p}(X)$ is homeomorphic to the real line $R$ . Then it
follows that the underlying set of $O_{p}C_{p}(X)$ can be considered as the disjoint sum
of the product $X\times(C_{p}^{i}(R)-Con(R))$ and the real line $R$ by the above theorem.
Here the constant map $c_{a}\in O_{p}C_{p}(X)$ with the value $a$ corresponds to the number
$a\in R$. Let us consider the following topology on $X\times(C_{p}^{i}(R)-Con(R))\cup R$ :
The topology on $X\times(C_{p}^{i}(R-Con(R))$ is left as it is. For a point $a$ in $R$, we
take the family of the following sets as a neighborhood base at $a$ :

$\cup\{U_{n}\times\langle a;\{-n, n\}, \epsilon\rangle : n=1,2, \ldots\}\cup(a-\epsilon, a+\epsilon)$ ,

where $\epsilon$ is an arbitrary positive number,

$\langle a;\{-n, n\},$ $\epsilon$ ) $=\{\sigma\in C_{p}^{i}(R)-Con(R) : |\sigma(-n)-a|<\epsilon, |\sigma(n)-a|<\epsilon\}$

and $\{U_{n} : n=1,2, \ldots\}$ is a cover of $X$ consisting of cozero-sets of $X$ such
that there is a sequence $\{Z_{n} : n=1,2, \ldots\}$ of zero-sets which satisfies that
$U_{n}\subset Z_{n}\subset U_{n+1}$ for each $n=1,2,$ $\ldots$ . Let us denote this topological space by
$(X\times C_{p}^{:}(R))^{\sim}$ .

THEOREM 3. For any space $X$ , the space $O_{p}C_{p}(X)$ is homeohorphic to $(X\times$

$C_{p}^{i}(R))^{\sim}$ .

Proof Let $F$ be a constant latticehomomorphism from $C_{p}(X)$ into $R$ with the
value $a$ . It suffices to show the following:

(1) For any neighborhood $W$ of $F$ in $O_{p}C_{p}(X)$ , there are $\epsilon>0$ and a sequence
$\{U_{n} : n=1,2, \ldots\}$ of cozer($\succ sets$ of $X$ with the required property and such that
the neighborhood $V=\cup\{U_{n}\times\langle a;\{-n, n\}, \epsilon\rangle : n=1,2, \ldots\}\cup(a-\epsilon, a+\epsilon)$ of
$a$ in ($X\times C_{p}^{i}(R)^{\sim}$ corraeponds to a subset of $W$ .

(2) For any neighborhood $V=\cup\{U_{n}\times\langle a;\{-n, n\}, \epsilon) : n=1,2, \ldots\}\cup(a-$

$\epsilon,$
$ a+\epsilon$ ) of $a$ in $(X\times C_{p}^{i}(R))^{\sim}$ , there is a neighborhood $W$ of $F$ in $O_{p}C_{p}(X)$

which corresponds to a subset of $V$ .
First we consider the claim (1). Let

$W=\langle F;\{f_{1}, f_{2}, \ldots, f_{k}\},$ $\epsilon$)

be an arbitrary basic open neighborhood of $F$ in $O_{p}C_{p}(X)$ . If we take $f^{-}=$

$f_{1}\wedge f_{2}\wedge\cdots\wedge f_{k}$ and $f^{+}=f_{1}\vee f_{2}\vee\cdots\vee f_{k}$ and consider the basic neighborhood

$\langle F;\{f^{-}, f^{+}\}, \epsilon\rangle$

of $F$ , then this neighborhood of $F$ is a subset of $W$ . Hence as a basic neighbor-
hood $W$ of $F$ it suffices to consider the case when $k=2$ and $f_{1}\leq f_{2}$ . Let

$U_{n}=\{x\in X:-n<f_{1}(x), f_{2}(x)<n\}$
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and $Z_{n}=\{x\in X : -n\leq f_{1}(x), f_{2}(x)\leq n\}$ . Then it is not difficult to show
that $V=\cup\{U_{n}\times\langle a;\{-n, n\}, \epsilon\rangle : n=1,2, \ldots\}\cup(a-\epsilon, a+\epsilon)$ corresponds to a
subset of $W$ .

Next we show the claim (2). Let us take any neighborhood $ V=\cup\{U_{n}\times$

$\langle a;\{-n, n\}, \epsilon\rangle$ : $n=1,2,$ $\ldots$ } $\cup(a-\epsilon, a+\epsilon)$ of $a$ in $(X \times C_{p}^{i}(R))^{\sim}$ . Since there
are zero-sets $\{Z_{n} : n=1,2, \ldots\}$ such that $U_{n}\subset Z_{n}\subset U_{n+1}$ for any $n$ , there is
a sequence $\{f_{n} : n=1,2, \ldots\}$ in $C_{p}(X)$ such that

$f_{n}^{-1}(n)=Z_{n},$ $f_{n}^{-1}(n+1)=X-U_{n+1}$

and $f_{n}(X)\subset[n, n+1]$ . For any $x\in X$ , let $k$ be the first number $k>1$ which
satisfies $x\in U_{k}$ and let $f^{+}(x)=f_{k-1}(x)+1$ . Then $f^{+}\in C_{p}(X)$ . Further let
$f^{-}$ be the function defined by $f^{-}(x)=-f^{+}(x)$ for any $x\in X$ . Let us take
$\langle F;\{f^{-}, f^{+}\}, \epsilon\rangle$ as a neighborhood $W$ of $F$ . If $ G\in\langle F;\{f^{-}, f^{+}\}, \epsilon\rangle$ is non-
constant, then the correspondent element $(y, \sigma)$ in $X\times(C_{p}^{i}(R)-Con(R))$ is an
element of $V$ . In fact, there exists $n$ such that $n\leq f^{+}(y)<n+1$ . Then $y\in U_{n}$

and $y\not\in U_{n-1}$ since $f^{+}(y)=f_{n-1}(y)+1$ . From $f^{-}(y)\leq-n$ and $n\leq f^{+}(y)$ ,
it follows that $G(f^{-})\leq G(c_{-n})$ and $G(c_{n})\leq G(f^{+})$ by the same argument
of (1) in Porposition 2. And hence $a-\epsilon<\sigma(f^{-}(y))\leq\sigma(-n)$ and $\sigma(n)\leq$

$\sigma(f^{+}(y))<a+\epsilon$ are satisfied, since $G(f^{-})=\sigma(f^{-}(y)),$ $G(f^{+})=\sigma(f^{+})(y))$ and
$a=F(f^{-})=F(f^{+})$ . This means that $(y, \sigma)\in U_{n}\times\langle a;\{-n, n\}, \epsilon\rangle$ .

In case $X$ is compact, we can show the following. Here $c_{a}$ is the constant
function with the value $a$ .

THEOREM 4. Let $X$ be a compact space. Then $O_{p}C_{p}(X)$ is homeomorphic to
the quotient space $(X\times C_{p}^{i}(R))/\{X\times\{c_{a}\} : a\in R\}$ obtained by collapsing the
closed subset $X\times\{c_{a}\}$ to a point for each $a\in R$ .

Proof. Note that the underlying set of $(X\times C_{p}^{i}(R))/\{X\times\{c_{a}\} : a\in R\}$ corre-
sponds canonically to the underlying set of $(X \times C_{p}^{i}(R))^{\sim}$ . Since the topology
of $(X\times C_{p}^{i}(R))^{\sim}$ is generally weaker than the quotient topology, it suffices to
show the following:

$(*)$ If $V$ is an open subset of $X\times C_{p}^{i}(R)$ including $X\times\{c_{a}\}$ , then there are
$\epsilon>0$ and $r^{-},$ $r^{+}\in R$ such that

$Xx\{c_{a}\}\subset X\times(c_{a};\{r^{-}, r^{+}\},$ $\epsilon\rangle$ $\subset V$

We can assume that $V=\cup\{U_{x}\times\langle c_{a};\{r_{x}^{-}, r_{x}^{+}\}, \epsilon_{x}\rangle : x\in X\}$ , where $r_{x}^{-}<r_{x}^{+}$ and
$U_{x}$ is an open neighborhood of $x$ in $X$ . Then there are finite points $x_{1},$

$\ldots,$
$ x_{n}\in$

$X$ such that $U_{x_{1}}\cup\cdots\cup U_{x_{n}}=X$ since $X$ is compact. Let $r^{-}=\min\{r_{x_{1}}^{-}, \ldots , r_{\overline{x}_{n}}\}$ ,
$r^{+}=\max\{r_{x_{1}}^{+}, \ldots , r_{x_{n}}^{+}\}$ and $\epsilon=\min\{\epsilon_{x_{n}}, \ldots , \epsilon_{x_{n}}\}$ . Then it is not difficult to
see that $X\times\langle c_{a};\{r^{-}, r^{+}\}, \epsilon\rangle\subset V$ .
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The author does not know the answer of the following problem.

PROBLEM. In case $O_{p}C_{p}(X)$ and $O_{p}C_{p}(Y)$ are homeomorphic. Are $X$ and $Y$

homeomorphic?
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