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Abstract. For a Tychonoff space X, the space Cp(X) of all real-valued con-
tinuous functions with the topology of pointwise convergence is considered as
a topological lattice. We study about the space ©pCp(X) of all continuous
lattice-homomorphisms from Cp(X) to R with the topology of pointwise con-
vergence. For example, the subspace of OpCp(X) consisting of open continuous
lattice-homomorphisms is homeomorphic to the product space X x C;‘(R), where
C;'(R) is the space of all strictly increasing continuous functions from R to itself
with the topology of pointwise convergence.

1. Introduction

All topological spaces considered here are Tychonoff. For a space X, the set
of all real-valued continuous functions of X is denoted by C(X). We can consider
various mathematical structures on this set C(X). In this paper, we study about
the topological lattice structure obtained by combining an order structure and a
topological structure on C(X). The order on C(X) is defined as follows: f < g
if and only if f(z) < g(z) at every point z € X. Then it is well-known that
C(X) becomes a lattice under this ordering. The topololy on C(X) considered
here is the topology of pointwise convergence. That is, for f € C(X), basic open
neighborhoods of f is given by

(f’{ml""’x’n}18) :{QEC(X) : lg(zz)—f(zl)l <Eg, 7:‘—"—1,...,71},

where {z,,...,Z,} is an arbitrary finite subset of X and an arbitrary € > 0.
Concerning the topology of pointwise convergence on C(X), we can consult [1].
The lattice C(X) with this topology is denoted by Cp(X). Usually Cp(X) is
considered as a linear topological space, but Cp(X) is a topological lattice in this
paper. Since the operations V and A are continuous as maps from Cp(X) x Cp(X)
to Cp(X), we can call Cp(X) to be a topological lattice. In the topological lattice
Cp(X) there are important subsets called open prime ideals. A subset I of the
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algebraic lattice C'(X) is said to be a prime ideal if the following conditions are
satisfied:

1) f felandg< f,thengel.
2) If f,geI,then fVgel.
3) If fAgel,then felorgel.
4) I #0, I +#C(X).
In case a prime ideal I of C,(X) is an open set, we call I to be an open prime
ideal.
A prime ideal I of C(X) is said to be associated with a point z in X if f € I,
g € C(X) and g(z) < f(z) imply g € I. The following lemma is useful in our
argument.

LEMMA 1. If I is an open prime ideal of Cp(X), then there exists a unique
point x in X such that I is associated with x.

This result is found in [4] or derived from the similar argument used in the
proof of the Kapansky Theorem in [2], [3].

Let L and M be latticess. A map F : L — M is called to be a lattice-
homomorphism if F/(aVb) = F(a)V F(b) and F(aAb) = F(a) A F(b) are satisfied
for any a,b € L. Since Cp(X) and the real line R are topological lattices, we
can consider the set of all continuous lattice-homomorphisms from C,(X) into
R. We denote this set by ¢C,(X). The symbol < is obtained by joining V with
A. Further, if the topology of pointwise convergence (i.e. the relative topology of
Cp(Cp(X))) is given on GCp(X), then this set becomes a topological space. This
topological space is denoted by ¢,Cp(X). The subspace of ©,Cp(X) consisting
of all open continuous lattice-homomorphisms will be denoted by ¢5Cp(X).

A function f: R — R is called to be increasing if r < s implies f(r) < f(s)
for any r,s € R. In case f(r) < f(s) is satisfied whenever r < s, the function f
is called to be strictly increasing. The set of all increasing continuous functions
and the set of all strictly increaring continuous functions are denoted by C*(R)
and C*(R) respectively. When the relative topologies of C,(R) are given for
these sets, we will denote these spaces by C;(R) and C5*(R) respectively.

2. Open Continuous Lattice-homomorphisms

Let X be a topological space. For any point z in X, let &, : C;(X) — R be |
the map defined by ®,(f) = f(z) for f € Cp(X).

PROPOSITION 1. The map ®, satisfies the following.

(1) @, is continuous.
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(2) @, is open.
(3) ®z(fVg)=Pz(f) V Pu(g) and Pz(f Ag) = ®u(f) A Palg) for any f,g €
Cp(X).

Generally we can show the following,

PROPOSITION 2. A map F : Cp(X) — R is an open continuous lattice-
homomorphism if and only if there are a point  in X and an order-isomorphic
(= lattice-isomorphic) homeomorphism ¢ from R into R which satisfy F =
@ o ®,. Further the point x is uniquely determined by F.

Proof. Let F : Cp(X) — R be an open continuous lattice-homomorphism. Since
Cp(X) is connected, the image F(Cp,(X)) is connected and hence F(Cp(X)) must
be an open interval (a,b), where a = —co or b = co are possible. Let ¢ be an
arbitrary number in (a, b). Let

I.={f € Cp(X): F(f) <c}.

Then the following are obviously satisfied:

1) if fel and g < f, then g € I,
2) if f,gel,, then fVgelI,

3) if fAgel., then fel, or g€l
4) I. # 0 and I, # Cp(X).

Since I is open in Cp(X), I, is an open prime ideal of Cp(X). Then there
must be a unique point £ € X such that I, is associated with z by the above
lemma. Further this point z is not depend on the choice of the value c (see
or [2], [3]). So we can express this point z like zp.

Now, let us define the map ¢ : R — R which satisfies the condition F =
® o ®,.. For an arbitrary number r in R, let ¢, be the constant real-valued
function of X with the value . Then the map ¢ is defined by

#(r) = F(cr).

Since F' is a lattice-homomorphism, ¢ is obviously increasing. The continuity of
¢ is also obvious because ¢ can be expressed as the composition of a continuous
map from R into Cp(X) and the continuous map F. Hence it suffices to show
that ¢ is strictly increasing.

(1) if f,9 € C(X) and f(zp) < g(zF), then F(f) < F(g).

In fact, assume that F(f) > F(g). Let ¢ = F(f). If we take the open
prime ideal I = {h € Cp(X) : F(h) < c}, then f ¢ I.. But, since g € I, and
f(zr) < g(zF), f must be a member of I,. This is a contradiction.

(2) If 11 < 72, then ¢(r1) < P(r2).
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Assume that ¢(r1) = ¢(rz). Let
U={feCp(X):m < f(xr) <T2}.
Then U is an open subset of Cp(X). Since
cry (zF) < g9(zF) < cry(zF)

for any g € U and F(c,,) = ¢(r1) = ¢(r2) = F(cr;), F(U) must be a one-point
set in R by (1). But this is a contradiction since F’ is an open map.

It has been already proved that ¢ is a strictly increasing function. Further
the above (1) shows that F(f) = ¢(f(zF)) for any f € C(X). That is,

(3) F=¢od,,. ‘

The reverse implication is obvious since the composition of any two open
continuous lattice-homomorphisms is an open continuous lattice-homomorphism.

THEOREM 1. The space OpCy(X) is homeomorphic to the product space X X |
C3(R).
P

Proof. By the above proposition, we know that there is a one-to-one correspon-
dence between O9Cp(X) and X x C3i(R). That is,

F s (z,9)

where FF = ¢ o ®,. We will show that this correspondence is a homeomorphism.
It suffices to show the following two claims:
(1) For any subbasic open neighborhood

(F;{f},€) = {G € O5Cp(X) : |G(f) — F(f)| < &}

of F in ©9Cy(X), there are an open neighborhood U of = in X and an open
neighborhood V' of ¢ in C3*(R) such that U x V corresponds to a subset of
(Fi{f}e). |

(2) For any open neighborhood U of z in X and any subbasic open neigh-
borhood (@; {r},e) = {¥ € C3(R) : |[¥(r) — ¢(r)| < €} of ¢ in C3*(R), there
exists an open neighborhood W of F' in ©¢7Cp(X) such that W corresponds to a
subset of U x (¢; {r},€).

First, we show that (1) is true. Let r—, r* be real numbers which satisfy the
following:

< f(z)<rt
o(f(x)) — /2 < ¢(r7), 9(rF) < ¢(f(2)) +¢/2.

Let U={yeX:r~ < f(y)<rt}and V = (¢;{r~, f(z),77},e/2).
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In order to prove that U x V corresponds to a subset of (F; {f},¢), we take
an arbitrary (y,%) € U x V. Since y € U,

rT < fly) <rt.
Then

Y(r7) <Y(f ) <¥(r™).
Since ¢(r~) —e/2 < Y(r~) and Y(rt) < ¢(rt) + /2, we have

$(r™) —e/2 <Y(f()) < o(r™) + /2.
Therefore, from ¢(f(z)) —€/2 < ¢(r~) and ¢(rt) < ¢(f(z))+¢€/2 it follows that

¢(f(2)) —e <P(f (W) < o(f(2)) +e.

Hence the lattice-homomorphism G corresponding to (y, v) satisfies that |G(f) —
F(f)l = ¥(f(y)) — ¢(f(x))| < &. This means that G € (F;{f},e).

Next, we show the claim (2). In this case we can assume that the image of ¢
includes the interval (¢(r) — €, ¢(r) + €). Let us take r~— € R which satisfies

¢(r7) = ¢(r) — 2¢/3.

Then there exists a continuous function f: X — [r—, 7] such that

(a) flz)=r,
(b) f(y)=r foranyye X —U.

Now let ¢,—,c € Cp(X) be the constant functions with the values r—,r
respectively. Then f < ¢, and

F(e-) = ¢(er-(2)) = 8(r7),
F(cr) = ¢(cr(z)) = o(r).
Let us take (F; {c,-, f, ¢ },€/3) as an open neighborhood W of F' in O5C,(X).

Then for any G € W, we can show that the corresponding element (y,v¥) €
X x C5'(R) satisfies

(y,¥) €U x (¢;{r}, €)-

. Note that (y,v) is determined by G(h) = v¥(h(y)) for any h € Cp(X). Since
G(cp-) € (F(c-) —€/3, F(c,-) + €/3), it is satisfied that

Gler-) € (¢(r7) —€/3,¢(r™) +¢/3).
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Similarly we can show the following;

G(f) € (¢(T) - 6/33 ¢(r) + 6/3)’
Gler) € (o(r) — €/3,8(r) +¢/3).

Therefore

Gler-) < G(f) < Gler)
since ¢(r~) = ¢(r) — 2e/3. Hence

Yler- () < ¥(f(¥) < ¥(er(y).

This means that r— < f(y) since v is strictly increasing. It follows that y € U.

It remains to show that ¢ € (¢; {r},€). Since G(c¢,) < F(c,) + €/3, we have
Y(r) < ¢(r) + &/3. On the other hand, from ¢(r~) —e/3 < ¥(r~), it follows
that ¢(r) —e < 9(r~). Hence we conclude that ¢(r) —e < ¥(r) < ¢(r) +¢&. This
shows that ¢ € (¢; {r}, €).

3. Continuous Lattice-homomorphisms

In this section, we will study about the space ¢,Cp(X) of all continuous
lattice-homomorphisms from C,(X) into R, with the topology of pointwise con-
vergence. In this case, the part of all constant lattice-homomorphisms has a
peculiar quality. We denote this set of all constant lattice-homomorphisms by
Con(Cp(X)).

First, we consider the subspace ¢,C,(X) — Con(Cp(X)). By modifying the
proof of [Proposition 2| it is not difficult to show the following.

PROPOSITION 3. A map F : Cp(X) — R is a non-constant, continuous
lattice-homomorphism if and only if there are a point z € X and a non-constant,
increasing (= lattice-homomorphic) continuous function ¢ : R — R which sat-
isfy F = ¢ o ®,. Further the point = is uniquely determined by F.

Then we can prove the following theorem by the similar argument as the
proof of [Theorem 1l Here the set of all constant functions from R into itself is
denoted by Con(R).

THEOREM 2. The space OpCp(X)—Con(Cp(X)) is homeomorphic to the prod-
uct space X x (Ci(R) — Con(R)).

Next we consider the entire space ¢,Cp(X). The set OCp(X) is the disjoint
sum of OCp(X) — Con(Cp(X)) and Con(Cp(X)). And it is obvious that the
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subspace Con(Cp(X)) of ©,Cp(X) is homeomorphic to the real line R. Then it
follows that the underlying set of ©,Cp(X) can be considered as the disjoint sum
of the product X x (C;(R)—Con(R)) and the real line R by the above theorem.
Here the constant map ¢, € ¢,Cp(X) with the value a corresponds to the number
a € R. Let us consider the following topology on X x (Cj;(R) — Con(R)) U R:
The topology on X x (C}(R — Con(R)) is left as it is. For a point a in R, we
take the family of the following sets as a neighborhood base at a:

U{Un X {a;{-n,n},e):n=1,2,...}U(a —¢,a+¢),
where € is an arbitrary positive number,
(a¢;{-n,n},e) = {0 € C}(R) — Con(R) : |o(—n) —a| < &, |o(n) — a] < €}

and {U, : n = 1,2,...} is a cover of X consisting of cozero-sets of X such
that there is a sequence {Z, : n = 1,2,...} of zero-sets which satisfies that
Un C Z, CUpyi for each n = 1,2,.... Let us denote this topological space by
(X x C3(R))™.

THEOREM 3. For any space X, the space OpCp(X) is homeohorphic to (X x
G, (R))™.

Proof. Let F be a constant lattice-homomorphism from C,(X) into R with the
value a. It suffices to show the following:

(1) For any neighborhood W of F in ©,C,(X), there are ¢ > 0 and a sequence
{Un:n=1,2,...} of cozero-sets of X with the required property and such that
the neighborhood V = | {U, X (a; {-n,n},e) :n=1,2,...}U(a —¢€,a+¢€) of
ain (X x C’;;(R)"‘ corresponds to a subset of W. :

(2) For any neighborhood V = | J{U, x (a;{-n,n},e) :n=1,2,...}U (a -
g,a+¢) of a in (X x Cj(R))~, there is a neighborhood W of F in ©,Cp(X)
which corresponds to a subset of V.

First we consider the claim (1). Let

W =(F;{f1, fa,---, fx}, €)

be an arbitrary basic open neighborhood of F in ©,Cp(X). If we take f~ =
finfan--Afrand f* = f1V foV---V fr and consider the basic neighborhood

(F;{f™,r*}.€)

of F, then this neighborhood of F is a subset of W. Hence as a basic neighbor-
hood W of F it suffices to consider the case when £k = 2 and f; < f2. Let

Un={z€X:—n< fi(z), fz(z') <n}
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and Z, = {z € X : —n < fi(x), f2(z) < n}. Then it is not difficult to show
that V = |J{Un X (a; {—n,n},e) :n=1,2,...} U (a —¢,a+¢€) corresponds to a
subset of W.

Next we show the claim (2). Let us take any neighborhood V' = | J{U, x
(a;{-n,n},e) :n=1,2,...}U(a—¢,a+¢) of ain (X x Ci(R))~. Since there
are zero-sets {Z, : n = 1,2,...} such that U, C Z, C Up4; for any n, there is
a sequence {f, : mn =1,2,...} in Cp(X) such that

fr_z_l(n) = Zn, fr?l(n"' 1) =X —Upt1

and fn(X) C [n,n+ 1]. For any x € X, let k be the first number k£ > 1 which
satisfies z € U and let f*(z) = fx—1(z) + 1. Then f+ € Cp(X). Further let
f~ be the function defined by f~(z) = —f*(z) for any z € X. Let us take
(F; {f~,f*},€) as a neighborhood W of F. If G € (F;{f~,f*},¢) is non-
constant, then the correspondent element (y,0) in X x (C;(R) — Con(R)) is an
element of V. In fact, there exists n such that n < f*(y) <n+ 1. Then y € U,
and y € U,_; since f*(y) = frn_1(y) + 1. From f~(y) < —n and n < f+(y),
it follows that G(f~) < G(c_n) and G(c,) < G(f*) by the same argument
of (1) in Porposition 2. And hence a — e < o(f~(y)) < o0(—n) and o(n) <
o(F+(y)) < ate are satisfied, since G(f~) = o (f~(y)), G(f*) = o(f*+)(y)) and
= F(f~) = F(f%). This means that (y,0) € U, X (a; {—n,n},¢&).

In case X is compact, we can show the following. Here ¢, is the constant

function with the value a.

THEOREM 4. Let X be a compact space. Then OpCp(X) is homeomorphic to
the quotient space (X x Cj(R))/{X x {ca} : a € R} obtained by collapsing the
closed subset X x {co} to a point for each a € R.

Proof. Note that the underlying set of (X x C}(R))/{X x {ca} : @ € R} corre-
sponds canonically to the underlying set of (X x Cj(R))~. Since the topology
of (X x Ci(R))~ is generally weaker than the quotient topology, it suffices to
show the following:

(%) If V is an open subset of X x C}(R) including X x {cs}, then there are
g >0 and r—,r" € R such that

X X {cg} C X x {ca; {r~,rF},e) C V.

We can assume that V = | J{U, X {(ca; {75, 7T },€z) : T € X}, where r; < r} and
U, is an open neighborhood of z in X. Then there are finite points z1,...,z, €
X such that Uy, U- - -UU,,, = X since X is compact. Let r~ = mm{rm, N P
rt = max{r},...,r} } and € = min{e;,,...,&;,}. Then it is not difficult to

see that X X (c,; {r‘,r+},s) cV.
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The author does not know the answer of the following problem.

PROBLEM. In case ¢,C,(X) and ©,C,(Y) are homeomorphic. Are X and Y
homeomorphic?
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