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Abstract. The stepping stone model with infinitely many alleles has been
studied in the framework of Fleming-Viot processes by Handa [5]. In this paper,
it is investigated the strong-migration limit of the average number of distinct
elements in a sample of finite particles in the stationary state of the model, where
the results in [5] are applied. To obtain our result, we investigate a problem on
positively recurrent Markov chains, and make use of the results in Shiga, Shimizu

and Soshi [12].

1. Introduction

We will discuss the stepping stone model as a Fleming-Viot process, and
the related Markov chains determined by the migration rates. Fleming-Viot
processes have been investigated by many authors. See Ethier and Griffiths 1],
Ethier and Kurtz and [3]. One of important applications of Fleming-Viot
processes is to formulate mathematically the infinite allele model in population
genetics which was given by Kimura and Crow [7]. The Fleming-Viot process
describing the stepping stone model with infinitely many alleles has been studied
by Handa

First, we explain the Fleming-Viot process describing the stepping stone
model, and our problem on the measure-valued diffusion. Let E be the 1-
dimensional interval [0, 1], and S be a countable (or finite) set. The set P(E) of
probability measures on E is endowed with the weak topology. Define P

P = P(E)® = {i = {uk}res; ux € P(E),k € S},

with the product topology. In the following, for a topological space X, B(X)
stands for the space of bounded Borel measurable functions on X. For each
positive integer k, X* denotes the k-fold product of X.
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Let IN be the set of positive integers, and 6 be a positive number. For each
n € N and any f € B(E™), define L™ f by

n

(L(n)f)(xl’m% o wzn) = Z(Lif)(zls L2 .. 'am'n)’

i=1

where
0 1

(Lif)(z1,22,. .y Zp) = = f@1, o Tim1, U, Ty, . oo, T )du— f(Zq, ..., 2,) ).
2\ Jo

Forn€ N, f € B(E") and 1< < j <n, 87 is defined by

(Qg?)f)(zl,xz,...,xn_l) = f(T1,. ., Tjo1, T4, Tjy Tt 1y« « +y T 1)-

Here, in the right-hand side of the above equality, the j-th variable z; is replace
by z;, and the variables z;41,Z;42,...,Z, are replaced by Tjy Tjt1ye- oy Tn-1
respectively.

Let us introduce a matrix {my/x}r res, Which describes migration rates.
Suppose

Mk = 0 if k 75 K and Mgk = — Z Mgtk
k':k'#£k

Furthermore, we assume that supgcg [mrk| < +oo.
For k = (ky,kz,...,kn) € S™, B;k and ~;(k')k are defined by

/ij = (klakZ’ vy kj-—la kj-i—l: teey dn) € Sn_l’

and

’Yi(k,)k = (kl, ceny ki—ly k,, ki+1, el ,kn) € S",
Namely, §; eliminates the j-th coordinate of k, and +;(k’) replaces the i-th
element of k by k'. For k = (k1, kz,...,kn) € S™, L, denotes pug, X piky X -+ - X U,
(direct product), and ¢f,k(ﬁ) is defined by ¢f,k(/'7’) = (f, ug) for f € B(E™).
- Now, we are in a position to define the operator £ by

Lo @ = > (P k) — (o))

15i<j£n,k|-=kj
n
LWL+ DS mek By k) (L D)
: , i=1k’'eS

It is shown in Handa [5] that the martingale problem for the operator £ is well
posed, and that the P-valued diffusion {(t)} determined by £ has a unique
stationary distribution, which is denoted by Q(dm).
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Define

I, = {a={ak}res;ar € Z, Z ar =n}, and |a| = Zak.
kesS keS

where Z denotes the set of non-negative integers, and set

Consider the mapping ¥ : [ J723 S™ — I, defined by
‘I’(k) = {ak}kes’ ke Sn9

where o) = the cardinality of the set {i;k; = k}. Let fla = [Iresa,>0 Kk
where p.* denotes the ag-fold product of ug. If a function f € B(E™) is sym-
metric, and ¥ (k) = ¥(k') = « € I,,, then (f, lia) is well-defined and we have

<f’ﬁk> = <f’ﬁk’) = <f’ﬁa>

Note that for a symmetric function f € B(E™), <I>§_;‘) f and L™ f are symmetric in
B(E™ 1) and B(E™) respectively. In the following, we assume that the migration

rates my/x, k’, k € S are written in the form
Mg = MTk'k, k,, keSS,

with a positive constant m. The stationary distribution Q(df) is denoted by
Qm(df), since it depends on m. Define fn € B(E™) by fn(z1,%2,...,%n) =
the number of distinct elements of the sequence (z1,z2,...,Z,). Note that the
function f, is symmetric.

Our problem on the Fleming-Viot process is to investigate the asymptotic
behavior of the integral

Am () = / Ful )G (dF), (1.2)

as m — oo, where

}-a(ﬁ) = <f'n! ﬁa)7 a e In.-

Here, we explain what the quantity A,,(a) means. Choose n genes from the
colonies according to a € I,. Namely, a; genes are chosen from colony k, for
each k € S. F,(1r) means the expectation of the number of distinct elements
in a sample of n genes with respect to the measure € P. Since A, () is the
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average of F, (i) with respect to Qm(dfz), Am(a), @ € I,, should be called the
average expectation of the number of alleles in a sample of n genes.

The asymptotic behavior of a quantity for stepping stone models, as m —
00, is called that of the strong-migration limit. The strong-migration limit in
geographically structured population was investigated in Nagylaki [8], Notohara.
[9] and [10] Notohara discussed the same problem as ours. In [10], it
is assumed that the migration process is a random walk on the d-dimensional
torus S with lattice points. Under this assumption, he got fruitful results on the
strong-migration limit of the stepping stone model. In this paper, the set S is
assumed to be a countable set, so that it will be assumed the finiteness of the
moments of the first returning time for the migration process to investigate the
asymptotic behavior of A,,(a) in the strong-migration limit.

Let us introduce three kinds of Markov chains.

Define gxx', k, k' € S by

dkk’ = Tk'k-

Let gx = —qxx. The minimal Markov chain generated by {qgxx’ }x x'cs is denoted
by {z(t), Px}. It is conservative since {gk }res is bounded by the assumption on
the migration rates. In the following, the Markov chain {z(t), Px} is sometimes
called the 1-particle system. We consider the n-fold direct product of the 1-
particle system {z(t), Px}, which may be called the n-particle system. The n-
particle system, whose state space is S™, is denoted by {z(t)};>0. Define the
matrix ges on I, by

aaﬁ = QkTk'k if ﬁza—fk-l-fkl,
=D ok if §=a, (1.3)
k
=0 otherwise,

where €, = {6k, }ics € I1. The Markov chain with state space I,,, generated by
{@ap}a,per.., is denoted by {@(t)}:>0. We see that

law (~
{‘I’(m(t))}tzo = {a(t)}tZO'
In this paper, we assume the following,.

ASSUMPTION 1. The Markov chain {z(t), Px}, the l-particle system, is ir-
reducible and positively recurrent, whose stationary distribution is denoted by
v.

Under this assumption, the n-particle system {x(t)}:>0 and the Markov chain
{a(t)}+>0, mapped by ¥ from the n-particle system are both positively recurrent,
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whose stationary distributions are v, (k) = [ 1=, v(k;), for k = (k1, k2, ..., k) €
S", and v, = m’%—k—!u(k)"’k for a = (ax)res respectively.

Second, we explain our problem on the 1-particle system {z(t), Px}. Let us
consider the equation on a function u,,

m> " grium(k) = V(K um(k) = —f(k), k€S, (1.4)
=

with a positive constant m and f € B(S), where V' (k) satisfies ¢; < V(k) < 2
for some positive constants c1,c;. Recall that the equation has a unique
bounded solution u,, if and only if the Markov chain {z(t), Px} is conservative

(Feller [4], Shiga [11]), and it is easy to see that
Tim_un(k) = (F/(V),

where (g9) = >, g(k)v(k) for g € B(S). Our problem is the following. Under
what condition does the sequence m(un (k) — (f)/(V)) have a finite limit as m
tends to infinity? Our result on the problem mentioned above of the Markov
chain {z(t), P} is formulated as the next theorem. The expectation with respect
to Py is denoted by Ey[-]. Define V, a class of bounded functions on S, by

V = {V € B(S); there exist positive constants ¢; and c;
such that ¢; < V(k) < ¢z, for any k € S}.

Let T be the first returning time, namely
T =inf{t > 0; z(t) = z(0) and z(s) # z(0) for some s < t}.

THEOREM 1. There ezists a constant ¢ depending on k, V, and f for any
keSS, VeV and f € B(S) such that

Tim_m(un(k) = ()/(V)) = ¢,
if and only if
Ex,[T?] < 00 for some ko € S. (1.5)

Remark. Note that the condition Ey,[T2] < oo for some kg € S implies Ey [T?] <
oo for all £k € S. Since the matrix {gxx’} is defined at the beginning by the
migration rates {mys} of the stepping stone model, it is assumed in
1 that g is bounded in £ € S. However, it suffices to assume on {gxs’} that
the minimal Markov chain generated by {qkx } is conservative, in order to prove
disregarding the stepping stone model.
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Here, we apply this result to the problem of the Fleming-Viot process de-
scribing a stepping stone model. It is easy to see by using (3.3) and (3.4) below
that, under Assumption 1, the equality

| B n ] B n 1
Rm  Am(e) = 1+0§771—+(9—_1)l B Heg(l—l)zku(k)uo

holds for o € I, n > 2, where 1 = 3, 3", aitn(a) = (B = 1) >, v(k)® + 1.
The right-hand side of the above equality is denoted by Ao, (). Recall that the
average number of alleles in randomly chosen n genes for the ordinary infinite
allele model is known to be equal to

L 1
1+9IZ_2:—-—-Z_1+9.

See Hartl and Clark [6] By Shiga, Shimizu and Soshi [12], we see that the
finiteness of the expectation of T2 for the 1-particle system implies that of the
second moment of the first returning time for the n-particle system. Therefore,
under the assumption that Ex[T?] < oo for some & € S, the first returning time
for the Markov chain &(t), mapped by ¥ from the n-particle system has the finite
second moment. Making use of and the results of Shiga, Shimizu and
Soshi [12], we can obtain the next theorem.

THEOREM 2. Assume for the 1-particle system {z(t), Pr} that Ex[T?] < oo
for some k. Then, there ezists a constant ¢ depending on a for each a € I, such
that

lim m{An(a) - Ax(a)} =¢.

m—+o0

2. Proof of Theorem 1

By the Feynman-Kac formula, we see that the solution u,, (k) of can be
written as follows (Shiga [11]):

wn®) =2 [ B [eo{ - [Vewalsee)e @
_ /O B [exp{—;% OmtV(x(u))du} f(x(mt))]dt. 2.2)

The ergodic property of the 1-particle system and (2.2) imply that

im_um(K) = (£)/(V).
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Making use of the strong Markov property of the 1-particle system and (2.1), we
obtain

Ex[fT exp{—L [*V(z(u))du}f(z(t))dt] '
m(l — Ey [exp{-—;}; fOT V(:v(u))du}])
Define ¢(2), ¥(z) and v(z) by

um (k) = (2.3)

o) =5 ' oo == [ Viatu)au} saear,
¥(z) = ;{1 - By [exp{—z/oT V(x(u))du}]} = ~{1-n(2)},

and

$(2)

e

for a positive number z, respectively. Note that ¢(0+) = Ex[T)(f), ¥(0+) =
Ex[T)(V), and that v(0) = (f)/(V). First, we assume that Ej,[T?] < oo for
some ko € S. In order to show that the condition (1.5) is sufficient, it suffices
to prove that v(z) is right-differentiable at z = 0. Since Ex[T?] < +o0 for any
k € S, as mentioned in Remark of Section 1, we see that

lim ¢/ (2) = By [ / ’ / t V(w(U))duf(z(t))dt]-

By a simple calculation, we see

wl(z) — T](Z) -1- 277’(2) .

22

Noting that Ex[T?] < +co implies the existence of 7"/ (0+), we get

1 1 T 2
lim /() = —57'04) = =35 | ( [ Viaw)du) |
zl0 2 2 0
Hence, we conclude that v’(0+) exists, namely,

¢’ (0+)y(0+) — ¢(0+)y'(0+)
$(0+)? '
To complete the proof of [Theorem 1, it is sufficient to show the next lemma.

V' (04) =

LEMMA 2.1. Let f(k) =1, V(k) = I{koy (k) + 1. Then, the statement that

1
R S

holds if and only if Ey,[T?] < +co.

=0(1/m), m — +oo,
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Proof. Noting that f(k) = 1, we have for the initial state ko

#(z) = Ek, [/OT exp{—z /Ot V(a:(u))du}dt].

Let ¢ be the first jumping time, and Tp be the first passage time to the state ko,
then

) = B, | A Cexp{_;.« A tV(a:(u))du}dt] +E, [ /C Texp{—z A tV(z(u))du}dt]

- ¢ T
= F, -/0 .exp{—2zt}dt} + Ex, [/C exp{~z(2¢ +t - C)}dt]
= FEx, 51; (1- 6"2’4)] + Ex, [e“"cEﬂ,c [/OTO exp(-—zu)du”

— 1 qko - '—ZTO
- dko + 2z + z(qko + 22) (1 Eko [Ezc [6 ]])

_ 1 —2zTp
= m(l + Qko — Qko Eko [Ez,[€ ]])

Similarly, we see for the initial state ko that

¥(z) =

Hence, we obtain

1 —ZTo
Z(Qko T 22) (22 + Qko — Qko Eko [E‘”C [e ”)

1 1
Gk, + 22 W’ _
so that v(z) is right-differentiable at z = 0 if and only if ﬂfuz"'o—ﬂ has a finite
limit as z | 0. Since ¥(0+) = Ej, [foT V (z(u))du], we see that

¥(z) —¥(0+) _ 1 (1 — Ex, [z/OTV(m(U))dU] — Bk, [eXP{_z[)TV(x(u))du}D

v(z) =1-

z z2

[T V(z(u))du t
= (—1)Eg, [/ dt/ e‘"’ds].
0 [¢]
Consequently,

lim 02 —¥(0+) _ (—1)%Eko [(/OT V(x(u))du)z] :

zl0 z

Noting that

AT’ < ( /O ’ V(m(u))du)z < 472,

we can conclude that there exists a finite limit lim, ¢ f(z)—_;/’(—oﬁ if and only if
Ex,[T?] < +00. Thus, the proof of is complete.
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3. Proof of Theorem 2

First, let us introduce another infinitesimal matrix ¢g; on I defined by

0
qu=(ak)+—ak if B=a—¢ and |a|>2

2 2

= QpMTkk if f=a—ex+ex, K#K

=5 ((2) + G @)+ St 9=
kesS kes

=0 otherwise,

where o +  and a — f are defined componentwisely for a, 3 € I. Here, (})
means 0 if n < k.
Note that the equalities

(Lifn)(zl’ T2,..., mn)

- 5(1 + fn—l(mls IR 7 3 Py 7 XS, PR xn) - f'n(xl’ T2y00y zn)):
and
— g
©Fo)@) = 3 () (ot Face) = (o) + gl
kes
9 — _
+ Z 2 f"_l’p’a—ik) - (fnau'a))
kes
+ Z Z kM fry Pa—ex+epr) for |a|=n>2.
keS k’eS
hold. Since
[€Fa)@m(em =0
we obtain
3 aTpAm(8) + Slal =0 if ol 22, (3.1)
B8

Am(@) =1 if |of=1. (3.2)

Let (a(t), Py*), t 2 0, a € I, be the Markov chain generated by {¢7s}a,ser-
ET* denotes the expectation with respect to P*. Define 7 and 7; by

» = inf{t > 0; |a(t)| = 1},

T, =inf{t > 0; |a(t)| < |a(0)]},
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where inf @ = +c0. By (3.1) and [3.2), we obtain for a € I,, n > 2,

An(e) =1+ B []T g|a<s>|ds]

= 2 BT + B An (o)) (3.3)

Observe that Al (a) := E™[T;] satisfies
Y Gap () - -y (S + @ -Dn) M@=, (3.4)

Beln

with the matrix {Gap}a,ge1, defined by (1.3). Since the minimal Markov chain
{a(t), P} on I, generated by the matrix {ag}a ger, is conservative and pos-
itively recurrent, as explained in Section 1. Therefore, we can apply Theorem
1 to {a(t), Pn}. Let T be the first returning time of {@(t), Py}, then by the
results of Shiga, Shimizu and Soshi [12], as mentioned in Section 1, we see that
E4[T?] < 400, where E,[] denotes the expectation with respect to P,. Thus,
we obtain the next lemma.

LEMMA 3.1. For each a € I, there ezists a finite limit limy, oo m(AL (a) —
2
§n+(9—15n)'

If a € I, the second term of the right-hand side of (3.3) is equal to 1, so that
proves [Theorem 2.

4. An Example

Here, we present a Markov chain for which one can get the critical parameter
for the second moment of the first returning time T to be finite. Furthermore,
for the example, it is made clear the speed of convergence of the solution u,, for
the equation with specified functions V and f, when the second moment
of T is infinite. Proposition 4.1 and Lemma 4.2, given below, are essentially due
to Professor T. Shiga. '

Consider a continuous time minimal Markov chain {z(t), P;} in § = Z, which
is governed by the following infinitesimal matrix Q = {¢; ;}.

1 G j=i+1)
%i,j = 4 a1 (if j =0)
“(+a) (fj=i>0),

and go,j = 61,5 F=1) go,0 = —1,

gi,; =0 for any other 1i,j € S.
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Recall that T denotes the first returning time of the continuous time Markov
chain {z(t), P;}. Then it is easy to show that

1
Eo(e™) = Zl H1+)\+ak 1

from which it follows that {z(t), B;} is recurrent if and only if

i a; = 00. (4.2)
i=1

Now we specialize {a;} as follows:

i>1), 4.3)

K
1

with a constant k > 0. Inserting this to (4.1) we see

1) <[ (5 + 1)
Z(1+A)n+11“ 2 +n+1)

K K
anz:l (1+,\)n+1B<"’1_fX + 1)’

where B(a, 3) denotes the Beta function, so that it holds

1 <
ATy K tT+3
Eo(e )_ 1+)‘/0 )\+tdt° (4.4)

PROPOSITION 4.1.
Eo(T*) < 0o if and only if a < k.

Proof. Using Taylor’s expantion of 1/(A + t), from one gets

= Y i k(=A)n+l lgsFronl
Eo(e™*7T) = ( / dt
o(e™) K;/—;n—m()\+1)+ A+1 Jo A+t

A xfp—n—1
:nzn: (=)™ +K(_1)n+1,\~/(k+1)/1/ T
S k—m(A+1) A+1 0 1+t

Let n <k <n+1(n € Z;). Denoting the last term by b(\), we obtain that if
n<k<n+l,

lim (= 1)n+1b(i)=,g / A 4.5)
: 0

AN 0 1+t
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and if Kk =n+ 1,

BO) ~ K(=X" log 5 (AN, 0), (4.6)

Therefore, by applying the following lemma, the proof of [Proposition 4.1 is com-
pleted.

LEMMA 4.1. For a nonnegative random variable Y, let
e(A)=E(e™Y) (A>0).

Suppose that p(A\) has the form,

o) =3 amA™ +5(N),

m=0
where for a k € (n,n + 1], either
b(A) ~ BoA", as A0,
with Bo(# 0) € R or
. b(N)
_1\n+1 —
Jm (1) S =0
and for every f < k
. b(A)
1)1 — .
Jm(=0" 5 =0
Then it holds that

E(Y*)<oco for a<k, and E(Y")=oo.

Proof of Lemma 4.2 is standard, so it is omitted.

We see by Proposition 4.1 that {z(t), P;} is positively recurrent if and only if
Kk > 1, so that we investigate the case of x > 1 in the following. Let us consider
(1.4) for this example, with specified functions 'V and f. Let V(i) = 1+ I03 (),
f(i) = 1, where I} is the indicator function on the set {0}. Namely, we consider
the equation

MY Gizum(j) — V(i)um(i) = —1, (4.7)
J

with a positive constant m. The unique solution u,, of (4.7) satisfies

. 1
i, um(0) = Ty
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with v(0) =1 — i—, and, by the same argument as the proof of [Lemm 1, it is
shown that
1 1
=1 — 4.8
um(0) = 1 7290 (4.8)

where z = 1/m, and

¥(z) = (22+1 - Eyfe™*®)), 4.9)

1
z(1+ 22)
where Ty denotes the first passage time to the state 0. Note that

1

z+t

1
Byl = x / i L g (4. 10)
0

Then, we obtain the next statement.

PROPOSITION 4.2. Ifk > 2,

1 1
'Ua-m,(O) — TI/(O) ~ —kl(li);—rz, m — +OO,
ifk =2,
1 21
um (0) - 15000 ~ ~9m legm, m — +0o,
and if 1< kK < 2,
1 1 K—1
um(0) — m ~ —kz(k) (E) , m — 400,

where

ki(k) >0, (i=1,2), hmkl(n) +00, hmkg(/s)

and v(0) =1-1/k.

Proof. Recall the equality in the proof of [Proposition 4.1,

z)¢
Eole™*T] = K,Z (l(z)+ 0 + b(2), (4.11)

where

K(_1)n+1 . % tn/(1+z)—ﬁ—1
b(z) = ——~ ___z3F1 —_— e dt. 4.12
2) Sl A (4.12)
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We prove [Proposition 4.2 only for the case of k = 2, because one can prove the
assertions similarly for kK > 2 and 1 < K < 2 making use of (4.8), (4.9), (4.10),
(4.11) and (4.12). For the case of K = 2, by (4.11) with n = 1, we see that

a(z) = Eole™*T) =1 -2z +b(2) + O(2%), =210,
and that
b(z) ~ 22%log ;, z]0.
Note that we have by (4.9)

1 a(z)—1 2-a(z2)
1422 =z 1+2z2°

¥(2) =

and therefore ¥(0+) = 3. Consequently, we have

Y(2) —9(0+) 1 (b(z)
z T 1+42z\ 22 +0() ),
1
~ —2log e
Hence, we conclude that
v(z) —v(0+) 2 12 1
Tz T %%z gy 20
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