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Abstract. The purpose of the present paper is to characterize A1, Az or a ruled
real hypersurface of CP™ under a certain condition on the second fundamental
form.

1. Introduction

Let CP™,n > 2, be an n-dimensional complex projective space with Fubini-
Study metric of constant holomorphic sectional curvature 4, and let M be a real
hypersurface of CP™. Let v be a unit normal vector field on M and £ = —Jv,
where J denotes the complex structure of CP™. M has an almost contact metric
structure (¢, &, 7, g) induced from J. Many differential geometers have studied
M (cf. [1]-[7]) by using the structure (¢, &, 7, g).

Typical examples of real hypersurfaces in CP™ are homogeneous ones. TAK-
AGI [7] showed that all homogeneous real hypersurfaces in CP™ are realized as
the tubes of constant radius over compact Hermitian symmetric spaces of rank
1 or rank 2. Namely, he showed the following : Let M be a homogeneous real
hypersurface of CP™. Then M is a tube of radius r over one of the following
Kaehler submanifolds: '

(A1) hyperplane CP™~ !, where 0 < r < %,

(Az) totally geodesic CP* (1< k<n-—-2),

" (B) complex quadric Qn,—1, where 0 <7 < I,

(C) CP!x CP®*7, where 0 <r < % and n(> 5) is odd,

(D) complex Grassmann CGa s, where 0 <r < Z and n =9,

(E) Hermitian symmetric space SO(10)/U (5), where 0 < r < 7 and n = 15.

Due to his classification, we find that the number of distinct constant principal
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curvatures of a homogeneous real hypersurface is 2, 3 or 5. Here note that the
vector ¢ of any homogeneous real hypersurface M (which is a tube of radius r) is a
principal curvature vector with principal curvature a = 2 cot 27 with multiplicity
1 (See[1]) and that in the case of type A; M has two distinct principal curvatures
and in the case of type A2 M has three distinct principal curvatures ft, -% and
a=1%t-— %

OKUMURA [5] proved the following remarkable result: a real hypersurface M
of CP™ satisfies Ap — ¢A = 0 on M if and only if M is locally congruent to A;
or Az. ‘

The purpose of the present paper is to study more weaker condition either

(1) (Ap — pA)X =0
for any £+ (See [2]) or
(2) 9((A¢ — 0A)X,Y) =0

for any X,Y € ¢!, where g and &' denotes the induced metric of M by the
metric of CP™ and the orthogonal complemnt of £ in TM, respectively. Now,
we prepare the notion of a ruled real hypersurface (See [3], [4]) which means that
there is a foliation of M by complex hypersurfaces CP™~! and that M is a ruled
real hypersurface of CP™ if and only if the shape operator A satisfies

3) A =af+ U, AU =6+ AU and AX =0
for X € ¢1. Specifically, we shall prove the following :
PROPOSITION. Let M be a real hypersurface of CP™. Then M satisfies (1)
if and only if M satisfies
Ap—9pA =0
on M.

THEOREM. Let M be a real hypersurface of CP*,n > 3. Then M satisfies
(2) if and only if M is locally congruent to Ay, Ay or a ruled real hypersurface.

REMARK 1. We don't know whether or not the case of n = 2 of is
true. :

REMARK 2. We note that SuH [6] showed that an -recurrent real hypersurface
M (ie., g((VxA)Y, Z) = M(X)g(AY, Z) for some functions A\(X) and X,Y and
Z € ¢1) satifies (2) if and only if M is locally congruent to Aj, Az or a ruled
real hypersurface.
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2. Preliminaries

Let X be a tangent vector field on M. We write JX = ¢X + n(X)v, where
$X is the tangent component of JX and n(X) = g(X,£). As J? = —Id, where
Id denotes the identity endomorphism on TCP", we get

(4) $*X = -X +n(X)§, n(¢X)=0, ¢£=0

for any X tangent to M. It is also easy to see that for any X and Y tangent to
M

(5) (Vxd)Y =n(Y)AX — g(AX,Y)¢,

where V denotes the convarinat defferentiation on M. Finally, from the expres-
sion of the curvature tensor of CP™, we see that the curvature tensor R and
Codazzi equation of M are given by

(") R(X,Y)Z =g(Y,2)X —g(X,Z)Y + g(¢Y, 2)¢X — g(¢X, Z)9Y
—29(¢X,Y)9Z + g(AY, 2)AX — g(AX, Z)AY,

(8) (VxA)Y = (Vy A)X = n(X)eY —n(Y)¢X — 29(8X, Y)E.

3. Proof of Proposition and key Lemma
Let M be a real hypersurface of CP™. Then we mention again:
PROPOSI;I‘ION. Let M be a real hypersurface of CP™. Then M satisfies
(Ap—A)X =0
for any X in &+ if and only if Ap — pA =0 on M (See Introduction).
Proof. Assume that (A¢—¢A)X = 0 for any X in £&~. Then we have for X € £+
9(BAE, X) = —g(§, ApX) = —g(¢, 9AX) = 0.

Since g(¢A¢,€) = 0, we get AL = 0, and Apé —pAE = 0. Therefore Ap—pA =0
on M.

LEMMA. Let M be a real hypersurface of CP™. Then if g((A¢p — pA)X,Y) =
0,X,Y € &t and € is principal, then for X € &+

(A¢ — pA)X = 0.
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Proof. Assume that g((A¢ — ¢A)X,Y) =0,X,Y € &+. Then we have on M
9) ApX — pAX = g(AdX, §)€ — g(X, §)PAE.
Since ¢ is principal, we have for X € ¢+

(Ap — pA)X = 0.

4. Proof of Theorem

Let M be a real hypersurface of CP"*,n > 3. By [Lemmal we have only to
prove the case that £ is not principal, that is, A§ = a& + GU for some functions
a,  and a vector U which satisfies g(U, £) = 0 and g(U,U) = 1. Let X,Y € TM.
From Codazzi equation we have

(10) (VxA)YY — (VyA)X =n(X)¢Y —n(Y)eX — 29(¢X,Y)§.
Taking the inner product by &, we get

9((VxA)§,Y) —g((Vy A)§, X) = —29(¢X,Y).
Since (Vx A)¢ = (Xa)€ + apAX + (XB)U + fVxU — ApAX, we obtain

(11) 20(A9AX,Y) — ag(AdX,Y) — ag(¢pAX,Y) — 29(¢X,Y)
+ (Ya)g(X, &) — (Xa)g(Y,§)
+ (Y8)9(U, X) - (XB)g(U,Y)
+ B9(VyU, X) — fg(VxU,Y) = 0.

By the assumption of theorem, i.e., (9) the equation yields

(12) 29(AdAX,Y) — 2a9(A¢X,Y) — 29(¢X,Y)
| + ag(AgX, £)g(¢,Y) — afg(X,€)g(¢U, Y)
+ (Ya)g(X, ) — (Xa)g(Y,€)
+ (YB8)g(U, X) — (XB)g(U,Y)
+ B9(VyU, X) — g(VxU,Y) = 0.

Putting X = £ in (12), we have

(13) Yo = -369(A¢U,Y) + afg(¢U,Y) + (§a)g(Y, £)
+ (€6)9(U,Y) + Bg(VeU,Y).
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Now, noting that
9(ApU,U) = g(¢AU,U) = —g(AU, ¢U),
we can put

(14) AU = BE+NU + Z
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for some function A and a vector Z which satisfies g(Z,£) = 0 and g(Z,U) = 0.
Also, since A¢ is skew symmetric on {X € ¢1|g(X,U) = g(X, ¢U) = 0} = T,

we can consider

/[ 0 00 0 0\
0 0 X\ =x *
-6 =X 0 =« *
0 0 0 O U2
A = 0 00 —p O
0 HPn-1
\‘ —pn-1 O

at each point by an orthonormal basis. Hence yields

(15) AU = €+ MU.

Differentiating by Y € TM, we get

(16) (Vy A)U + AVyU = (YB)¢ + BoAY + (Y NU + AVy U.
Also, applying Codazzi equation to [(16), we obtain

(17) (VuA)Y + n(Y)gU — 29(¢Y,U)¢ + AVyU
= (YB)¢ + BoAY + (YANU + A\VyU.

Taking the inner product by & we have
(18)  YB=9((VuA)E,Y) +29(¢U,Y) — Ag(AgU,Y) + ag(A¢U,Y).
Also, taking the inner product by U, we get

(19) YA=9((VuA)U,Y) + 269(A¢U,Y).
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( 0 000
0 0 X O
-8 -2 0 0
0 0 0O M2
Noting that A¢ = 0 00 —u O
\
a O 0
(o6 \(
A
M2
= Uz
Hn—1
\ pnot ) \

on each point and ¢? = —1, we can put AX = uX for each X € £ orthogonal
to U and ¢U. Assume that 4 = A. Taking the inner product by X. We
obtain

(Vv A)X = —FA¢X.

Noting that A¢X = u¢X, since ApX = $AX, we have u = 0. Therefore
suppose u # A. Then from we get

(20) (= Ng(VyU, X) = —g((Vv A)X,Y) — Bg(Y, AdX).
Substituting into we obtain
(21) 2(p — Np*9X — 2a(p — NudX — 2(u — Mo X

— (B = N(Xa) — (b= AXB)U

+ B(=(VuA)X — BusX) — B(u— A\)VxU = 0.
Applying ¢ to [21), we have
(22) —2(p — A X +2a(p — NpX +2(n - X

= (b= A)(XB)eU

+ B(=¢(VuA) X + fpX) — B(u — N\)¢pVxU = 0.

From Codazzi equation we obtain

(VvA)X = (VxA)U,
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ie.,
(23) (Up)X+ (Il —-A)VyX =(XB)E+ BudpX + (XNU + (M — A)VxU.

Taking the inner product (23) by ¢X, we have

(24) Br+ (A —p)g(VxU, ¢X) = 0.
Combining with [24), we get
(25) (b=Mp? —alp—Np—(p—N) - Fu=0.

Also, fom Codazzi equation we have

(VxA)pU = (Vyu A)X.

and get

(26) (PU)p — (b — N)g(VxU, ¢X) = 0.
By and we obtain

(27) (¢U) 1 = B

On the other hand, from [(13), (18) and we get

(28) (#U)a = 30X+ aff + Bg(VeU, ¢U),
(29) (PU)B = =N +ar+ 5 + 1,

(30) (U)X = 36

We put g(VeU, ¢U) = ®. Defferentiating the equation by ¢U, we have

(31) B(3u® — 22u® — 3op? — ®p? + 3o
—puX? + dud — 3u+ 3\ - 36%u) = 0.

Combining [(25) with [(31), we obtain

p(p = A)(A - @) =0,

since 8 # 0. If u = 0, then from we have A\ = 0, which is a contradiction to
the assumption of u # A. Thus we obtain

(32) A—®=0.
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Now, the equation (25), i.e.,
(33) 22— N+a)z® +(ar—-1-F)r+A1=0.

has at most three distinct roots. Suppose that u,v and 7 are distinct roots of
(33). Without the loss of generality we may assume that p is the largest root of

(33). Replacing z by = + p and using [25), we have

(34) r? — (=3u+ A+ a)x?+ (Bu? -2u(A+a)+(ar—1-6%)z =0.
Then two roots of (34) which are not zero must have the same signs. Hence
(35) 3u? = 2u(A+ @) + (aX — 1 - %)

is absolutely positive. But the discriminant of is absolutely positive, which
is contradiction. Thus has at most two distinct roots. If 4 and v are distinct
roots of (33), then we have

(36) (- —alv-ANv-—-(v-2)-Fr=0.

Subtracting [(36) from [(25), we get

(37) P+ - du—w—av+al-1-5 =0,
since p # v. Multiplying by u, we have
(38) pd 4+ pPv 4 =M = dpw —op? —apv +adp —p - FPu=0.
Subtracting (38) from [(25), we get
(39) p2v+ i — v — opry — X = 0.
From the roots and coefficients of the equation we have
pt+v= —u+,\+a:—,u'+)\+a.

Therefore has only a root. Thus we get

(40) 3u=A+a,
(41) 3u? =ad—1- G2
—ud =

By the way, the equation yields

42) (=N =(@=20u- N+ -ar—-1-) -\ -Fr=0.
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Then from and we have

(43) a—2)=3(u— 1),

(44) (A2 —aX—1-7%) =3(u- N>~
Combining (42) with [43) and [44), we obtain

(45) : (=23 -p@xr=0.

Differentiating by U we have
3(p—A)%(w— A —2X) — 362\
—20(=A4+aX+ /4 +1) =0,

since B # 0. Using and [45), we obtain

—6A(AJ§°‘ — )2

= 2M(=X +a) + (% + 1),
= %(_2,\2 +2aX - 2a° — 6 - 65°%) =0,

ie, A=0. By we get u = 0, which contradicts to the assumption of u # .
Thus M is a ruled real hypersurfaces. Conversely, assume that A4, Az or a ruled
hypersurface. Then we can easily confirm that they satisfies (2).
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