Yokohama Mathematical Journal Vol. 49, 2001

REAL HYPERSURFACES IN COMPLEX PROJECTIVE SPACE SATISFYING A CERTAIN CONDITION ON THE SECOND FUNDAMENTAL FORM

By

Yoshio Matsuyama

(Received December 12, 2000; Revised July 15, 2001)

Abstract. The purpose of the present paper is to characterize A_1, A_2 or a ruled real hypersurface of CP^n under a certain condition on the second fundamental form.

1. Introduction

Let $CP^n, n \ge 2$, be an *n*-dimensional complex projective space with Fubini-Study metric of constant holomorphic sectional curvature 4, and let M be a real hypersurface of CP^n . Let ν be a unit normal vector field on M and $\xi = -J\nu$, where J denotes the complex structure of CP^n . M has an almost contact metric structure (ϕ, ξ, η, g) induced from J. Many differential geometers have studied M (cf. [1]-[7]) by using the structure (ϕ, ξ, η, g) .

Typical examples of real hypersurfaces in \mathbb{CP}^n are homogeneous ones. TAK-AGI [7] showed that all homogeneous real hypersurfaces in \mathbb{CP}^n are realized as the tubes of constant radius over compact Hermitian symmetric spaces of rank 1 or rank 2. Namely, he showed the following : Let M be a homogeneous real hypersurface of \mathbb{CP}^n . Then M is a tube of radius r over one of the following Kaehler submanifolds:

(A₁) hyperplane CP^{n-1} , where $0 < r < \frac{\pi}{2}$,

(A₂) totally geodesic
$$CP^k$$
 $(1 \le k \le n-2)$,

- (B) complex quadric Q_{n-1} , where $0 < r < \frac{\pi}{4}$,
- (C) $CP^1 \times CP^{\frac{n-1}{2}}$, where $0 < r < \frac{\pi}{4}$ and $n \ge 5$ is odd,
- (D) complex Grassmann $CG_{2,5}$, where $0 < r < \frac{\pi}{4}$ and n = 9,
- (E) Hermitian symmetric space SO(10)/U(5), where $0 < r < \frac{\pi}{4}$ and n = 15.

Due to his classification, we find that the number of distinct constant principal

²⁰⁰⁰ Mathematics Subject Classification: Primary 53C40; Secondary 53B25

Key words and phrases: complex projective space, real hypersurface, ruled hypersurface

This research was partially supported by a grant as overseas research expenses of Chuo Univ, 2000

curvatures of a homogeneous real hypersurface is 2, 3 or 5. Here note that the vector ξ of any homogeneous real hypersurface M (which is a tube of radius r) is a principal curvature vector with principal curvature $\alpha = 2 \cot 2r$ with multiplicity 1 (See [1]) and that in the case of type $A_1 M$ has two distinct principal curvatures and in the case of type $A_2 M$ has three distinct principal curvatures $t, -\frac{1}{t}$ and $\alpha = t - \frac{1}{t}$.

OKUMURA [5] proved the following remarkable result: a real hypersurface M of CP^n satisfies $A\phi - \phi A = 0$ on M if and only if M is locally congruent to A_1 or A_2 .

The purpose of the present paper is to study more weaker condition either

$$(1) \qquad (A\phi - \phi A)X = 0$$

for any ξ^{\perp} (See [2]) or

(2)
$$g((A\phi - \phi A)X, Y) = 0$$

for any $X, Y \in \xi^{\perp}$, where g and ξ^{\perp} denotes the induced metric of M by the metric of CP^n and the orthogonal complement of ξ in TM, respectively. Now, we prepare the notion of a ruled real hypersurface (See [3], [4]) which means that there is a foliation of M by complex hypersurfaces CP^{n-1} and that M is a ruled real hypersurface of CP^n if and only if the shape operator A satisfies

(3)
$$A\xi = \alpha\xi + \beta U, AU = \beta\xi + \lambda U$$
 and $AX = 0$

for $X \in \xi^{\perp}$. Specifically, we shall prove the following :

PROPOSITION. Let M be a real hypersurface of CP^n . Then M satisfies (1) if and only if M satisfies

$$A\phi - \phi A = 0$$

on M.

THEOREM. Let M be a real hypersurface of CP^n , $n \ge 3$. Then M satisfies (2) if and only if M is locally congruent to A_1, A_2 or a ruled real hypersurface.

REMARK 1. We don't know whether or not the case of n = 2 of Theorem is true.

REMARK 2. We note that SUH [6] showed that an η -recurrent real hypersurface M (i.e., $g((\nabla_X A)Y, Z) = \lambda(X)g(AY, Z)$ for some functions $\lambda(X)$ and X, Y and $Z \in \xi^{\perp}$) satisfies (2) if and only if M is locally congruent to A_1, A_2 or a ruled real hypersurface.

80

2. Preliminaries

Let X be a tangent vector field on M. We write $JX = \phi X + \eta(X)\nu$, where ϕX is the tangent component of JX and $\eta(X) = g(X,\xi)$. As $J^2 = -Id$, where Id denotes the identity endomorphism on TCP^n , we get

(4)
$$\phi^2 X = -X + \eta(X)\xi, \quad \eta(\phi X) = 0, \quad \phi \xi = 0$$

for any X tangent to M. It is also easy to see that for any X and Y tangent to M

(5)
$$(\nabla_X \phi) Y = \eta(Y) A X - g(A X, Y) \xi,$$

(6)
$$(\nabla_X \xi) = \phi A X,$$

where ∇ denotes the convarinat differentiation on M. Finally, from the expression of the curvature tensor of CP^n , we see that the curvature tensor R and Codazzi equation of M are given by

(7)
$$R(X,Y)Z = g(Y,Z)X - g(X,Z)Y + g(\phi Y,Z)\phi X - g(\phi X,Z)\phi Y$$
$$- 2g(\phi X,Y)\phi Z + g(AY,Z)AX - g(AX,Z)AY,$$

(8)
$$(\nabla_X A)Y - (\nabla_Y A)X = \eta(X)\phi Y - \eta(Y)\phi X - 2g(\phi X, Y)\xi.$$

3. Proof of Proposition and key Lemma

Let M be a real hypersurface of CP^n . Then we mention again:

PROPOSITION. Let M be a real hypersurface of CP^n . Then M satisfies

$$(A\phi - \phi A)X = 0$$

for any X in ξ^{\perp} if and only if $A\phi - \phi A = 0$ on M (See Introduction).

Proof. Assume that $(A\phi - \phi A)X = 0$ for any X in ξ^{\perp} . Then we have for $X \in \xi^{\perp}$

$$g(\phi A\xi, X) = -g(\xi, A\phi X) = -g(\xi, \phi AX) = 0.$$

Since $g(\phi A\xi, \xi) = 0$, we get $\phi A\xi = 0$, and $A\phi\xi - \phi A\xi = 0$. Therefore $A\phi - \phi A = 0$ on M.

LEMMA. Let M be a real hypersurface of CP^n . Then if $g((A\phi - \phi A)X, Y) = 0, X, Y \in \xi^{\perp}$ and ξ is principal, then for $X \in \xi^{\perp}$

$$(A\phi - \phi A)X = 0.$$

Proof. Assume that $g((A\phi - \phi A)X, Y) = 0, X, Y \in \xi^{\perp}$. Then we have on M

(9)
$$A\phi X - \phi A X = g(A\phi X, \xi)\xi - g(X, \xi)\phi A\xi.$$

Since ξ is principal, we have for $X \in \xi^{\perp}$

$$(A\phi-\phi A)X=0.$$

4. Proof of Theorem

Let M be a real hypersurface of \mathbb{CP}^n , $n \geq 3$. By Lemma we have only to prove the case that ξ is not principal, that is, $A\xi = \alpha\xi + \beta U$ for some functions α, β and a vector U which satisfies $g(U, \xi) = 0$ and g(U, U) = 1. Let $X, Y \in TM$. From Codazzi equation we have

(10)
$$(\nabla_X A)Y - (\nabla_Y A)X = \eta(X)\phi Y - \eta(Y)\phi X - 2g(\phi X, Y)\xi.$$

Taking the inner product (10) by ξ , we get

$$g((\nabla_X A)\xi, Y) - g((\nabla_Y A)\xi, X) = -2g(\phi X, Y).$$

Since $(\nabla_X A)\xi = (X\alpha)\xi + \alpha\phi AX + (X\beta)U + \beta\nabla_X U - A\phi AX$, we obtain

(11)
$$2g(A\phi AX, Y) - \alpha g(A\phi X, Y) - \alpha g(\phi AX, Y) - 2g(\phi X, Y) + (Y\alpha)g(X, \xi) - (X\alpha)g(Y, \xi) + (Y\beta)g(U, X) - (X\beta)g(U, Y) + \beta g(\nabla_Y U, X) - \beta g(\nabla_X U, Y) = 0.$$

By the assumption of theorem, i.e., (9) the equation (11) yields

(12)
$$2g(A\phi AX, Y) - 2\alpha g(A\phi X, Y) - 2g(\phi X, Y) \\ + \alpha g(A\phi X, \xi)g(\xi, Y) - \alpha\beta g(X, \xi)g(\phi U, Y) \\ + (Y\alpha)g(X, \xi) - (X\alpha)g(Y, \xi) \\ + (Y\beta)g(U, X) - (X\beta)g(U, Y) \\ + \beta g(\nabla_Y U, X) - \beta g(\nabla_X U, Y) = 0.$$

Putting $X = \xi$ in (12), we have

(13)
$$Y\alpha = -3\beta g(A\phi U, Y) + \alpha\beta g(\phi U, Y) + (\xi\alpha)g(Y,\xi) \\ + (\xi\beta)g(U,Y) + \beta g(\nabla_{\xi}U,Y).$$

Now, noting that

$$g(A\phi U, U) = g(\phi AU, U) = -g(AU, \phi U),$$

we can put

(14)
$$AU = \beta \xi + \lambda U + Z$$

for some function λ and a vector Z which satisfies $g(Z,\xi) = 0$ and g(Z,U) = 0. Also, since $A\phi$ is skew symmetric on $\{X \in \xi^{\perp} | g(X,U) = g(X,\phi U) = 0\} = T$, we can consider

	0	0	0	0				0	
$A\phi =$	0	0	λ	*				*	
	$-\beta$	$-\lambda$	0	*				*	
	0	0	0	0	μ_2				
	0	0	0	$-\mu_2$	0			•	
						۰.			
							0	μ_{n-1}	
	V.						$-\mu_{n-1}$	0)

at each point by an orthonormal basis. Hence (14) yields

(15)
$$AU = \beta \xi + \lambda U.$$

Differentiating (15) by $Y \in TM$, we get

(16)
$$(\nabla_Y A)U + A\nabla_Y U = (Y\beta)\xi + \beta\phi AY + (Y\lambda)U + \lambda\nabla_Y U.$$

Also, applying Codazzi equation to (16), we obtain

(17)
$$(\nabla_U A)Y + \eta(Y)\phi U - 2g(\phi Y, U)\xi + A\nabla_Y U = (Y\beta)\xi + \beta\phi AY + (Y\lambda)U + \lambda\nabla_Y U.$$

Taking the inner product (17) by ξ we have

(18)
$$Y\beta = g((\nabla_U A)\xi, Y) + 2g(\phi U, Y) - \lambda g(A\phi U, Y) + \alpha g(A\phi U, Y).$$

Also, taking the inner product (17) by U, we get

(19)
$$Y\lambda = g((\nabla_U A)U, Y) + 2\beta g(A\phi U, Y).$$

on each point and $\phi^2 = -1$, we can put $AX = \mu X$ for each $X \in \xi^{\perp}$ orthogonal to U and ϕU . Assume that $\mu = \lambda$. Taking the inner product (17) by X. We obtain

$$(\nabla_U A)X = -\beta A\phi X.$$

Noting that $A\phi X = \mu\phi X$, since $A\phi X = \phi AX$, we have $\mu = 0$. Therefore suppose $\mu \neq \lambda$. Then from (17) we get

(20)
$$(\mu - \lambda)g(\nabla_Y U, X) = -g((\nabla_U A)X, Y) - \beta g(Y, A\phi X).$$

Substituting (20) into (12) we obtain

(21)
$$2(\mu - \lambda)\mu^{2}\phi X - 2\alpha(\mu - \lambda)\mu\phi X - 2(\mu - \lambda)\phi X$$
$$-(\mu - \lambda)(X\alpha)\xi - (\mu - \lambda)(X\beta)U$$
$$+\beta(-(\nabla_{U}A)X - \beta\mu\phi X) - \beta(\mu - \lambda)\nabla_{X}U = 0$$

Applying ϕ to (21), we have

(22)
$$-2(\mu - \lambda)\mu^{2}X + 2\alpha(\mu - \lambda)\mu X + 2(\mu - \lambda)X$$
$$-(\mu - \lambda)(X\beta)\phi U$$
$$+\beta(-\phi(\nabla_{U}A)X + \beta\mu X) - \beta(\mu - \lambda)\phi \nabla_{X}U = 0.$$

From Codazzi equation we obtain

$$(\nabla_U A)X = (\nabla_X A)U,$$

84

i.e.,

(23)
$$(U\mu)X + (\mu I - A)\nabla_U X = (X\beta)\xi + \beta\mu\phi X + (X\lambda)U + (\lambda I - A)\nabla_X U.$$

Taking the inner product (23) by ϕX , we have

(24)
$$\beta \mu + (\lambda - \mu)g(\nabla_X U, \phi X) = 0.$$

Combining (21) with (24), we get

(25)
$$(\mu - \lambda)\mu^2 - \alpha(\mu - \lambda)\mu - (\mu - \lambda) - \beta^2\mu = 0.$$

Also, fom Codazzi equation we have

$$(\nabla_X A)\phi U = (\nabla_{\phi U} A)X.$$

and get

(26)
$$(\phi U)\mu - (\mu - \lambda)g(\nabla_X U, \phi X) = 0.$$

By (24) and (26) we obtain

(27)
$$(\phi U)\mu = \beta \mu.$$

On the other hand, from (13), (18) and (19) we get

(28)
$$(\phi U)\alpha = -3\beta\lambda + \alpha\beta + \beta g(\nabla_{\varepsilon} U, \phi U),$$

- (29) $(\phi U)\beta = -\lambda^2 + \alpha\lambda + \beta^2 + 1,$
- (30) $(\phi U)\lambda = 3\beta\lambda.$

We put $g(\nabla_{\xi} U, \phi U) = \Phi$. Defferentiating the equation (25) by ϕU , we have

(31)
$$\beta(3\mu^3 - 2\lambda\mu^2 - 3\alpha\mu^2 - \Phi\mu^2 + 3\alpha\mu\lambda) - \mu\lambda^2 + \Phi\mu\lambda - 3\mu + 3\lambda - 3\beta^2\mu) = 0.$$

Combining (25) with (31), we obtain

 $\mu(\mu-\lambda)(\lambda-\Phi)=0,$

since $\beta \neq 0$. If $\mu = 0$, then from (25) we have $\lambda = 0$, which is a contradiction to the assumption of $\mu \neq \lambda$. Thus we obtain

$$\lambda - \Phi = 0.$$

Now, the equation (25), i.e.,

(33)
$$x^3 - (\lambda + \alpha)x^2 + (\alpha\lambda - 1 - \beta^2)x + \lambda = 0.$$

has at most three distinct roots. Suppose that μ, ν and τ are distinct roots of (33). Without the loss of generality we may assume that μ is the largest root of (33). Replacing x by $x + \mu$ and using (25), we have

(34)
$$x^3 - (-3\mu + \lambda + \alpha)x^2 + (3\mu^2 - 2\mu(\lambda + \alpha) + (\alpha\lambda - 1 - \beta^2))x = 0.$$

Then two roots of (34) which are not zero must have the same signs. Hence

(35)
$$3\mu^2 - 2\mu(\lambda + \alpha) + (\alpha\lambda - 1 - \beta^2)$$

is absolutely positive. But the discriminant of (35) is absolutely positive, which is contradiction. Thus (33) has at most two distinct roots. If μ and ν are distinct roots of (33), then we have

(36)
$$(\nu-\lambda)\nu^2 - \alpha(\nu-\lambda)\nu - (\nu-\lambda) - \beta^2\nu = 0.$$

Subtracting (36) from (25), we get

(37)
$$\mu^{2} + \mu\nu + \nu^{2} - \lambda\mu - \lambda\nu - \alpha\nu + \alpha\lambda - 1 - \beta^{2} = 0,$$

since $\mu \neq \nu$. Multiplying (37) by μ , we have

(38)
$$\mu^3 + \mu^2 \nu + \mu \nu^2 - \lambda \mu^2 - \lambda \mu \nu - \alpha \mu^2 - \alpha \mu \nu + \alpha \lambda \mu - \mu - \beta^2 \mu = 0.$$

Subtracting (38) from (25), we get

(39)
$$\mu^2\nu + \mu\nu^2 - \lambda\mu\nu - \alpha\mu\nu - \lambda = 0.$$

From the roots and coefficients of the equation (39) we have

$$\mu + \nu = -\nu + \lambda + \alpha = -\mu + \lambda + \alpha.$$

Therefore (33) has only a root. Thus we get

(41)
$$3\mu^2 = \alpha\lambda - 1 - \beta^2,$$

$$\mu^3 = \lambda.$$

By the way, the equation (25) yields

(42)
$$(\mu - \lambda)^3 - (\alpha - 2\lambda)(\mu - \lambda)^2 + (\lambda^2 - \alpha\lambda - 1 - \beta^2)(\mu - \lambda) - \beta^2\lambda = 0.$$

Then from (40) and (41) we have

- (43) $\alpha 2\lambda = 3(\mu \lambda),$
- (44) $(\lambda^2 \alpha\lambda 1 \beta^2) = 3(\mu \lambda)^2.$

Combining (42) with (43) and (44), we obtain

(45)
$$(\mu - \lambda)^3 - \beta^2 \lambda = 0.$$

Differentiating (45) by ϕU we have

$$3(\mu - \lambda)^{2}(\mu - \lambda - 2\lambda) - 3\beta^{2}\lambda$$
$$- 2\lambda(-\lambda^{2} + \alpha\lambda + \beta^{2} + 1) = 0,$$

since $\beta \neq 0$. Using (40) and (45), we obtain

$$- 6\lambda (\frac{\lambda + \alpha}{3} - \lambda)^2$$

- $2\lambda (-\lambda^2 + \alpha\lambda + \beta^2 + 1),$
= $\frac{\lambda}{3} (-2\lambda^2 + 2\alpha\lambda - 2\alpha^2 - 6 - 6\beta^2) = 0,$

i.e., $\lambda = 0$. By (45) we get $\mu = 0$, which contradicts to the assumption of $\mu \neq \lambda$. Thus *M* is a ruled real hypersurfaces. Conversely, assume that A_1, A_2 or a ruled hypersurface. Then we can easily confirm that they satisfies (2).

References

- T. Cecil and P.J. Ryan, Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc., 269 (1982), 481-498.
- [2] T. Gotoh, Geodesic hypersurfaces in complex projective space, Tsukuba J. Math., 18 (1994), 207-215.
- [3] M. Kimura, Sectional curvatures of holomorphic planes on a real hypersurfaces in $P_n(\mathbb{C})$, Math. Ann., 276 (1987), 487-497.
- Y. Matsuyama, A characerization of real hypersurfaces in complex projective space III, Yokohama Math. J., 46 (1999), 119-126.
- [5] M. Okumura, On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc., 212 (1975), 355-364.
- [6] Y.J. Suh, Real hypersurfaces in complex space forms with η -recurrent second fundamental tensors, Math. J. Toyama. Univ., 19 (1996), 127-141.
- [7] R. Takagi, On real hypersurfaces of a complex projective space, Osaka J. Math., 10 (1973), 495-506.

Department of Mathematics, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan E-mail: matuyama@math.chuo-u.ac.jp