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Abstract. The purpose of the present paper is to characterize $A_{1},$ $A_{2}$ or a ruled
real hypersurface of $CP$“ under a certain condition on the second fundamental
form.

1. Introduction

Let $CP^{n},$ $n\geq 2$ , be an n-dimensional complex projective space with Fubini-
Study metric of constant holomorphic sectional curvature 4, and let $M$ be a real
hypersurface of $CP^{n}$ . Let $\nu$ be a unit normal vector field on $M$ and $\xi=-J\nu$ ,
where $J$ denotes the complex structure of $CP^{n}$ . $M$ has an almost contact metric
structure $(\phi, \xi, \eta, g)$ induced from $J$ . Many differential geometers have studied
$M$ (cf. $[1]-[7]$ ) by using the structure $(\phi, \xi, \eta, g)$ .

Typical examples of real hypersurfaces in $CP^{n}$ are homogeneous ones. TAK-
$AGI[7]$ showed that all homogeneous real hypersurfaces in $CP^{n}$ are realized as
the tubes of constant radius over compact Hermitian symmetric spaces of rank
1 or rank 2. Namely, he showed the following: Let $M$ be a homogeneous real
hypersurface of $CP^{n}$ . Then $M$ is a tube of radius $r$ over one of the following
Kaehler submanifolds:
(A) hyperplane $CP^{n-1}$ , where $0<r<\frac{\pi}{2}$

(A) totally geodesic $CP^{k}(1\leq k\leq n-2)$ ,
(B) complex quadric $Q_{n-1}$ , where $0<r<\frac{\pi}{4}$

(C) $CP^{1}\times CP^{n-1}$ , where $0<r<\frac{\pi}{4}$ and $n(\geq 5)$ is odd,
(D) complex Grassmann $CG_{2,5}$ , where $0<r<\frac{\pi}{4}$ and $n=9$ ,
(E) Hermitian symmetric space $SO(10)/U(5)$ , where $0<r<\frac{\pi}{4}$ and $n=15$ .
Due to his classification, we find that the number of distinct constant principal
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curvatures of a homogeneous real hypersurface is 2, 3 or 5. Here note that the
vector $\xi$ of any homogeneous real hypersurface $M$ (which is a tube of radius r) is a
principal curvature vector with principal curvature $\alpha=2$ cot $2r$ with multiplicity
1 (See [1]) and that in the case of type $A_{1}M$ has two distinct principal curvatures
and in the case of type $A_{2}M$ has three distinct principal curvatures $t,$ $-\frac{1}{t}$ and
$\alpha=t-\frac{1}{t}$ .

OKUMURA [5] proved the following remarkable result: a real hypersurface $M$

of $CP^{n}$ satisfies $A\phi-\phi A=0$ on $M$ if and only if $M$ is locally congruent to $A_{1}$

or $A_{2}$ .
The purpose of the present paper is to study more weaker condition either

(1) $(A\phi-\phi A)X=0$

for any $\xi^{\perp}$ (See [2]) or

(2) $g((A\phi-\phi A)X, Y)=0$

for any $X,$ $Y\in\xi^{\perp}$ , where $g$ and $\xi^{\perp}$ denotes the induced metric of $M$ by the
metric of $CP^{n}$ and the orthogonal complemnt of $\xi$ in $TM$ , respectively. Now,
we prepare the notion of a ruled real hypersurface (See [3], [4]) which means that
there is a foliation of $M$ by complex hypersurfaces $CP^{n-1}$ and that $M$ is a ruled
real hypersurface of $CP^{n}$ if and only if the shape operator $A$ satisfies

(3) $A\xi=\alpha\xi+\beta U,$ $AU=\beta\xi+\lambda U$ and $AX=0$

for $X\in\xi^{\perp}$ . Specifically, we shall prove the following:

PROPOSITION. Let $M$ be a real hypersurface of $CP^{n}$ . Then $M$ sabisfies (1)

if and only if $M$ satisfies
$A\phi-\phi A=0$

on $M$ .

THEOREM. Let $M$ be a real hypersurface of $CP^{n},$ $n\geq 3$ . Then $M$ satisfies
(2) if and only if $M$ is locally congruent to $A_{1},$ $A_{2}$ or a ruled real hypersurface.

REMARK 1. We don’t know whether or not the case of $n=2$ of Theorem is
true.

REMARK 2. We note that SUH [6] showed that an $\eta$-recurrent real hypersurface
$M$ (i.e., $g((\nabla_{X}A)Y, Z)=\lambda(X)g(AY, Z)$ for some functions $\lambda(X)$ and $X,$ $Y$ and
$Z\in\xi^{\perp})$ satifies (2) if and only if $M$ is locally congruent to $A_{1},$ $A_{2}$ or a ruled
real hypersurface.
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2. Preliminaries

Let $X$ be a tangent vector field on $M$ . We write $ JX=\phi X+\eta(X)\nu$ , where
$\phi X$ is the tangent component of $JX$ and $\eta(X)=g(X, \xi)$ . As $J^{2}=-Id$ , where
$Id$ denotes the identity endomorphism on $TCP^{n}$ , we get

(4) $\phi^{2}X=-X+\eta(X)\xi$ , $\eta(\phi X)=0$ , $\phi\xi=0$

for any $X$ tangent to $M$ . It is also easy to see that for any $X$ and $Y$ tangent to
$M$

(5) $(\nabla_{X}\phi)Y=\eta(Y)AX-g(AX, Y)\xi$ ,

(6) $(\nabla_{X}\xi)=\phi AX$ ,

where $\nabla$ denotes the convarinat defferentiation on $M$ . Finally, from the exprae-
sion of the curvature tensor of $CP^{n}$ , we see that the curvature tensor $R$ and
Codazzi equation of $M$ are given by

(7) $R(X, Y)Z=g(Y, Z)X-g(X, Z)Y+g(\phi Y, Z)\phi X-g(\phi X, Z)\phi Y$

$-2g(\phi X, Y)\phi Z+g(AY, Z)AX-g(AX, Z)AY$,

(8) $(\nabla_{X}A)Y-(\nabla_{Y}A)X=\eta(X)\phi Y-\eta(Y)\phi X-2g(\phi X, Y)\xi$ .

3. Proof of Proposition and key Lemma

Let $M$ be a real hypersurface of $CP^{n}$ . Then we mention again:

PROPOSITION. Let $M$ be a real hypersurface of $CP^{n}$ . Then $M$ sabisfies
$(A\phi-\phi A)X=0$

for any $X$ in $\xi^{\perp}if$ and only if $A\phi-\phi A=0$ on $M$ (See Introduction).

Proof. Assume that $(A\phi-\phi A)X=0$ for any $X$ in $\xi^{\perp}$ . Then we have for $X\in\xi^{\perp}$

$g(\phi A\xi, X)=-g(\xi, A\phi X)=-g(\xi, \phi AX)=0$ .

Since $g(\phi A\xi, \xi)=0$ , we get $\phi A\xi=0$ , and $A\phi\xi-\phi A\xi=0$ . Therefore $A\phi-\phi A=0$

on $M$ .

LEMMA. Let $M$ be a real hypersurface of $CP^{n}$ . Then if $g((A\phi-\phi A)X, Y)=$

$0,$ $X,$ $Y\in\xi^{\perp}and$ $\xi$ is principal, then for $X\in\xi^{\perp}$

$(A\phi-\phi A)X=0$ .
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Proof. Assume that $g((A\phi-\phi A)X, Y)=0,$ $X,$ $Y\in\xi^{\perp}$ . Then we have on $M$

(9) $ A\phi X-\phi AX=g(A\phi X, \xi)\xi-g(X, \xi)\phi A\xi$ .

Since $\xi$ is principal, we have for $X\in\xi^{\perp}$

$(A\phi-\phi A)X=0$ .

4. Proof of Theorem

Let $M$ be a real hypersurface of $CP^{n},$ $n\geq 3$ . By Lemma we have only to
prove the case that $\xi$ is not principal, that is, $A\xi=\alpha\xi+\beta U$ for some functions
$\alpha,$

$\beta$ and a vector $U$ which satisfies $g(U, \xi)=0$ and $g(U, U)=1$ . Let $X,$ $Y\in TM$ .
From Codazzi equation we have

(10) $(\nabla_{X}A)Y-(\nabla_{Y}A)X=\eta(X)\phi Y-\eta(Y)\phi X-2g(\phi X, Y)\xi$ .

Taking the inner product (10) by $\xi$ , we get

$g((\nabla_{X}A)\xi, Y)-g((\nabla_{Y}A)\xi, X)=-2g(\phi X, Y)$ .

Since $(\nabla_{X}A)\xi=(X\alpha)\xi+\alpha\phi AX+(X\beta)U+\beta\nabla_{X}U-A\phi AX$ , we obtain

(11) $2g(A\phi AX, Y)-\alpha g(A\phi X, Y)-\alpha g(\phi AX, Y)-2g(\phi X, Y)$

$+(Y\alpha)g(X,\xi)-(X\alpha)g(Y, \xi)$

$+(Y\beta)g(U, X)-(X\beta)g(U, Y)$

$+\beta g(\nabla_{Y}U, X)-\beta g(\nabla_{X}U, Y)=0$ .

By the assumption of theorem, $i.e.,$ (9) the equation (11) yields

(12) $2g(A\phi AX, Y)-2\alpha g(A\phi X, Y)-2g(\phi X, Y)$

$+\alpha g(A\phi X, \xi)g(\xi, Y)-\alpha\beta g(X, \xi)g(\phi U, Y)$

$+(Y\alpha)g(X, \xi)-(X\alpha)g(Y, \xi)$

$+(Y\beta)g(U, X)-(X\beta)g(U, Y)$

$+\beta g(\nabla_{Y}U, X)-\beta g(\nabla_{X}U, Y)=0$ .

Putting $ X=\xi$ in (12), we have

(13) $Y\alpha=-3\beta g(A\phi U, Y)+\alpha\beta g(\phi U, Y)+(\xi\alpha)g(Y, \xi)$

$+(\xi\beta)g(U, Y)+\beta g(\nabla_{\xi}U, Y)$ .
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Now, noting that

$g(A\phi U, U)=g(\phi AU, U)=-g(AU, \phi U)$ ,

we can put

(14) $AU=\beta\xi+\lambda U+Z$

for some function $\lambda$ and a vector $Z$ which satisfies $g(Z, \xi)=0$ and $g(Z, U)=0$ .
Also, since $ A\phi$ is skew symmetric on $\{X\in\xi^{\perp}|g(X, U)=g(X, \phi U)=0\}=T$,
we can consider

$A\phi=[-\beta 0000$

$-\lambda 0000$ $000\lambda 0$

$0**0-\mu_{2}$

$0\mu_{2}$

$..$ .
$0-\mu_{n-1}$

$0\mu_{n-1}**0]$

at each point by an orthonormal basis. Hence (14) yields

(15) $AU=\beta\xi+\lambda U$.

Differentiating (15) by $Y\in TM$ , we get

(16) $(\nabla_{Y}A)U+A\nabla_{Y}U=(Y\beta)\xi+\beta\phi AY+(Y\lambda)U+\lambda\nabla_{Y}U$.

Also, applying Codazzi equation to (16), we obtain

(17) $(\nabla_{U}A)Y+\eta(Y)\phi U-2g(\phi Y, U)\xi+A\nabla_{Y}U$

$=(Y\beta)\xi+\beta\phi AY+(Y\lambda)U+\lambda\nabla_{Y}U$.

Taking the inner product (17) by $\xi$ we have

(18) $Y\beta=g((\nabla_{U}A)\xi, Y)+2g(\phi U, Y)-\lambda g(A\phi U, Y)+\alpha g(A\phi U, Y)$ .

Also, taking the inner product (17) by $U$ , we get

(19) $Y\lambda=g((\nabla_{U}A)U, Y)+2\beta g(A\phi U, Y)$ .
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Noting that $A\phi=[-\beta 0000$

$-\lambda 00000000\lambda$ $0000-\mu_{2}$

$0\mu_{2}$

$..$ .
$0-\mu_{n-1}$

$0\mu_{n-1}000)$

$=\left\{\begin{array}{llllllll}\alpha & \beta & & & & & & \\\beta & \lambda & & & & & & \\ & & \lambda & & & & & \\ & & & \mu_{2} & & & & \\ & & & & \mu_{2} & & & \\ & & & & & \ddots & & \\ & & & & & & \mu_{n-1} & \mu_{n-l}\end{array}\right\}\left\{\begin{array}{lllllll}0 & & & & & & \\ & 0 & 1 & & & & \\ & -1 & 0 & & & & \\ & & & 0 & 1 & & \\ & & & -l & 0 & & \\ & & & & & \ddots 0 & 1\\ & & & & & -1 & 0\end{array}\right\}$

on each point and $\phi^{2}=-1$ , we can put $AX=\mu X$ for each $X\in\xi^{\perp}$ orthogonal
to $U$ and $\phi U$ . Assume that $\mu=\lambda$ . Taking the inner product (17) by $X$ . We
obtain

$(\nabla_{U}A)X=-\beta A\phi X$.
Noting that $A\phi X=\mu\phi X$ , since $A\phi X=\phi AX$ , we have $\mu=0$ . Therefore
suppose $\mu\neq\lambda$ . Then from (17) we get

(20) $(\mu-\lambda)g(\nabla_{Y}U, X)=-g((\nabla_{U}A)X, Y)-\beta g(Y, A\phi X)$ .
Substituting (20) into (12) we obtain

(21) $2(\mu-\lambda)\mu^{2}\phi X-2\alpha(\mu-\lambda)\mu\phi X-2(\mu-\lambda)\phi X$

$-(\mu-\lambda)(X\alpha)\xi-(\mu-\lambda)(X\beta)U$

$+\beta(-(\nabla_{U}A)X-\beta\mu\phi X)-\beta(\mu-\lambda)\nabla_{X}U=0$ .
Applying $\phi$ to (21), we have

(22) $-2(\mu-\lambda)\mu^{2}X+2\alpha(\mu-\lambda)\mu X+2(\mu-\lambda)X$

$-(\mu-\lambda)(X\beta)\phi U$

$+\beta(-\phi(\nabla_{U}A)X+\beta\mu X)-\beta(\mu-\lambda)\phi\nabla_{X}U=0$ .
From Codazzi equation we obtain

$(\nabla_{U}A)X=(\nabla_{X}A)U$,
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$i.e.$ ,

(23) $(U\mu)X+(\mu I-A)\nabla_{U}X=(X\beta)\xi+\beta\mu\phi X+(X\lambda)U+(\lambda I-A)\nabla_{X}U$.

Taking the inner product (23) by $\phi X$ , we have

(24) $\beta\mu+(\lambda-\mu)g(\nabla_{X}U, \phi X)=0$ .

Combining (21) with (24), we get

(25) $(\mu-\lambda)\mu^{2}-\alpha(\mu-\lambda)\mu-(\mu-\lambda)-\beta^{2}\mu=0$ .
Also, fom Codazzi equation we have

$(\nabla_{X}A)\phi U=(\nabla_{\phi U}A)X$.

and get

(26) $(\phi U)\mu-(\mu-\lambda)g(\nabla_{X}U, \phi X)=0$ . $\backslash $

By (24) and (26) we obtain

(27) $(\phi U)\mu=\beta\mu$ .

On the other hand, from (13), (18) and (19) we get

(28) $(\phi U)\alpha=-3\beta\lambda+\alpha\beta+\beta g(\nabla_{\xi}U, \phi U)$ ,
(29) $(\phi U)\beta=-\lambda^{2}+\alpha\lambda+\beta^{2}+1$ ,
(30) $(\phi U)\lambda=3\beta\lambda$ .

We put $ g(\nabla_{\xi}U, \phi U)=\Phi$ . Defferentiating the equation (25) by $\phi U$ , we have

(31) $\beta(3\mu^{3}-2\lambda\mu^{2}-3\alpha\mu^{2}-\Phi\mu^{2}+3\alpha\mu\lambda$

$-\mu\lambda^{2}+\Phi\mu\lambda-3\mu+3\lambda-3\beta^{2}\mu)=0$ .

Combining (25) with (31), we obtain

$\mu(\mu-\lambda)(\lambda-\Phi)=0$ ,

since $\beta\neq 0$ . If $\mu=0$ , then from (25) we have $\lambda=0$ , which is a contradiction to
the assumption of $\mu\neq\lambda$ . Thus we obtain

(32) $\lambda-\Phi=0$ .
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Now, the equation (25), i.e.,

(33) $x^{3}-(\lambda+\alpha)x^{2}+(\alpha\lambda-1-\beta^{2})x+\lambda=0$ .

has at most three distinct roots. Suppose that $\mu,$ $\nu$ and $\tau$ are distinct roots of
(33). Without the loss of generality we may assume that $\mu$ is the largest root of
(33). Replacing $x$ by $ x+\mu$ and using (25), we have

(34) $x^{3}-(-3\mu+\lambda+\alpha)x^{2}+(3\mu^{2}-2\mu(\lambda+\alpha)+(\alpha\lambda-1-\beta^{2}))x=0$ .

Then two roots of (34) which $are$ not zero must have the same signs. Hence

(35) $3\mu^{2}-2\mu(\lambda+\alpha)+(\alpha\lambda-1-\beta^{2})$

is absolutely positive. But the discriminant of (35) is absolutely positive, which
is contradiction. Thus (33) has at most two distinct roots. If $\mu$ and $\nu$ are distinct
roots of (33), then we have

(36) $(\nu-\lambda)\nu^{2}-\alpha(\nu-\lambda)\nu-(\nu-\lambda)-\beta^{2}\nu=0$ .

Subtracting (36) from (25), we get

(37) $\mu^{2}+\mu\nu+\nu^{2}-\lambda\mu-\lambda\nu-\alpha\nu+\alpha\lambda-1-\beta^{2}=0$ ,

since $\mu\neq\nu$. Multiplying (37) by $\mu$ , we have

(38) $\mu^{3}+\mu^{2}\nu+\mu\nu^{2}-\lambda\mu^{2}-\lambda\mu\nu-\alpha\mu^{2}-\alpha\mu\nu+\alpha\lambda\mu-\mu-\beta^{2}\mu=0$ .

Subtracting (38) from (25), we get

(39) $\mu^{2}\nu+\mu\nu^{2}-\lambda\mu\nu-\alpha\mu\nu-\lambda=0$ .
From the roots and coefficients of the equation (39) we have

$\mu+\nu=-\nu+\lambda+\alpha=-\mu+\lambda+\alpha$ .

Therefore (33) has only a root. Thus we get

(40) $ 3\mu=\lambda+\alpha$ ,
(41) $3\mu^{2}=\alpha\lambda-1-\beta^{2}$ ,

$-\mu^{3}=\lambda$ .

By the way, the equation (25) yields

(42) $(\mu-\lambda)^{3}-(\alpha-2\lambda)(\mu-\lambda)^{2}+(\lambda^{2}-\alpha\lambda-1-\beta^{2})(\mu-\lambda)-\beta^{2}\lambda=0$ .
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Then from (40) and (41) we have

(43) $\alpha-2\lambda=3(\mu-\lambda)$ ,
(44) $(\lambda^{2}-\alpha\lambda-1-\beta^{2})=3(\mu-\lambda)^{2}$ .

Combining (42) with (43) and (44), we obtain

(45) $(\mu-\lambda)^{3}-\beta^{2}\lambda=0$.

Differentiating (45) by $\phi U$ we have

3 $(\mu-\lambda)^{2}(\mu-\lambda-2\lambda)-3\beta^{2}\lambda$

$-2\lambda(-\lambda^{2}+\alpha\lambda+\beta^{2}+1)=0$ ,

since $\beta\neq 0$ . Using (40) and (45), we obtain

$-6\lambda(\frac{\lambda+\alpha}{3}-\lambda)^{2}$

$-2\lambda(-\lambda^{2}+\alpha\lambda+\beta^{2}+1)$ ,

$=\frac{\lambda}{3}(-2\lambda^{2}+2\alpha\lambda-2\alpha^{2}-6-6\beta^{2})=0$,

$i.e.,$ $\lambda=0$ . By (45) we get $\mu=0$ , which contradicts to the assumption of $\mu\neq\lambda$ .
Thus $M$ is a ruled real hypersurfaces. Conversely, assume that $A_{1},$ $A_{2}$ or a ruled
hypersurface. Then we can easily confirm that they satisfies (2).
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