REAL HYPERSURFACES IN COMPLEX PROJECTIVE SPACE SATISFYING A CERTAIN CONDITION ON THE SECOND FUNDAMENTAL FORM

By
Yoshio Matsuyama

(Received December 12, 2000; Revised July 15, 2001)

Abstract

The purpose of the present paper is to characterize A_{1}, A_{2} or a ruled real hypersurface of $C P^{\boldsymbol{n}}$ under a certain condition on the second fundamental form.

1. Introduction

Let $C P^{n}, n \geq 2$, be an n-dimensional complex projective space with FubiniStudy metric of constant holomorphic sectional curvature 4, and let M be a real hypersurface of $C P^{n}$. Let ν be a unit normal vector field on M and $\xi=-J \nu$, where J denotes the complex structure of $C P^{n} . M$ has an almost contact metric structure (ϕ, ξ, η, g) induced from J. Many differential geometers have studied M (cf. [1]-[7]) by using the structure (ϕ, ξ, η, g).

Typical examples of real hypersurfaces in $C P^{n}$ are homogeneous ones. TAKAGI [7] showed that all homogeneous real hypersurfaces in $C P^{n}$ are realized as the tubes of constant radius over compact Hermitian symmetric spaces of rank 1 or rank 2. Namely, he showed the following : Let M be a homogeneous real hypersurface of $C P^{n}$. Then M is a tube of radius r over one of the following Kaehler submanifolds:
(A_{1}) hyperplane $C P^{n-1}$, where $0<r<\frac{\pi}{2}$,
(A_{2}) totally geodesic $C P^{k}(1 \leq k \leq n-2)$,
(B) complex quadric Q_{n-1}, where $0<r<\frac{\pi}{4}$,
(C) $C P^{1} \times C P^{\frac{n-1}{2}}$, where $0<r<\frac{\pi}{4}$ and $n(\geq 5)$ is odd,
(D) complex Grassmann $C G_{2,5}$, where $0<r<\frac{\pi}{4}$ and $n=9$,
(E) Hermitian symmetric space $S O(10) / U(5)$, where $0<r<\frac{\pi}{4}$ and $n=15$.

Due to his classification, we find that the number of distinct constant principal

[^0]curvatures of a homogeneous real hypersurface is 2,3 or 5 . Here note that the vector ξ of any homogeneous real hypersurface M (which is a tube of radius r) is a principal curvature vector with principal curvature $\alpha=2 \cot 2 r$ with multiplicity 1 (See [1]]) and that in the case of type $\mathrm{A}_{1} M$ has two distinct principal curvatures and in the case of type $\mathrm{A}_{2} M$ has three distinct principal curvatures $t,-\frac{1}{t}$ and $\alpha=t-\frac{1}{t}$.

OKUMURA [5] proved the following remarkable result: a real hypersurface M of $C P^{n}$ satisfies $A \phi-\phi A=0$ on M if and only if M is locally congruent to A_{1} or A_{2}.

The purpose of the present paper is to study more weaker condition either

$$
\begin{equation*}
(A \phi-\phi A) X=0 \tag{1}
\end{equation*}
$$

for any ξ^{\perp} (See [2]) or

$$
\begin{equation*}
g((A \phi-\phi A) X, Y)=0 \tag{2}
\end{equation*}
$$

for any $X, Y \in \xi^{\perp}$, where g and ξ^{\perp} denotes the induced metric of M by the metric of $C P^{n}$ and the orthogonal complemnt of ξ in $T M$, respectively. Now, we prepare the notion of a ruled real hypersurface (See [3], [4]) which means that there is a foliation of M by complex hypersurfaces $C P^{n-1}$ and that M is a ruled real hypersurface of $C P^{n}$ if and only if the shape operator A satisfies

$$
\begin{equation*}
A \xi=\alpha \xi+\beta U, A U=\beta \xi+\lambda U \quad \text { and } \quad A X=0 \tag{3}
\end{equation*}
$$

for $X \in \xi^{\perp}$. Specifically, we shall prove the following :
Proposition. Let M be a real hypersurface of $C P^{n}$. Then M satisfies (1) if and only if M satisfies

$$
A \phi-\phi A=0
$$

on M.
THEOREM. Let M be a real hypersurface of $C P^{n}, n \geq 3$. Then M satisfies (2) if and only if M is locally congruent to $\mathrm{A}_{1}, \mathrm{~A}_{2}$ or a ruled real hypersurface.

REMARK 1. We don't know whether or not the case of $n=2$ of Theorem is true.

REMARK 2. We note that SuH [6] showed that an η-recurrent real hypersurface M (i.e., $g\left(\left(\nabla_{X} A\right) Y, Z\right)=\lambda(X) g(A Y, Z)$ for some functions $\lambda(X)$ and X, Y and $Z \in \xi^{\perp}$) satifies (2) if and only if M is locally congruent to $\mathrm{A}_{1}, \mathrm{~A}_{2}$ or a ruled real hypersurface.

2. Preliminaries

Let X be a tangent vector field on M. We write $J X=\phi X+\eta(X) \nu$, where ϕX is the tangent component of $J X$ and $\eta(X)=g(X, \xi)$. As $J^{2}=-I d$, where $I d$ denotes the identity endomorphism on $T C P^{n}$, we get

$$
\begin{equation*}
\phi^{2} X=-X+\eta(X) \xi, \quad \eta(\phi X)=0, \quad \phi \xi=0 \tag{4}
\end{equation*}
$$

for any X tangent to M. It is also easy to see that for any X and Y tangent to M

$$
\begin{align*}
& \left(\nabla_{X} \phi\right) Y=\eta(Y) A X-g(A X, Y) \xi \tag{5}\\
& \left(\nabla_{X} \xi\right)=\phi A X \tag{6}
\end{align*}
$$

where ∇ denotes the convarinat defferentiation on M. Finally, from the expression of the curvature tensor of $C P^{n}$, we see that the curvature tensor R and Codazzi equation of M are given by

$$
\begin{align*}
R(X, Y) Z & =g(Y, Z) X-g(X, Z) Y+g(\phi Y, Z) \phi X-g(\phi X, Z) \phi Y \tag{7}\\
& -2 g(\phi X, Y) \phi Z+g(A Y, Z) A X-g(A X, Z) A Y
\end{align*}
$$

$$
\begin{equation*}
\left(\nabla_{X} A\right) Y-\left(\nabla_{Y} A\right) X=\eta(X) \phi Y-\eta(Y) \phi X-2 g(\phi X, Y) \xi \tag{8}
\end{equation*}
$$

3. Proof of Proposition and key Lemma

Let M be a real hypersurface of $C P^{n}$. Then we mention again:
Proposition. Let M be a real hypersurface of $C P^{n}$. Then M satisfies

$$
(A \phi-\phi A) X=0
$$

for any X in ξ^{\perp} if and only if $A \phi-\phi A=0$ on M (See Introduction).
Proof. Assume that $(A \phi-\phi A) X=0$ for any X in ξ^{\perp}. Then we have for $X \in \xi^{\perp}$

$$
g(\phi A \xi, X)=-g(\xi, A \phi X)=-g(\xi, \phi A X)=0
$$

Since $g(\phi A \xi, \xi)=0$, we get $\phi A \xi=0$, and $A \phi \xi-\phi A \xi=0$. Therefore $A \phi-\phi A=0$ on M.

LEMMA. Let M be a real hypersurface of $C P^{n}$. Then if $g((A \phi-\phi A) X, Y)=$ $0, X, Y \in \xi^{\perp}$ and ξ is principal, then for $X \in \xi^{\perp}$

$$
(A \phi-\phi A) X=0
$$

Proof. Assume that $g((A \phi-\phi A) X, Y)=0, X, Y \in \xi^{\perp}$. Then we have on M

$$
\begin{equation*}
A \phi X-\phi A X=g(A \phi X, \xi) \xi-g(X, \xi) \phi A \xi \tag{9}
\end{equation*}
$$

Since ξ is principal, we have for $X \in \xi^{\perp}$

$$
(A \phi-\phi A) X=0
$$

4. Proof of Theorem

Let M be a real hypersurface of $C P^{n}, n \geq 3$. By Lemma we have only to prove the case that ξ is not principal, that is, $A \xi=\alpha \xi+\beta U$ for some functions α, β and a vector U which satisfies $g(U, \xi)=0$ and $g(U, U)=1$. Let $X, Y \in T M$. From Codazzi equation we have

$$
\begin{equation*}
\left(\nabla_{X} A\right) Y-\left(\nabla_{Y} A\right) X=\eta(X) \phi Y-\eta(Y) \phi X-2 g(\phi X, Y) \xi \tag{10}
\end{equation*}
$$

Taking the inner product (10) by ξ, we get

$$
g\left(\left(\nabla_{X} A\right) \xi, Y\right)-g\left(\left(\nabla_{Y} A\right) \xi, X\right)=-2 g(\phi X, Y)
$$

Since $\left(\nabla_{X} A\right) \xi=(X \alpha) \xi+\alpha \phi A X+(X \beta) U+\beta \nabla_{X} U-A \phi A X$, we obtain

$$
\begin{align*}
2 g(A \phi A X, Y) & -\alpha g(A \phi X, Y)-\alpha g(\phi A X, Y)-2 g(\phi X, Y) \tag{11}\\
& +(Y \alpha) g(X, \xi)-(X \alpha) g(Y, \xi) \\
& +(Y \beta) g(U, X)-(X \beta) g(U, Y) \\
& +\beta g\left(\nabla_{Y} U, X\right)-\beta g\left(\nabla_{X} U, Y\right)=0 .
\end{align*}
$$

By the assumption of theorem, i.e., (9) the equation (11) yields

$$
\begin{align*}
2 g(A \phi A X, Y) & -2 \alpha g(A \phi X, Y)-2 g(\phi X, Y) \tag{12}\\
& +\alpha g(A \phi X, \xi) g(\xi, Y)-\alpha \beta g(X, \xi) g(\phi U, Y) \\
& +(Y \alpha) g(X, \xi)-(X \alpha) g(Y, \xi) \\
& +(Y \beta) g(U, X)-(X \beta) g(U, Y) \\
& +\beta g\left(\nabla_{Y} U, X\right)-\beta g\left(\nabla_{X} U, Y\right)=0
\end{align*}
$$

Putting $X=\xi$ in (12), we have

$$
\begin{align*}
Y \alpha & =-3 \beta g(A \phi U, Y)+\alpha \beta g(\phi U, Y)+(\xi \alpha) g(Y, \xi) \tag{13}\\
& +(\xi \beta) g(U, Y)+\beta g\left(\nabla_{\xi} U, Y\right)
\end{align*}
$$

Now, noting that

$$
g(A \phi U, U)=g(\phi A U, U)=-g(A U, \phi U)
$$

we can put

$$
\begin{equation*}
A U=\beta \xi+\lambda U+Z \tag{14}
\end{equation*}
$$

for some function λ and a vector Z which satisfies $g(Z, \xi)=0$ and $g(Z, U)=0$. Also, since $A \phi$ is skew symmetric on $\left\{X \in \xi^{\perp} \mid g(X, U)=g(X, \phi U)=0\right\}=T$, we can consider
$A \phi=\left(\begin{array}{rrllllll}0 & 0 & 0 & 0 & & & & 0 \\ 0 & 0 & \lambda & * & & & & * \\ -\beta & -\lambda & 0 & * & & & & * \\ 0 & 0 & 0 & 0 & \mu_{2} & & & \\ 0 & 0 & 0 & -\mu_{2} & 0 & & & \\ & & & & & \ddots & & \\ & & & & & & 0 & \mu_{n-1} \\ & & & & & & -\mu_{n-1} & 0\end{array}\right)$
at each point by an orthonormal basis. Hence (14) yields

$$
\begin{equation*}
A U=\beta \xi+\lambda U \tag{15}
\end{equation*}
$$

Differentiating (15) by $Y \in T M$, we get

$$
\begin{equation*}
\left(\nabla_{Y} A\right) U+A \nabla_{Y} U=(Y \beta) \xi+\beta \phi A Y+(Y \lambda) U+\lambda \nabla_{Y} U \tag{16}
\end{equation*}
$$

Also, applying Codazzi equation to (16), we obtain

$$
\begin{align*}
\left(\nabla_{U} A\right) Y & +\eta(Y) \phi U-2 g(\phi Y, U) \xi+A \nabla_{Y} U \tag{17}\\
& =(Y \beta) \xi+\beta \phi A Y+(Y \lambda) U+\lambda \nabla_{Y} U .
\end{align*}
$$

Taking the inner product (17) by ξ we have

$$
\begin{equation*}
Y \beta=g\left(\left(\nabla_{U} A\right) \xi, Y\right)+2 g(\phi U, Y)-\lambda g(A \phi U, Y)+\alpha g(A \phi U, Y) \tag{18}
\end{equation*}
$$

Also, taking the inner product (17) by U, we get

$$
\begin{equation*}
Y \lambda=g\left(\left(\nabla_{U} A\right) U, Y\right)+2 \beta g(A \phi U, Y) \tag{19}
\end{equation*}
$$

Noting that $A \phi=\left(\begin{array}{rrllllll}0 & 0 & 0 & 0 & & & & 0 \\ 0 & 0 & \lambda & 0 & & & & 0 \\ -\beta & -\lambda & 0 & 0 & & & & 0 \\ 0 & 0 & 0 & 0 & \mu_{2} & & & \\ 0 & 0 & 0 & -\mu_{2} & 0 & & & \\ & & & & & \ddots & & \\ & & & & & & 0 & \mu_{n-1} \\ & & & & & & -\mu_{n-1} & 0\end{array}\right)$

on each point and $\phi^{2}=-1$, we can put $A X=\mu X$ for each $X \in \xi^{\perp}$ orthogonal to U and ϕU. Assume that $\mu=\lambda$. Taking the inner product (17) by X. We obtain

$$
\left(\nabla_{U} A\right) X=-\beta A \phi X
$$

Noting that $A \phi X=\mu \phi X$, since $A \phi X=\phi A X$, we have $\mu=0$. Therefore suppose $\mu \neq \lambda$. Then from (17) we get

$$
\begin{equation*}
(\mu-\lambda) g\left(\nabla_{Y} U, X\right)=-g\left(\left(\nabla_{U} A\right) X, Y\right)-\beta g(Y, A \phi X) \tag{20}
\end{equation*}
$$

Substituting (20) into (12) we obtain

$$
\begin{align*}
& 2(\mu-\lambda) \mu^{2} \phi X-2 \alpha(\mu-\lambda) \mu \phi X-2(\mu-\lambda) \phi X \tag{21}\\
& \quad-(\mu-\lambda)(X \alpha) \xi-(\mu-\lambda)(X \beta) U \\
& \quad+\beta\left(-\left(\nabla_{U} A\right) X-\beta \mu \phi X\right)-\beta(\mu-\lambda) \nabla_{X} U=0
\end{align*}
$$

Applying ϕ to (21), we have

$$
\begin{align*}
-2(\mu & -\lambda) \mu^{2} X+2 \alpha(\mu-\lambda) \mu X+2(\mu-\lambda) X \tag{22}\\
& -(\mu-\lambda)(X \beta) \phi U \\
& +\beta\left(-\phi\left(\nabla_{U} A\right) X+\beta \mu X\right)-\beta(\mu-\lambda) \phi \nabla_{X} U=0
\end{align*}
$$

From Codazzi equation we obtain

$$
\left(\nabla_{U} A\right) X=\left(\nabla_{X} A\right) U
$$

i.e.,

$$
\begin{equation*}
(U \mu) X+(\mu I-A) \nabla_{U} X=(X \beta) \xi+\beta \mu \phi X+(X \lambda) U+(\lambda I-A) \nabla_{X} U \tag{23}
\end{equation*}
$$

Taking the inner product (23) by ϕX, we have

$$
\begin{equation*}
\beta \mu+(\lambda-\mu) g\left(\nabla_{X} U, \phi X\right)=0 \tag{24}
\end{equation*}
$$

Combining (21) with (24), we get

$$
\begin{equation*}
(\mu-\lambda) \mu^{2}-\alpha(\mu-\lambda) \mu-(\mu-\lambda)-\beta^{2} \mu=0 \tag{25}
\end{equation*}
$$

Also, fom Codazzi equation we have

$$
\left(\nabla_{X} A\right) \phi U=\left(\nabla_{\phi U} A\right) X
$$

and get

$$
\begin{equation*}
(\phi U) \mu-(\mu-\lambda) g\left(\nabla_{X} U, \phi X\right)=0 \tag{26}
\end{equation*}
$$

By (24) and (26) we obtain

$$
\begin{equation*}
(\phi U) \mu=\beta \mu \tag{27}
\end{equation*}
$$

On the other hand, from (13), (18) and (19) we get

$$
\begin{align*}
(\phi U) \alpha & =-3 \beta \lambda+\alpha \beta+\beta g\left(\nabla_{\xi} U, \phi U\right) \tag{28}\\
(\phi U) \beta & =-\lambda^{2}+\alpha \lambda+\beta^{2}+1 \tag{29}\\
(\phi U) \lambda & =3 \beta \lambda \tag{30}
\end{align*}
$$

We put $g\left(\nabla_{\xi} U, \phi U\right)=\Phi$. Defferentiating the equation (25) by ϕU, we have

$$
\begin{align*}
& \beta\left(3 \mu^{3}-2 \lambda \mu^{2}-3 \alpha \mu^{2}-\Phi \mu^{2}+3 \alpha \mu \lambda\right. \tag{31}\\
& \left.-\mu \lambda^{2}+\Phi \mu \lambda-3 \mu+3 \lambda-3 \beta^{2} \mu\right)=0
\end{align*}
$$

Combining (25) with (31), we obtain

$$
\mu(\mu-\lambda)(\lambda-\Phi)=0,
$$

since $\beta \neq 0$. If $\mu=0$, then from (25) we have $\lambda=0$, which is a contradiction to the assumption of $\mu \neq \lambda$. Thus we obtain

$$
\begin{equation*}
\lambda-\Phi=0 . \tag{32}
\end{equation*}
$$

Now, the equation (25), i.e.,

$$
\begin{equation*}
x^{3}-(\lambda+\alpha) x^{2}+\left(\alpha \lambda-1-\beta^{2}\right) x+\lambda=0 \tag{33}
\end{equation*}
$$

has at most three distinct roots. Suppose that μ, ν and τ are distinct roots of (33). Without the loss of generality we may assume that μ is the largest root of (33). Replacing x by $x+\mu$ and using (25), we have

$$
\begin{equation*}
x^{3}-(-3 \mu+\lambda+\alpha) x^{2}+\left(3 \mu^{2}-2 \mu(\lambda+\alpha)+\left(\alpha \lambda-1-\beta^{2}\right)\right) x=0 \tag{34}
\end{equation*}
$$

Then two roots of (34) which are not zero must have the same signs. Hence

$$
\begin{equation*}
3 \mu^{2}-2 \mu(\lambda+\alpha)+\left(\alpha \lambda-1-\beta^{2}\right) \tag{35}
\end{equation*}
$$

is absolutely positive. But the discriminant of (35) is absolutely positive, which is contradiction. Thus (33) has at most two distinct roots. If μ and ν are distinct roots of (33), then we have

$$
\begin{equation*}
(\nu-\lambda) \nu^{2}-\alpha(\nu-\lambda) \nu-(\nu-\lambda)-\beta^{2} \nu=0 . \tag{36}
\end{equation*}
$$

Subtracting (36) from (25), we get

$$
\begin{equation*}
\mu^{2}+\mu \nu+\nu^{2}-\lambda \mu-\lambda \nu-\alpha \nu+\alpha \lambda-1-\beta^{2}=0 \tag{37}
\end{equation*}
$$

since $\mu \neq \nu$. Multiplying (37) by μ, we have

$$
\begin{equation*}
\mu^{3}+\mu^{2} \nu+\mu \nu^{2}-\lambda \mu^{2}-\lambda \mu \nu-\alpha \mu^{2}-\alpha \mu \nu+\alpha \lambda \mu-\mu-\beta^{2} \mu=0 \tag{38}
\end{equation*}
$$

Subtracting (38) from (25), we get

$$
\begin{equation*}
\mu^{2} \nu+\mu \nu^{2}-\lambda \mu \nu-\alpha \mu \nu-\lambda=0 . \tag{39}
\end{equation*}
$$

From the roots and coefficients of the equation (39) we have

$$
\mu+\nu=-\nu+\lambda+\alpha=-\mu+\lambda+\alpha
$$

Therefore (33) has only a root. Thus we get

$$
\begin{align*}
3 \mu & =\lambda+\alpha \tag{40}\\
3 \mu^{2} & =\alpha \lambda-1-\beta^{2} \tag{41}\\
-\mu^{3} & =\lambda
\end{align*}
$$

By the way, the equation (25) yields

$$
\begin{equation*}
(\mu-\lambda)^{3}-(\alpha-2 \lambda)(\mu-\lambda)^{2}+\left(\lambda^{2}-\alpha \lambda-1-\beta^{2}\right)(\mu-\lambda)-\beta^{2} \lambda=0 \tag{42}
\end{equation*}
$$

Then from (40) and (41) we have

$$
\begin{align*}
& \alpha-2 \lambda=3(\mu-\lambda), \tag{43}\\
& \left(\lambda^{2}-\alpha \lambda-1-\beta^{2}\right)=3(\mu-\lambda)^{2} . \tag{44}
\end{align*}
$$

Combining (42) with (43) and (44), we obtain

$$
\begin{equation*}
(\mu-\lambda)^{3}-\beta^{2} \lambda=0 \tag{45}
\end{equation*}
$$

Differentiating (45) by ϕU we have

$$
\begin{aligned}
& 3(\mu-\lambda)^{2}(\mu-\lambda-2 \lambda)-3 \beta^{2} \lambda \\
& -2 \lambda\left(-\lambda^{2}+\alpha \lambda+\beta^{2}+1\right)=0
\end{aligned}
$$

since $\beta \neq 0$. Using (40) and (45), we obtain

$$
\begin{aligned}
& -6 \lambda\left(\frac{\lambda+\alpha}{3}-\lambda\right)^{2} \\
& -2 \lambda\left(-\lambda^{2}+\alpha \lambda+\beta^{2}+1\right) \\
& =\frac{\lambda}{3}\left(-2 \lambda^{2}+2 \alpha \lambda-2 \alpha^{2}-6-6 \beta^{2}\right)=0
\end{aligned}
$$

i.e., $\lambda=0$. By (45) we get $\mu=0$, which contradicts to the assumption of $\mu \neq \lambda$. Thus M is a ruled real hypersurfaces. Conversely, assume that A_{1}, A_{2} or a ruled hypersurface. Then we can easily confirm that they satisfies (2).

References

[1] T. Cecil and P.J. Ryan, Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc., 269 (1982), 481-498.
[2] T. Gotoh, Geodesic hypersurfaces in complex projective space, Tsukuba J. Math., 18 (1994), 207-215.
[3] M. Kimura, Sectional curvatures of holomorphic planes on a real hypersurfaces in $P_{n}(\mathbb{C})$, Math. Ann., 276 (1987), 487-497.
[4] Y. Matsuyama, A characerization of real hypersurfaces in complex projective space III, Yokohame Math. J., 46 (1999), 119-126.
[5] M. Okumura, On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc., 212 (1975), 355-364.
[6] Y.J. Suh, Real hypersurfaces in complex space forms with η-recurrent second fundamental tensors, Math. J. Toyama. Univ., 19 (1996), 127-141.
[7] R. Takagi, On real hypersurfaces of a complex projective space, Osaka J. Math., 10 (1973), 495-506.

> Department of Mathematics, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
> E-mail: matuyama@math.chuo-u.ac.jp

[^0]: 2000 Mathematics Subject Classification: Primary 53C40; Secondary 53B25
 Key words and phrases: complex projective space, real hypersurface, ruled hypersurface
 This research was partially supported by a grant as overseas research expenses of Chuo Univ, 2000

