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Abstract. In the paper we study the uniqueness of meromorphic functions
concerning differential polynomials and improve a result of Lahiri [8].

1. Introduction, Deflnitions and Results

In the paper by meromorphic function we always mean a function which is
meromorphic in the open complex plane $C$ . We use the standard notations of the
value distribution $th\infty ry$ without any explanation because these are available
in [7] and [12]. Let $f$ be a nonconstant meromorphic function. We denote
by $N_{1)}(r, a;f)$ and $\overline{N}_{(2}(r, a;f)$ the counting functions of only simple and only
distinct multiple zeros of $f-a$ respectively for $a\in C\cup\{\infty\}$ . Also we denote by
$S(r, f)$ any quantity satisfying $S(r, f)=o(T(r, f))$ as $ r\rightarrow\infty$ and $r\not\in E$ , where
$E$ is a set of finite linear measure and may not be the same in every occurrence.

Let $f$ and $g$ be two nonconstant meromorphic functions and $ a\in C\cup t\infty$}.
We say that $f$ and $g$ share the value a CM (counting multiplicities) if and only
if $f-a$ and $g-a$ have the same set of zeros with the same multiplicities. For a
meromorphic function $f$ we denote by $f^{(k)}$ the $k^{th}$ derivative of $f$ .

In [8] the following result is proved.

THEOREM 1. Let $f$ and $g$ be two nonconstant meromorphic functions and
$a_{1},$ $a_{2},$ $\ldots$ , $a_{n}(a_{n}\neq 0)$ be finite complex numbers. If

(i) $f$ and $g$ share $\infty$ CM;
(ii) $F$ and $G$ share $0,1$ CM, where $F=\sum_{i=1}^{n}a_{i}f^{(i)}$ and $G=\sum_{i=1}^{n}a_{i}g^{(i)}$ ;

(iil) $\frac{\Sigma_{\alpha\neq\infty}\delta(a;f)}{1+n(1-e_{(\infty}jf))}-m^{\infty j}>\frac{1}{2}$ where $\sum_{a\neq\infty}\delta(a;f)>0$;

then either (a) $F\equiv G$ or (b) $F\cdot G\equiv 1$ . If, further, $f$ has at least one pole or $F$

has at least one zero, the case (b) does not arise.
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Now one may as the following question: Is it possible in any way to
relax the nature of sharing the values and to weaken the condition on
deficiences in Theorem 1 ?

In the paper we give an affirmative answer to this question and prove two
results, one of which improves Theorem 1.

To this end we explain the notion of weighted sharing as introduced in [9,
10].

DEFINITION 1 ([9, 10]). Let $k$ be a nonnegative integer or infinity. For $ a\in$

$C\cup\{\infty\}$ we denote by $E_{k}(a;f)$ the set of all a-points of $f$ where an a-point
of multiplicity $m$ is counted $m$ times if $m\leq k$ and $k+1$ times if $m>k$ . If
$E_{k}(a;f)=E_{k}(a;g)$ , we say that $f,$ $g$ share the value $a$ with weight $k$ .

The definition implies that if $f,$ $g$ share a value $a$ with weight $k$ then $z_{o}$ is a
zero of $f-a$ with multiplicity $m(\leq k)$ if and only if it is a zero of $g-a$ with
multiplicity $m(\leq k)$ and $z_{o}$ is a zero of $f-a$ with multiplicity $m(>k)$ if and
only if it is a zero of $g-a$ with multiplicity $n(>k)$ where $m$ is not necessarily
equal to $n$ .

We write $f,$ $g$ share $(a, k)$ to mean that $f,$ $g$ share the value $a$ with weight
$k$ . Clearly if $f,$ $g$ share $(a, k)$ then $f,$ $g$ share $(a,p)$ for all integer $p$ , $0\leq p<k$ .
Also we note that $f,$ $g$ share a value $a$ IM or CM if and only if $f,$ $g$ share $(a, 0)$

or $(a, \infty)$ respectively.
Following two are the main results of the paper, the first of which improves

Theorem 1.

THEOREM 2. Let $f$ and $g$ be two nonconstant meromorphic $fi_{4}$nctions and
$a_{1},$ $a_{2},$ $\ldots a_{n}(a_{n}\neq 0)$ be finite complex numbers. If

(i) $f$ and $g$ share $(\infty, \infty)$ ;
(ii) $F$ and $G$ are nonconstant and share $(0,1),$ $(1, \infty)$ , where $F=\sum_{i=1}^{n}\alpha_{i}f^{(i)}$

and $G=\sum_{i=1}^{n}\alpha_{i}f^{(i)}$ ;
(iii) $\sum_{a\neq\infty}\delta(a;f)>\frac{1}{2}/$

then either (a) $F\equiv G$ or (b) $F\cdot G\equiv 1$ . If, further, $F$ has at least one zero or
$f$ has at least one pole, the case (b) does not arise.

THEOREM 3. Let $f$ and $g$ be two nonconstant meromorphic functions and
$a_{O},$ $a_{1},$ $\ldots a_{n}(a_{n}\neq 0)$ be finite complex numbers, where $n\geq 1$ . If

(i) $f$ and $g$ share $(\infty, \infty)$ ;
(ii) $F$ and $G$ are nonconstant and share $(0,1),$ $(1, \infty)$ , where $F=\sum_{|=0}^{n}\alpha_{i}f^{(i)}$

and $G=\sum_{i=0}^{n}\alpha_{i}f^{(i)}$ ;
(iii) $\delta(0;f)>\frac{1}{2}$ ;
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then either (a) $F\equiv G$ or (b) $F\cdot G\equiv 1$ . $If_{f}$ further, $f$ has at least one pole or $F$

has at least one zero, the case (b) does not arise.

Following example shows that the condition (iii) in Theorem 2 and 3 is best
possible.

Example ([8]). Let $f=\exp(z)-(\frac{1}{2})^{n}\exp(2z)$ and $g=(-1)^{n}\exp(-z)-(\frac{-1}{2})^{n}$

$\exp(-2z)$ . Then $F=f^{(n)}=\exp(z)-\exp(2z)$ and $G=g^{(n)}=\exp(-z)-$
$\exp(-2z)$ . Also it is easy to see that (i) $f$ and $g$ share $(\infty, \infty)$ , (ii) $F$ and $G$

share $(0, \infty),$ $(1, \infty)$ , (iii) $\delta(0;f)=\sum_{a\neq\infty}\delta(a;f)=\frac{1}{2}$ but neither $F\equiv G$ nor
$F\cdot G\equiv 1$ .

Now we require the following definitions and lemmas.

DEFINITION 2 ([5]). For a meromorphic function $f$ we define

$T_{o}(r, f)=\int_{1}^{r}\frac{T(t,f)}{t}dt$ ,

$N_{o}(r, a;f)=\int_{1}^{r}\frac{N(t,a;f)}{t}dt$ ,

$m_{o}(r, a;f)=\int_{1}^{r}\frac{m(t,a;f)}{t}dt$ ,

$\overline{N}_{o}(r, a;f)=\int_{1}^{r}\frac{\overline{N}(t,a;f)}{t}dt$ ,

$S_{o}(r, f)=\int_{1}^{r}\frac{S(t,f)}{t}dt$

etc. where $a\in C\cup\{\infty\}$ .

DEFINITION 3 ([5]). For a meromorphic function $f$ we put

$\delta_{o}(a;f)=1-\lim\sup\frac{N_{o}(r,a;f)}{T_{o}(r,f)}=\lim_{rr\rightarrow\infty\rightarrow}\inf_{\infty}\frac{m_{o}(r,a;f)}{T_{o}(r,f)}$ .

LEMMA 1 ([5]). For a meromorphic function $f$

$\lim_{r\rightarrow\infty}\frac{S_{o}(r,f)}{T_{o}(r,f)}=0$

through all values of $r$ .
LEMMA 2 ([11]). If $f$ is a meromorphic function and $a\in C\cup\{\infty\}$ then
$\delta(a;f)\leq\delta_{o}(a;f)$ .
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LEMMA 3 ([13]). If $\beta_{i}(\not\equiv 0, i=1,2)$ are meromorphic functions such that
$T(r, \beta_{i})=S(r, f)+S(r, g)$ for $i=1,2$ and $\beta_{1}f+\beta_{2}g\equiv 1$ then

$T(r, f)\leq\overline{N}(r, 0;f)+\overline{N}(r, 0;g)+\overline{N}(r, f)+S(r, f)+S(r, g)$ .

LEMMA 4. Let $f,$ $g$ be two nonconstant meromorphic functions sharing $(0,1)$ ,
$(1, \infty)$ and $(\infty, \infty)$ . If $f\not\equiv g$ then

$\overline{N}_{(2}(r, 0;f)=\overline{N}_{(2}(r, 0;g)=S(r, f)=S(r,g)$

and

$\overline{N}_{(2}(r, \infty;f)=\overline{N}_{(2}(\gamma\infty;g)=S(r, f)=S(r,g)$ .

Proof. Since $f,$ $g$ share $(0,1),$ $(1, \infty)$ and $(\infty, \infty)$ , by the second fundamental
theorem we get

$T(r, f)\leq 3T(r, g)+S(r, f)$ and $T(r,g)\leq 3T(r, f)+S(r, g)$

and so $S(r, f)=S(r, g).$ If $\overline{N}(r, 0;f)=S(r, f)$ and $\overline{N}(r, \infty;f)=S(r, f)$ , the
lemma is obvious. So we suppose that $\overline{N}(r, 0;f)\neq S(r, f)td\overline{N}(r, \infty;f)\neq$

$S(r, f)$ Let

$h=\frac{f^{\prime}}{f-1}-\frac{g^{\prime}}{g-1}$ .

We see that $h\not\equiv O$ because $f\not\equiv g$ . Since $f,$ $g$ share $(0,1)$ it follows that a multiple
zero of $f$ is a multiple zero of $g$ and conversely. Hence a multiple zero of $f$ (and
so of $g$) is a zero of $h$ . So by the first fundamental theorem and Milloux theorem
{p.55 [7]} we get

$\overline{N}_{(2}(r, 0;f)\leq N(r, 0;h)\leq N(r, h)+S(r, f)+S(r,g)=N(r, h)+S(r, f)$ .

Since the possible poles of $h$ occur at the poles and l-points of $f,$ $g$ and $f,$ $g$

share $(1, \infty)$ , $(\infty, \infty)$ , it follows that $h$ has no pole at all. Therefore

$\overline{N}_{(2}(r, 0;f)=S(r, f)$ .

Let $f_{1}=1/f$ and $g_{1}=1/g$ . Then $f_{1},$ $g_{1}$ share $(0, \infty),$ $(1, \infty)$ and $(\infty, 1)$ . Let

$\phi=\frac{f_{1}^{\prime}}{f_{1}-1}-\frac{g_{1}^{\prime}}{g_{1}-1}$ .

Then $\phi\not\equiv 0$ because $f_{1}\not\equiv g_{1}$ . Since $f_{1},$ $g_{1}$ share $(0, \infty)$ , it follows by the first
fundamental theorem and Milloux theorem {p.55 [7]} that

$\overline{N}_{(2}(r, 0;f_{1})\leq N(r, 0;\phi)\leq N(r, \phi)+S(r, f)+S(r, g)$ .
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Since $f_{1},$ $g_{1}$ share $(1, \infty)$ and $(\infty, 1)$ , it follows that poles of $\phi$ occur only at
those poles of $f_{1}$ whose multiplicities are different from the multiplicities of the
corresponding poles of $g_{1}$ and we denote $by\overline{N}_{*}(r, \infty;f_{1}, g_{1})$ the reduced counting
function of such poles.

Since $f_{1},$ $g_{1}$ share $(\infty;1)$ and $\phi$ has only simple poles, we get from above

$\overline{N}_{(2}(r, 0;f_{1})\leq\overline{N}_{*}(r, \infty;f_{1}, g_{1})+S(r, f)$

$\leq\overline{N}_{(2}(r, \infty;f_{1})+S(r, f)$

$i.e$ .
$\overline{N}_{(2}(r, \infty;f)\leq\overline{N}_{(2}(\gamma 0;f)+S(r, f)=S(r, f)$ .

Since $\overline{N}_{(2}(r, 0;f)=\overline{N}_{(2}(r, 0;g)$ and $\overline{N}_{(2}(r, \infty;f)=\overline{N}_{(2}(r, \infty, g)$ , the lemma is
proved. $\square $

2. Proof of Theorem 2 and Theorem 3

Since the proofs of Theorem 2 and Theorem 3 are similar, we only prove
Theorem 2.

Let $F\not\equiv G$ . We shall prove that $F\cdot G\equiv 1$ .
From conditions (i) and (ii) of Theorem 2, it follows that $F$ and $G$ share

$(0,1),$ $(1, \infty)$ and $(\infty, \infty)$ . So by the second fundamental theorem we get

$T(r, F)\leq 3T(r, G)+S(r, F)$ ,
(1) $T(r, G)\leq 3T(r, F)+S(r, G)$

and $S(r, F)=S(r, G)$ .
Since $F,$ $G$ has only multiple poles, it follows from Lemma 4 that $\overline{N}(r, F)=$

$\overline{N}_{(2}(r, \infty;F)=S(r, F)$ and $\overline{N}(r, G)=\overline{N}_{(2}(r, \infty;G)=S(r, G)$ . Let $b_{1},$ $b_{2},$ $\ldots b_{p}$

be finite deficient values of $f$ . Since $\sum_{n=1}^{p}m(r, b_{n};f)\leq m(r, 0;F)+S(r, f)$ ,
integrating we get $\sum_{n=1}^{p}m_{o}(r, b_{n};f)\leq m_{o}(r, 0;F)+S_{o}(r, f)$ and so

$\sum_{n=1}^{p}\frac{m_{o}(r,b_{n};f)}{T_{o}(r,f)}\leq\frac{m_{o}(r,0;F)}{T_{o}(r,F)}\frac{T_{o}(r,F)}{T_{o}(r,f)}+\frac{S_{o}(r,f)}{T_{o}(r,f)}$ .

Since $\overline{N}(r, F)=S(r, F)$ implies $\overline{N}_{o}(r, F)=S_{o}(r, F)$ , it follows from above

$\sum_{n=1}^{p}\frac{m_{o}(r,b_{n};f)}{T_{o}(r,f)}\leq\frac{m_{o}(r,0;F)}{T_{o}(r,F)}\frac{T_{o}(r,f)+S_{o}(r,f)}{T_{o}(r,f)}+\frac{S_{o}(r,f)}{T_{o}(r,f)}$ .

Thus we obtain in view of Lemma 1 $\sum_{n=1}^{p}\delta_{o}(b_{n};f)\leq\delta_{o}(0;F)$ and since $p$ is
arbitrary, it follows that $\sum_{b\neq\infty}\delta_{o}(b;f)\leq\delta_{o}(0;F)$
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Now by Lemma 2 and condition (ii) we get

(2) $\delta_{o}(0;F)>\frac{1}{2}$

Set

(3) $\psi=\frac{F^{\prime}}{F^{\prime}}-\frac{2F^{\prime}}{F-1}-\frac{G^{\prime\prime}}{G^{\prime}}+\frac{2G^{\prime}}{G-1}$ .

Since $F$ and $G$ share $(1, \infty)$ , by a simple computation, we see that if $z_{o}$ is a
simple zero of $F-1$ and $G-1$ then $\psi(z_{o})=0$ .

Next we shall prove that $\psi\equiv 0$ . Suppose, on the contrary, that $\psi\not\equiv 0$ . Then

$N_{1)}(r, 1;F)=N_{1)}(r, 1;G)\leq N(r, 0;\psi)\leq T(r, \psi)+O(1)$
(4)

$\leq N(r, \psi)+S(r, F)+S(r, G)$ .
Let $z_{o}$ be a zero of $F-1$ . Since $F,$ $G$ share $(1, \infty)$ we can deduce by a simple
calculation from (3) that $\psi(z_{o})\neq\infty$ . Similarly we can see that if $z_{o}$ is a pole
of $F$ then $\psi(z_{o})\neq\infty$ . So the poles of $\psi$ only occur at the zeros of $F^{\prime}$ and $G^{\prime}$ .
Hence we obtain ffom (3) $-(4)$ and Lemma 4 that

$N_{1)}(r, 1;F)\leq N_{*}(r, 0;F^{\prime})+N(r, 0;G^{\prime})$

(5)
$+S(r, F)+S(r, G)$ ,

where $N_{*}(r, 0;F^{\prime})$ counts only those zeros of $F$ which are not zeros of $F(F-1)$ .
By the second fundamental theorem we get

(6) $T(r, F)\leq\overline{N}(r, F)+\overline{N}(r, 0;F)+\overline{N}(r, 1;F)-N_{*}(r, 0;F^{\prime})+S(r, F)$

and

(7) $T(r, G)\leq\overline{N}(r, G)+\overline{N}(r, 0;G)+\overline{N}(r, 1;G)-N_{*}(r, 0;G^{\prime})+S(r, G)$ .
Also we see that

(8) $\overline{N}(r, 1;F)+\overline{N}(r, 1;G)=2\overline{N}(r, 1;G)\leq N_{1)}(r, 1;G)+N(r, 1;G)$ .
Since $\overline{N}(r, F)=S(r, F)$ and $\overline{N}(r, G)=S(r, G)$ , we get from (1) and (5)$-(8)$

$T(r, F)+T(r, G)\leq\overline{N}(r, 0;F)+\overline{N}(r, 0;G)+N(r, 1;G)+S(r, F)$

$\leq 2N(r, 0;F)+T(r, G)+S(r, F)$

i.e. $T(r, F)\leq 2N(r, 0;F)+S(r, F)$ , which gives on integration $T_{o}(r, F)\leq 2N_{o}$

$(r, 0;F)+S_{o}(r, F)$ . This implies that $\delta_{o}(0;F)\leq\frac{1}{2}$ which contradicts (2). There-
fore $\psi\equiv 0$ and so

(9) $\frac{F^{\prime\prime}}{F^{\prime}}-\frac{2F}{F-1}\equiv\frac{G^{\prime\prime}}{G^{\prime}}-\frac{2G^{\prime}}{G-1}$ .
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Solving (9) we get

$\frac{1}{F-1}=\frac{a}{G-1}+b$ ,

where $a(\neq 0)$ and $b$ are constants. Thus we obtain

(10) $F=\frac{(b+1)G+(a-b-1)}{bG+(a-b)}$ .

From (10) we see that

(11) $T(r, F)=T(r, G)+O(1)$ .
Now we consider three possibilities,

POSSIBILITY 1. Let $b\neq 0,$ $-1$ . If $a-b-1\neq 0$ then by (10) we know
$\overline{N}(r, \frac{1+b-a}{1+b}; G)=\overline{N}(r, 0;F)$ . Now by the second fundamental theorem we get

$T(r, G)\leq(r,G)+\overline{N},0;G)+\overline{N}(r,\frac{1+b-a}{1+b,G)});G)+S(r, G)\leq^{\overline{\frac{N}{N}}}(r,0;G)+^{\frac{(r}{N}}(r,0;F)+S(r,$

$\leq 2\overline{N}(r, 0;F)+S(r, G)$

and so by (11) $T(r, F)\leq 2N(r, 0;F)+S(r, F)$ . By integration it follows that
$T_{o}(r, F)\leq 2N_{o}(r, 0;F)+S_{o}(r, F)$ and so $\delta_{o}(0;F)\leq\frac{1}{2}$ which contradicts (2).
Then $a-b-1=0$ and so we get from (10) that

(12) $F=\frac{aG}{(a-1)G+1}$ .

Clearly $a\neq 0,1$ because $b\neq 0,$ $-1$ and $a-b-1=0$ . Let $H=\frac{G}{F}$ . Then we get
from (12) that $aH-(a-1)G\equiv 1$ . Since $F,$ $G$ share $(0,1),$ $(1, \infty)$ and $(\infty, \infty)$ , it
follows from Lemma 4 that $\overline{N}(r, 0;H)\leq\overline{N}_{(2}(r, 0;G)=S(r, F)$ . Now by Lemma
3 we get $T(r, G)\leq\overline{N}(r, 0;G)+\overline{N}(r, G)+S(r, G)+S(r, H)=\overline{N}(r, 0;G)+$

$S(r, G)+S(r, F)$ and so by (11) it follows that $T(r, F)\leq N(r, 0;F)+S(r, F)$ .
Integrating we get $T_{o}(r, F)\leq N_{o}(r, 0;F)+S_{o}(r, F)$ and this implies $\delta_{o}(0;F)=0$ ,
which contradicts (2). Therefore the possibility 1 does not arise.

POSSIBILITY 2. Let $b=-1$ . Then (10) gives $ F=R^{a}a+1-\cdot$ If $a\neq-1$ , we get

$\frac{G}{a+1}+\frac{a}{(a+1)F}\equiv 1$

and this implies by Lemma $S$ and (11) that

$T(r, F)\leq\overline{N}(r, 0;G)+\overline{N}(r, F)+\overline{N}(r, G)+S(r, F)+S(r, G)$
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$T(r, F)\leq N(r, 0;F)+S(r, F)$ .

Integrating we get $T_{o}(r, F)\leq N_{o}(r, 0;F)+S_{o}(r, F)$ and this implies $\delta_{o}(0;F)=0$ ,
which contradicts (2). Hence $a=-1$ and so $F\cdot G\equiv 1$ .

POSSIBILITY 3. Let $b=0$ . Then (10) gives $F=\frac{G+(a-1)}{a}$ If $a\neq 1$ , we get
$\frac{a}{a-1}F-\frac{1}{a-1}G\equiv 1$ and this implies by Lemma 3 and (11) that

$T(r, F)\leq\overline{N}(r, 0;F)+\overline{N}(r, 0;G)+\overline{N}(r, F)+S(r, F)+S(r, G)$

$\leq 2N(r, 0;F)+S(r, F)$

Integrating we get $T_{o}(r, F)\leq 2N_{o}(r, 0;F)+S_{o}(r, F)$ and this implies $\delta_{o}(0;F)\leq$

$\frac{1}{2}$ which contradicts (2). Hence $a=1$ and so $F\equiv G$ which is not possible by
our supposition.

Further if $f$ has at least one pole, say $z_{o}$ , then $g$ has a pole at $z_{o}$ . Hence $F$

and $G$ has poles at $z_{o}$ which is impossible if $F\cdot G\equiv l$ . Similarly if $F$ has at
least one zero then $G$ has a zero at the same point and implies a contradiction
when $F\cdot G\equiv 1$ . Therefore if $f$ has at least one pole or $F$ has at least one zero
the case (b) does not arise. This proves the theorem. $\square $
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