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Abstract. In the paper we study the uniqueness of meromorphic functions
concerning differential polynomials and improve a result of Lahiri [3].

1. Introduction, Definitions and Results

In the paper by meromorphic function we always mean a function which is
meromorphic in the open complex plane C. We use the standard notations of the
value distribution theory without any explanation because these are available
in and [12]. Let f be a nonconstant meromorphic function. We denote
by Niyy(r,a; f) and N(r, a; f) the counting functions of only simple and only
distinct multiple zeros of f — a respectively for a € CU {co}. Also we denote by
S(r, f) any quantity satisfying S(r, f) = o(T'(r, f)) as r — oo and r € E, where
E is a set of finite linear measure and may not be the same in every occurrence.

Let f and g be two nonconstant meromorphic functions and a € C U {co}.
We say that f and g share the value a CM (counting multiplicities) if and only
if f —a and g — a have the same set of zeros with the same multiplicities. For a
meromorphic function f we denote by f*) the kt** derivative of f.

In 8] the following result is proved.

THEOREM 1. Let f and g be two nonconstant meromorphic functions and
ai, az,...,0n (a, # 0) be finite complex numbers. If

(i) f and g share co CM;

(ii) F and G share 0,1 CM, where F =37 a;f® and G = Y7, a;9®;

(iii) T%‘(T%ei(—ftof)ﬁ - {% > 3 where Y artoo 0(a; f) > 0;

then either (a) F = G or (b) F-G = 1. If, further, f has at least one pole or F
has at least one zero, the case (b) does not arise.
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Now one may as the following question: Is it possible in any way to
relaz the nature of sharing the values and to weaken the condition on
deficiences in [Theorem 1?

In the paper we give an affirmative answer to this question and prove two
results, one of which improves [Theorem 1.

To this end we explain the notion of weighted sharing as introduced in [9,
10].

DEFINITION 1 ([9, 10]). Let k be a nonnegative integer or infinity. For a €
C U {0} we denote by Ex(a; f) the set of all a-points of f where an a-point
of multiplicity m is counted m times if m < k and k + 1 times if m > k. If
Ex(a; f) = Ex(a; g), we say that f, g share the value a with weight k.

The definition implies that if f, g share a value a with weight k then 2, is a
zero of f — a with multiplicity m(< k) if and only if it is a zero of g — a with
multiplicity m(< k) and 2, is a zero of f — a with multiplicity m(> k) if and
only if it is a zero of g — a with multiplicity n(> k) where m is not necessarily
equal to n.

We write f, g share (a, k) to mean that f, g share the value a with weight
k. Clearly if f, g share (a, k) then f, g share (a,p) for all integer p, 0 < p < k.
Also we note that f, g share a value a IM or CM if and only if f, g share (a, 0)
or (a,00) respectively.

Following two are the main results of the paper, the first of which improves
Theorem 1. ’

THEOREM 2. Let f and g be two nonconstant meromorphic functions and
a1,03,...,a, (a, # 0) be finite complex numbers. If

(i) f and g share (o0, 00);

(ii) F and G are nonconstant and share (0, 1), (1,00), where F = Z, Lo f®

and G=3_1, oz,f(‘)

(i) 3q00 6(a; f) > 3
then either (a) F = G or (b) F-G = 1. If, further, F has at least one zero or
f has at least one pole, the case (b) does not arise.

THEOREM 3. Let f and g be two nonconstant meromorphic functions and
ap, @y, ..., a, (ap 7 0) be finite complex numbers, where n > 1. If
(i) f and g share (o0, 00);
(ii) F and G are nonconstant and share (0,1), (1, 00), where F = Y1 ; a; f®
and G=Y 1 o, f®;
(iii) 6(0; f) > 3
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then either (a) FF = G or (b) F- G = 1. If, further, f has at least one pole or F
has at least one zero, the case (b) does not arise.

Following example shows that the condition (iii) in and 3 is best
possible.

Example ([8]). Let f = exp(2) — (3)" exp(2z) and g = (—1)" exp(—2) — (F2)"
exp(—2z). Then F = f(™ = exp(z) — exp(2z) and G = g™ = exp(-2) —
exp(—2z). Also it is easy to see that (i) f and g share (c0,00), (ii) F and G
share (0, 00), (1,00), (iii) 6(0; f) = 3,400 6(a; f) = 3 but neither F = G nor
F.G=1

Now we require the following definitions and lemmas.

DEFINITION 2 ([5]). For a meromorphic function f we define

T,rns) = [ ela,
No(ryaif) = [ i),
mo(ra; f) = [ el
No(r,a; f) -—-/r :N—(i:;—f)dt,

1
sa(r ) = [ Xelay
etc. where a € CU {oc0}.

DEFINITION 3 ([5]). For a meromorphic function f we put

60(a; f) = 1~ limsup %((rr—af)ﬁ = lim inf EZF'((TTﬂ

LEMMA 1 ([5]). For a meromorphic function f

through all values of r.

LEMMA 2 ([11)). If f is a meromorphic function and a € C U {co} then
6(a; f) < bo(a; f).
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LeMMA 3 ([13]). If Bi(Z 0, i = 1,2) are meromorphic functions such that
T(r,B;) = S(r,f)+ S(r,g) fori=1,2 and B, f + Bag = 1 then

T(r, f) < N(r,0; f) + N(r,0,9) + N(r, f) + S(r, f) + S(r, 9).

LEMMA 4. Let f, g be two nonconstant meromorphic functions sharing (0, 1),
(1, 00) and (00, 00). If f # g then

N@(r,0; f) = N(r,0;9) = S(r, f) = S(r, 9)
and
N2(r,00; f) = N(2(r,00; g) = S(r, f) = S(, 9).

Proof. Since f, g share (0, 1),(1,00) and (00,00), by the second fundamental
theorem we get

T(r, f) < 3T(r, 9) + S(r, f) and T(r, 9) < 3T(r, f) + S(r, 9)

and so S(r, f) = S(r,g). If N(r,0; f) = S(r, f) and N(r, c0; f) = S(r, f), the
lemma is obvious. So we suppose that N(r,0; f) # S(r, f) and N(r,00; f) #
S(r, f) Let

/

S g

h= F-1i -1

We see that h # 0 because f #Z g. Since f, g share (0, 1) it follows that a multiple
zero of f is a multiple zero of g and conversely. Hence a multiple zero of f (and
so of g) is a zero of h. So by the first fundamental theorem and Milloux theorem

{p.55 [7]} we get
Ne(r, 0, f) < N(r,0;h) < N(r, k) + S(r, f) + S(r, g) = N(r, ) + S(r, f).

Since the possible poles of h occur at the poles and 1-points of f, g and f, g
share (1, 00), (00, 00), it follows that h has no pole at all. Therefore

N(Z(T’O) f) =S('I’,f)
Let fi =1/f and g; = 1/g. Then f;, g1 share (0, c0), (1,00) and (o0, 1). Let
fil_ &
i-1 g -1

Then ¢ # 0 because f; #Z g;. Since fi, g1 share (0, 00), it follows by the first
fundamental theorem and Milloux theorem {p.55 [7]} that

¢ =

N(r,0; f1) < N(r,0;¢) < N(r, ¢) + S(r, f) + S(r, g).
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Since f;, g1 share (1,00) and (oo, 1), it follows that poles of ¢ occur only at
those poles of f; whose multiplicities are different from the multiplicities of the
corresponding poles of g; and we denote by N, (r, co; f1, g1) the reduced counting
function of such poles.

Since f1, g, share (o0o; 1) and ¢ has only simple poles, we get from above

N(z(r, 01 fl) S N*(T, 05 f11 gl) + S(T‘, f)
_ < N(a(r,00; f1) + S(r, f)
1.e.
N(r,00; f) < Nea(r,0; f) + S(r, f) = S(r, f).

Since Nz(7,0; f) = N2(r,0;g) and Nz(r, 00; f) = N(2(r, 00, g), the lemma is
proved. OO

2. Proof of Theorem 2 and Theorem 3

Since the proofs of and are similar, we only prove

Let F # G. We shall prove that F - G = 1.

From conditions (i) and (ii) of it follows that F' and G share
(0,1), (1, c0) and (00, 0). So by the second fundamental theorem we get

. T(r,F) <3T(r,G)+ S(r, F),
(1) T(r,G) < 3T(r, F) + S(r,G)
and S(r, F) = S(r,G).
__ Since F, G has only multiple poles, it follows from that N(r, F) =
N (2(r,00; F) = S(r, F) and N(r, G) = N 3(r, 00; G) = S(r, G). Let by, by,... by
be finite deficient values of f. Since Y- _ m(r, b,; f) < m(r,0; F) + S(r, f),
integrating we get Y2 _. m, (7, bn; f) < mo(r, 0; F) + So(r, f) and so

zp: Mo (7, bn; f) _ Mo(1, 0 F) To(r, F) | So(r, f)
To(’l”,f) - TO(r’F) T:,(T,f) Ta('r’f).

n=1

Since N(r, F) = S(r, F) implies N,(r, F) = S,(r, F), it follows from above

"~ Mo (7, bn; f) < Mo O F) To(r, ) + So(r, f) | So(r, f)
oyt To(r,f) = To(r, F) To(r, f) To(r, f)

Thus we obtain in view of Y 1 80(bn; f) < 6,(0; F) and since p is
arbitrary, it follows that 3, 6o(b; f) < 6,(0; F)
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Now by and condition (ii) we get

2 (0, F) > 5

Set.

(3) V=== t7—

Since F' and G share (1,00), by a simple computation, we see that if 2, is a
simple zero of F' — 1 and G — 1 then ¥(z,) = 0.
Next we shall prove that ¢ = 0. Suppose, on the contrary, that ¥ # 0. Then

(4) Nl)(r’ 1; F) = Nl)(r’ 1; G) S N(T, 0; ¢) S T(T, ¢) + 0(1)
< N(r,¥)+ S(r, F) + S(r, G).

Let 2z, be a zero of FF— 1. Since F, G share (1,00) we can deduce by a simple
calculation from (3) that ¥(z,) # oco. Similarly we can see that if 2, is a pole
of F then 9¥(2,) # 0o. So the poles of 9 only occur at the zeros of F/ and G'.

Hence we obtain from (3)-(4) and that
Nyy(r,1; F) < N,(r,0; F') + N(r,0; G')

(5) + S(r, F) + S(r, G),

where N, (r, 0; F') counts only those zeros of F which are not zeros of F(F — 1).
By the second fundamental theorem we get

(6) T(F)<N(r,F)+N(r,0;F)+N(r,1;F) — N.(r,0; F') + S(r, F)

and

(7) T(r,G)<N(r,G)+ N(r,0,G) + N(r, 1,G) — N.(r,0;,G') + S(r, G).

Also we see that

(8) N(r,1, F)+N(r,1;G) =2N(r, 1,G) < Ny)(r, 1, G) + N(r, 1, G).

Since N(r, F) = S(r, F) and N(r, G) = S(r, G), we get from (1) and (5)-(8)

T(r,F)+T(@r,G)<N(r0F)+N(r,0;G) + N(r,1,G) + S(r, F)
<2N(r0, F)+T(r,G)+ S(r, F)

i.e. T(r, F) < 2N(r,0; F) + S(r, F), which gives on integration T,(r, F) < 2N,
(7,0; F) 4+ So(r, F). This implies that 6,(0; F) < -21- which contradicts (2). There-
fore ¢ = 0 and so

(9) | T =y —
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Solving (9) we get
1 a
F-1 G-1
where a(# 0) and b are constants. Thus we obtain

_(b+1)G+(a-b-1)

+9,

(10) F 5G + (a—b)
From we see that
(11) T(r, F) =T(r,G) + O(1).

Now we consider three possibilities.

POSSIBILITY 1. Let b # 0,—-1. If a —b—1 # 0 then by we know
N(r, 14232, G) = N(r, 0; F). Now by the second fundamental theorem we get

T(r,G) < N(r,G) + N(r,0; G) + N(r, 14352); G) + S(r, G)
<N(r,0;G) + N(r,0; F) + S(r, G)
<2N(r,0;F) + S(r,G)

and so by T(r,F) < 2N(r,0; F) + S(r, F). By integration it follows that
To(r, F) < 2N,(7,0; F) + So(r, F) and so 6,(0; F) < 1 which contradicts (2).
Then a —b—1 =0 and so we get from that

aG

(12) F= oo heTT

Clearly a # 0,1 because b #0, -1 anda—b—1=0. Let H = g Then we get
from that aH — (a - 1)G = 1. Since F, G share (0, 1), (1, c0) and (00, 00), it
follows from that N(r,0; H) < N(3(r, 0; G) = S(r, F). Now by [Lemmadl
3 we get T(r,G) < N(r,0;G) + N(r,G) + S(r,G) + S(r,H) = N(,0;G) +
S(r,G) + S(r, F) and so by it follows that T'(r, F) < N(r,0; F) + S(r, F).
Integrating we get T, (1, F') < No(r,0; F)+S,(r, F') and this implies 6,(0; F) = 0,
which contradicts (2). Therefore the possibility 1 does not arise.

POSSIBILITY 2. Let b= —1. Then gives F = 8. Ifa # —1, we get

G " a
e+l @+ DF

and this implies by Lemma $ and that

=1

T(r,F) < N(r,0;G) + N(r,F) + N(r,G) + S(r, F) + S(r, G)
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i.e.

T(r,F) < N(r,0; F) + S(r, F).

Integrating we get To(7, F') < No(7,0; F)+S,(r, F) and this implies 6,(0; F) = 0,
which contradicts (2). Hencea = —1 and so F-G = 1.

PoOsSSIBILITY 3. Let b = 0. Then gives F = %:;12 If a # 1, we get
2 F — -15G =1 and this implies by [Lemma 3 and [11) that

T(r,F) < N(r,0; F) + N(r,0;G) + N(r, F) + S(r, F) + S(, G)
< 2N(r,0; F) + S(r, F)

Integrating we get T, (7, F) < 2N,(r,0; F) + S,(r, F) and this implies 8,(0; F) <
%, which contradicts (2). Hence a = 1 and so F = G which is not possible by
our supposition.

Further if f has at least one pole, say z,, then g has a pole at 2,. Hence F
and G has poles at z, which is impossible if F'- G = 1. Similarly if F has at
least one zero then G has a zero at the same point and implies a contradiction
when F' - G = 1. Therefore if f has at.least one pole or F has at least one zero
the case (b) does not arise. This proves the theorem. O
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