A CRITERION SPHERE FOR EXTENSIONS OF A NICE IMMERSION OF THE 2-SPHERE INTO THE EUCLIDEAN 3-SPACE

By
Keilchi Masuda and Teruo Nagase
(Received November 29, 1999; Revised October 31, 2000)

Abstract

We give a method to construct all of the extensions of a nice immersion of the 2 -sphere into the Euclidean 3 -space by using a sphere.

§ 1. Preliminary

Titus [5] gave a necessary and sufficient condition whether a properly nested immersion of a circle into the plane extends to an immersion of a disk into.the plane. Smale [4] classified immersed spheres in the Euclidean 3-space by regular homotopies, and Hirsch [1] built an obstruction theory to classify immersions up to regular homotopies. Blank [2] extends the Titus' result to all immersions of a circle into the plane. Pappus [3] gives a method for constructing all of the extensions of an immersion by using Morse theory. We give a method to construct all of the extensions of a nice immersion of the 2 -sphere into the Euclidean 3space by using a sphere.

We work in the piecewise linear category.
Throughout this paper let $f: S \rightarrow \mathbb{R}^{3}$ be a nice immersion of a 2-sphere S into the Euclidean 3 -space \mathbb{R}^{3}, i.e. the singularities of the map f consist of finitely many double curves in which two sheets pierce each other and isolated triple points in which three sheets pierce each other. Let Z_{f} be the unbounded domain of $\mathbb{R}^{3}-f(S)$.

Proper surfaces $F_{1}, F_{2}, \cdots, F_{n}$ in a 3-manifold are said to be admissible provided that (see Figure 1)
(1) $F_{i} \cap F_{j} \neq \emptyset$ implies $\partial F_{i} \cap \partial F_{j} \neq \emptyset$, where $\partial(\cdots)$ means the boundary of (\cdots), and
(2) $\bigcup_{i=1}^{n} \partial F_{i}$ contains finite double points but no triple point.

[^0]
$D_{i}^{\prime} \mathrm{s}$: proper disks
$\left\{D_{1}, D_{2}, D_{3}\right\}$ is admissible, but $\left\{D_{1}, D_{2}, D_{3}, D_{4}\right\}$ is not admissible

Figure 1

Let B and B^{*} be 3-balls in \mathbb{R}^{3} such that $B \cap B^{*}=\partial B \cap \partial B^{*}$ is a disk, say D^{*}. Let $B^{* *}=C l\left(\mathbb{R}^{3}-\left(B \cup B^{*}\right)\right)$, where $C l(\cdots)$ is the closure of (\cdots). Set $S^{*}=\partial B^{*}$ and $S^{* *}=\partial B^{* *}$. The sphere $S^{* *}$ is called the twin of S^{*}. The sphere S^{*} is called a criterion sphere with a waterdrop B for the map f provided that
(1) the intersection $f(S) \cap B^{*}$ (resp. $f(S) \cap B^{* *}$) consists of admissible surfaces in B^{*} (resp. $B^{* *}$),
(2) the intersection $f(S) \cap B$ consists of admissible disks in B,
(3) the set ∂D^{*} does not contain singularities of the map f, and
(4) $\left(S^{*}-D^{*}\right) \cap C l\left(Z_{f}\right) \neq \emptyset$.

Fix a point p^{*} in $\left(S^{*}-D^{*}\right) \cap C l\left(Z_{f}\right)$. The point p^{*} is called the star of the criterion sphere. The closure of each component of the complementary domain of $f^{-1}\left(S^{*} \cup S^{* *}\right)$ in S is called a piece. The image of a piece is called a wall.

Remark. The star is not essential but we use the star to make our argument simple.

Next theorem assures us the existence of a criterion sphere.
THEOREM 1. Any nice immersion of a 2 -sphere into \mathbb{R}^{3} possesses a criterion sphere with a waterdrop.

Let M be an orientable compact connected 3-manifold with ∂M a 2 -sphere. The map f is said to extend to an immersion $\tilde{f}: M \rightarrow \mathbb{R}^{3}$ if there exists a homeomorphism $h: S \rightarrow \partial M$ with $\tilde{f} \circ h=f \quad$ (cf.[3]).

For the nice immersion f, there exists an immersion $\nu: S \times[-1,1] \rightarrow \mathbb{R}^{3}$ with $\nu(x, 0)=f(x)$ for all $x \in S$. If the map f extends to an immersion of an orientable compact connected 3-manifold, then we can assume that one of $\nu(S \times[-1,0])$ or $\nu(S \times[0,1])$ does not meet Z_{f}. Hence throughout this paper we assume that

$$
\nu(S \times[0,1]) \cap Z_{f}=\emptyset
$$

Further for the criterion sphere S^{*} with the waterdrop, we assume that
(1) $\nu^{-1}\left(S^{*}\right)=f^{-1}\left(S^{*}\right) \times[0,1]$,
(2) $\nu^{-1}\left(S^{* *}\right)=f^{-1}\left(S^{* *}\right) \times[0,1]$, where $S^{* *}$ is the twin of S^{*}, and
(3) for each piece Q, the map ν embeds $Q \times[0,1]$ into \mathbb{R}^{3}.

Now for each wall W in B^{*} (resp. $B^{* *}$), the union $W \cup S^{*}$ (resp. $W \cup S^{* *}$) splits \mathbb{R}^{3} into three domains, two are bounded, and the other unbounded. We denote by $\operatorname{In}(W)$ the closure of the bounded domain that does not contain the star p^{*}. A wall W is said to be inner if $\nu(Q \times[0,1]) \subset \operatorname{In}(W)$, where Q is the piece with $f(Q)=W$. A wall is said to be outer if the wall is not inner. A wall W is said to dominate another wall W^{\prime} if $W^{\prime} \subset \operatorname{In}(W)$. A set of mutually disjoint walls is called a room provided that
(1) there exists only one inner wall (hence the other walls are outer walls),
(2) the inner wall dominates all other walls, and
(3) none of outer walls dominate any walls.

For a room \mathcal{R} in B^{*} (resp. $B^{* *}$), let W be the inner wall of \mathcal{R}. Let

$$
R=C l\left(\operatorname{In}(W)-\bigcup_{W^{\prime} \in \mathcal{R}-W} \operatorname{In}\left(W^{\prime}\right)\right)
$$

Each component of the set $R \cap S^{*}$ (resp. $R \cap S^{* *}$) is called a floor of the room. For each floor F, each component of the set $F \cap S^{*} \cap S^{* *}$ is called a tight floor. A set of rooms is called a star stair (resp. a double-stars stair) provided that
(1) each wall of the rooms belongs to B^{*} (resp. $B^{* *}$), and
(2) any wall in B^{*} (resp. $B^{* *}$) belongs to exactly one room in the set.

The set of the floors of the rooms on a stair is called the floor diagram of the stair. The set of the tight floors of the rooms on a stair is called the tight floor diagram of the stair. A pair of a star stair and a double-stars stair is called a house on the criterion sphere with the waterdrop, if both of the tight floor diagrams are same.

Suppose that the nice immersion f extends to immersions $g_{i}: M_{i} \rightarrow \mathbb{R}^{3} \quad(i=$ $1,2)$. Then the maps g_{1} and g_{2} are equivalent if and only if there exists a homeomorphism $h: M_{1} \rightarrow M_{2}$ such that the following diagram commutes (cf. [3]):

where $h_{i}: S \rightarrow \partial M_{i}$ is the homeomorphism with $g_{i} \circ h_{i}=f$.
Then we have the following classifying theorem of extensions.
Theorem 2. The number of equivalent extension classes of the map is equal to the one of houses on the criterion sphere with the waterdrop.

§ 2. Quick building of a house

To build a house quickly we investigate the relation between a room and its. tight floors. Throughout this section the map f possesses a criterion sphere S^{*} with a waterdrop B. Let

$$
\begin{aligned}
& B^{*}=\text { the 3-ball bounded by } S^{*}, \\
& B^{* *}=C l\left(\mathbb{R}^{3}-\left(B \cup B^{*}\right)\right), \\
& D^{*}=B \cap S^{*}, \\
& S^{* *}=\partial B^{* *} \text {, and } \\
& p^{*} \text { be the star of the criterion sphere } S^{*} .
\end{aligned}
$$

We shall show how to build the stairs and get the (tight) floor diagrams. For each circle C on the sphere S^{*} (resp. $S^{* *}$), the circle C bounds a disk on S^{*} (resp. $S^{* *}$) which does not contain the star p^{*}. We denote the disk by $\operatorname{In}(C)$. Let \mathbb{C} be a set of mutually disjoint circles on the sphere S^{*} (resp. $S^{* *}$). For each circle C in \mathfrak{C}, let depth (C) be the number of the circles in the set $\left\{C^{\prime} \in \mathbb{C} \mid C^{\prime} \neq C, C \subset \operatorname{In}\left(C^{\prime}\right)\right\}$. Hence for the outermost circle C in \mathfrak{C}, we have $\operatorname{depth}(C)=0$. For a circle C in \mathfrak{C}, let

$$
\begin{aligned}
& \mathfrak{C}(C)=\left\{C^{\prime} \in \mathfrak{C} \mid \operatorname{depth}\left(C^{\prime}\right)=\operatorname{depth}(C)+1\right\}, \text { and } \\
& F(C)=C l\left(\operatorname{In}(C)-\bigcup_{C^{\prime} \in \mathbb{C}(C)} \operatorname{In}\left(C^{\prime}\right)\right)
\end{aligned}
$$

Let

$$
\begin{aligned}
& \mathcal{F}(\mathfrak{C})=\{F(C) \mid C \in \mathfrak{C}, \text { depth }(C) \text { is even }\}, \text { and } \\
& F(\mathbb{C})=\cup\{F(C) \mid F(C) \in \mathcal{F}(\mathfrak{C})\} \text { (see Figure 2). }
\end{aligned}
$$

For a room \mathcal{R}, let

Figure 2
$\mathcal{S}(\mathcal{R})=\{C \mid C$ is a boundary component of a wall in $\mathcal{R}\}$.
We start with the following easy observations.
Observation 1. For a room $\mathcal{R}, \mathcal{F}(\mathcal{S}(\mathcal{R}))$ is the set of the floors of the room \mathcal{R}.

For a wall W, let
$\mathcal{S}(W)=\{C \mid C$ is a boundary component of the wall $W\}$.
Observation 2. For an inner wall W and outer walls $W_{1}, W_{2}, \cdots, W_{n}$ in $B^{*}\left(\right.$ resp. $\left.B^{* *}\right)$, the set $\left\{W, W_{1}, W_{2}, \cdots, W_{n}\right\}$ is a room if and only if the following two conditions are satisfied:
(1) for each $i=1,2, \cdots, n, \quad F\left(\mathcal{S}\left(W_{i}\right)\right) \subset F(\mathcal{S}(W))$, and
(2) $F\left(\mathcal{S}\left(W_{i}\right)\right) \cap F\left(\mathcal{S}\left(W_{j}\right)\right)=\emptyset(i \neq j)$.

Observation 3. If $\mathcal{R}=\left\{W, W_{1}, W_{2}, \cdots, W_{n}\right\}$ is a room with the inner wall W and the outer walls $W_{1}, W_{2}, \cdots, W_{n}$, then

$$
F(\mathcal{S}(\mathcal{R}))=C l\left(F(\mathcal{S}(W))-\bigcup_{i=1}^{n} F\left(\mathcal{S}\left(W_{i}\right)\right)\right) \text { (see Figure 3). }
$$

ObSERVATION 4. Let $\mathcal{R}=\left\{W, W_{1}, W_{2}, \cdots, W_{n}\right\}$ be a room as above. Let W^{\prime}

Figure 3
be an outer wall in $B^{*}\left(\right.$ resp. $\left.B^{* *}\right)$ where \mathcal{R} lies. Then $\mathcal{R}^{\prime}=\left\{W, W_{1}, W_{2}, \cdots, W_{n}\right.$, $\left.W^{\prime}\right\}$ is a room if and only if $F\left(\mathcal{S}\left(W^{\prime}\right)\right) \subset F(\mathcal{S}(\mathcal{R}))$. Furthermore if \mathcal{R}^{\prime} is a room, then

$$
F\left(\mathcal{S}\left(\mathcal{R}^{\prime}\right)\right)=C l\left(F(\mathcal{S}(\mathcal{R}))-F\left(\mathcal{S}\left(W^{\prime}\right)\right)\right)
$$

For a wall W, let

$$
\varepsilon_{W}=\left\{\begin{array}{cc}
+1 & \text { (if } W \text { is an inner wall) } \\
-1 & \text { (if } W \text { is an outer wall). }
\end{array}\right.
$$

Let

$$
\begin{aligned}
& \mathcal{P}^{*}=\left\{\left(F(\mathcal{S}(W)), \varepsilon_{W}\right) \mid W \text { lies on } B^{*}\right\}, \text { and } \\
& \mathcal{P}^{* *}=\left\{\left(F(\mathcal{S}(W)), \varepsilon_{W}\right) \mid W \text { lies on } B^{* *}\right\} .
\end{aligned}
$$

Using Observation 2 and Observation 4, allot each element $(F(\mathcal{S}(W)),-1)$ in \mathcal{P}^{*} (resp. $\mathcal{P}^{* *}$) to an element $\left(F\left(\mathcal{S}\left(W^{\prime}\right)\right),+1\right)$ in \mathcal{P}^{*} (resp. $\mathcal{P}^{* *}$) next by next so that we have a star stair (resp. a double-stars stair) and a floor diagram by Observation 3 and Observation 4. Once we have a floor diagram, easily we can get a tight floor diagram. Finally find couples with the same tight floor diagram.

§ 3. An Example of Houses

Let $H=\{(0, y, z) \mid 0 \leq y \leq 1,0 \leq z \leq 1\}$. Let α be an immersed arc in H, as shown in Figure 4, where boundary points lie on z-axis. We denote by
S_{α} the immersed sphere in \mathbb{R}^{3} obtained by rotating the immersed arc α around z-axis. Let $a_{1}, a_{2}, \cdots, a_{6}$ be the double points of the arc α as shown in Figure 4. For each $i=1,2, \cdots, 6$, let T_{i} be a regular neighborhood of the double curve of S_{α} that contains the point a_{i}. We assume that $T_{i} \cap H$ is a proper disk of the solid torus T_{i}. Let

$$
X^{+}=\{(x, y, z) \mid x \geq 0\}, \text { and } X^{-}=\{(x, y, z) \mid x \leq 0\}
$$

Figure 4
Let N_{i} be a regular neighborhood of $T_{i} \cap H$ in the 3-ball $T_{i} \cap X^{-}$. For each $i=1,2, \cdots, 6$, let A_{i} be a line segment in H, as shown in Figure 5, between a boundary point of $T_{i} \cap H$ and a point z_{i} on z-axis. We denote by D_{i}^{*} be the disk obtained by rotating the arc A_{i} around z-axis. Let N_{i}^{*} be a regular neighborhood of D_{i}^{*} in $C l\left(\mathbb{R}^{3}-T_{i}\right)$. Let B^{\prime} be a regular neighborhood of the line segment between z_{1} and the point ($0,0,2$).

Figure 5
We assume that $N_{1}^{*} \cup B^{\prime}$ is a 3-ball. Let $L_{1}, L_{2}, \cdots, L_{5}$ be simple arcs as shown in Figure 5. For $i=1,2, \cdots, 5$, let E_{i} be a regular neighborhood of L_{i} in $C l\left(\mathbb{R}^{3}-\bigcup_{j=1}^{6} T_{j}\right)$. We assume that

$$
E_{i}^{+}=E_{i} \cap X^{+}, \text {and } E_{i}^{-}=E_{i} \cap X^{-} \text {are 3-balls. }
$$

Then $N=T_{1} \cup T_{3} \cup E_{2}^{+}$is an unkotted handle body. Set

$$
B^{*}=C l\left(N-\left(N_{1} \cup N_{3}\right)\right) \cup N_{1}^{*} \cup N_{3}^{*} \cup B^{\prime} .
$$

Now $B=\left(\bigcup_{i=1}^{6} N_{i}\right) \cup\left(\bigcup_{j=1}^{5} E_{j}^{-}\right)$is a waterdrop (see Figure 6). Then ∂B^{*} is a criterion sphere with the waterdrop B for the immersed sphere S_{α}. Let p^{*} be a point on $\partial B^{*} \cap z$-axis whose z-coordinate is larger than 2 . Then p^{*} is the star
of the criterion sphere ∂B^{*}. For the immersed sphere S_{α}, we shall count the number of houses with respect to the criterion sphere ∂B^{*} with the waterdrop B and the star p^{*}.

Figure 6
Now $\alpha \cap B^{*}$ consists of seven simple arcs. Let $v_{1}, v_{2}, \cdots, v_{7}$ be the seven arcs as shown in Figure 7. For each $i=1,2, \cdots, 7$, let V_{i} be the wall in B^{*} which contains the arc v_{i}. Similarly $C l\left(\alpha-B^{*}\right)$ consists of seven simple arcs $w_{1}, w_{2}, \cdots, w_{7}$ as shown in Figure 7. Let $B^{* *}=C l\left(\mathbb{R}^{3}-\left(B^{*} \cup B\right)\right)$. For each $i=1,2, \cdots, 7$, let W_{i} be the wall in $B^{* *}$ which contains the arc w_{i}. Now $\bigcup_{i=1}^{7} \partial V_{i}=\left(\bigcup_{i=1}^{7} V_{i}\right) \cap \partial B^{*}$ consists of nine circles as shown in Figure 8. And $\bigcup_{i=1}^{7} \partial W_{i}=\left(\bigcup_{i=1}^{7} W_{i}\right) \cap \partial B^{* *}$ consists of 21 circles as shown in Figure 9, eight circles of which are contained in $C l\left(\partial B-\partial B^{*}\right)$.

Figure 7
Our problem, how to construct houses, is reduced to the problem, how to find extensions of oriented circles in two planes, which is investigated by many people. We investigate area near a cirlce $\partial B^{*} \cap H^{\prime}$, where $H^{\prime}=\{(\varepsilon, y, z) \mid-1 \leq$ $y \leq 1,0 \leq z \leq 1\}$ for some small $\varepsilon>0$. Note that $\partial B^{*} \cap H^{\prime}=\partial B^{* *} \cap H^{\prime}$.

Now $V_{1}, V_{4}, V_{6}, W_{1}, W_{4}$, and W_{7} are only the inner walls. Observing Figure 9, we have
(1) W_{1} never dominates W_{2},
(2) W_{7} never dominates W_{6}, and
(3) W_{3} and W_{5} must be dominated by different walls.

Observing, in Figure 8, the line segment $P_{1} P_{2}$ in $C l\left(\partial B^{*}-F\left(\partial V_{3}\right)\right)$, where $F(\cdots)$ is the one defined in $\S 2$, we have

Figure 8
(4) W_{2} and W_{3} must be dominated by the same wall (see the line segment $P_{1} P_{2}$ in Figur 9). Hence W_{1} never dominates W_{3} by (1).
Observing, in Figure 8, the line segment $P_{3} P_{4}$ in $F\left(\partial V_{6}\right)$, we have
(5) W_{5} and W_{6} must be dominated by the same wall (see the line segment $P_{3} P_{4}$ in Figur 9). Hence W_{7} never dominates W_{5} by (2).
Thus only three cases are possible. Namely,
Case I. W_{1} dominates W_{5} and W_{6}, W_{4} dominates W_{2} and W_{3}, and W_{7} dominates none.

CASE II. W_{1} dominates W_{5} and W_{6}, W_{4} dominates none, and W_{7} dominates W_{2} and W_{3}.

CASE III. W_{1} dominates none, W_{4} dominates W_{5} and W_{6}, and W_{7} dominates W_{2} and W_{3}.

For Case I, we have a house

$$
\left\{\left\{W_{1}, W_{5}, W_{6}\right\},\left\{W_{4}, W_{2}, W_{3}\right\},\left\{W_{7}\right\}\right\},\left\{\left\{V_{1}, V_{7}\right\},\left\{V_{4}, V_{3}\right\},\left\{V_{6}, V_{2}, V_{5}\right\}\right\}
$$

Figure 9

For Case III, we have a house

$$
\left\{\left\{W_{1}\right\},\left\{W_{4}, W_{5}, W_{6}\right\},\left\{W_{7}, W_{2}, W_{3}\right\}\right\},\left\{\left\{V_{1}, V_{2}\right\},\left\{V_{4}, V_{3}, V_{7}\right\},\left\{V_{6}, V_{5}\right\}\right\}
$$

For Case II, since W_{4} dominates none, V_{4} dominates V_{5} by observing the line segment $Q_{1} Q_{2}$ in $F\left(\partial W_{4}\right)$. Since V_{4} dominates V_{5}, we can not get the line segment $Q_{3} Q_{4}$ in $C l\left(F\left(\partial V_{4}\right)-F\left(\partial V_{5}\right)\right)$, but we must have the line segment $Q_{3} Q_{4}$ in $F\left(\partial W_{4}\right)$. This is a contradiction. Therefore we have exactly two houses.

Figure 10

Note: For $i=1,3,5,6$, split the 3 -ball N_{i}^{*} into two balls N_{i}^{\prime} and $N_{i}^{\prime \prime}$ with $N_{i}^{\prime} \cap N_{i}=\emptyset$ and $N_{i}^{\prime \prime} \cap S_{\alpha}=\emptyset$. Set

$$
B^{*}=C l\left(\bigcup_{i=1}^{6}\left(T_{i}-N_{i}\right)\right) \cup\left(\bigcup_{i=2}^{5} E_{j}^{+}\right) \cup N_{1}^{\prime} \cup N_{3}^{\prime} \cup N_{5}^{\prime} \cup N_{6}^{\prime} \text {, and }
$$

$$
B=C l\left(\bigcup_{i=1}^{6} N_{i}\right) \cup\left(\bigcup_{i=2}^{5} E_{j}^{-}\right) \cup N_{1}^{\prime \prime} \cup N_{2}^{*} \cup N_{3}^{\prime \prime} \cup N_{4}^{*} \cup N_{5}^{\prime \prime} \cup N_{6}^{\prime} .
$$

The images of B and B^{*} are shown in Figure 10. Then ∂B^{*} will be a criterion sphere with the water drop B obtained by the method of the proof of Theorem 1 in the next section.

§ 4. Proof of Theorem 1

Let $f: S \rightarrow \mathbb{R}^{3}$ be the nice immersion. Let $L_{1}, L_{2}, \cdots, L_{m}$ be the closures of the double curves of the map. Hence the union $X=\bigcup_{i=1}^{m} L_{i}$ is the set of singularities of the map f. Using an isotopy of \mathbb{R}^{3}, for the projection $p: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$, we may assume that $p(X)$ is a connected graph such that the degree of each vertex is 2,4 or 6 , where all the vertices of degree 6 are the images of triple points of the map f. For each vertex of degree 4, choose mutually disjoint vertical line segments $L_{m+1}, L_{m+2}, \cdots, L_{n}$ with

$$
L_{i} \cap X=\partial L_{i} \quad(i=m+1, m+2, \cdots, n) .
$$

We may assume that
the set $L_{i}-\partial L_{i}$ pierces $f(S)(i=m+1, m+2, \cdots, n)$.
Then $Y=\bigcup_{i=1}^{n} L_{i}$ is connected. Let N be a regular neighborhood of Y. Since N is ambient isotopic to a regular neighborhood of the planar graph $p(Y)=p(X)$, N is an unkotted handle body. Note that $C l(f(S)-N)$ consists of mutually disjoint surfaces. Let k be the genus of the surface ∂N. We can find mutually disjoint proper disks $D_{1}, D_{2}, \cdots, D_{k}$ of the handle body N such that
(1) for each $i=1,2, \cdots, k$, let N_{i} be a regular neighborhood of D_{i} in N, then $C l\left(N-\bigcup_{i=1}^{k} N_{i}\right)$ is a 3-ball,
(2) for each $i=1,2, \cdots, k$, the disk D_{i} is pierced once by one of L_{1}, L_{2}, \cdots, L_{n}, and
(3) for each $i=1,2, \cdots, k$, the meet $D_{i} \cap f(S)$ is empty or the letter \times, i.e. the union of two arcs which intersect each other at one point.
Let N^{*} be the closure of the complementary domain of N in \mathbb{R}^{3}. We can find mutually disjoint proper disks $D_{1}^{*}, D_{2}^{*}, \cdots, D_{k}^{*}$ of N^{*} such that
(4) $D_{i}^{*} \cap D_{j}=\emptyset(i \neq j)$,
(5) for $i=1,2, \cdots, k$, on the surface ∂N, the circle ∂D_{i}^{*} transversely intersects the circle ∂D_{i} by one point.

If there exists a circle in $D_{i}^{*} \cap f(S)$, then choose an arc connecting a point in an outermost circle and a point in $\partial D_{i}^{*}-N_{i}$. Let Q be a small regular neighborhood of the union of the arc and the disk bounded by the outermost circle (see Figure 11). Then the union $N \cup Q$ is still an unkotted handle body. We use the same notation N and D_{i}^{*} for $N \cup Q$ and $C l\left(D_{i}^{*}-Q\right)$ respectively. Repeat this modification of N to $N \cup Q$, then we can assume that
(6) for $i=1,2, \cdots, k$, the meet $D_{i}^{*} \cap f(S)$ consists of mutually disjoint proper arcs of D_{i}^{*} where D_{i}^{*} and $f(S) \cap N^{*}$ transversely intersect.
Then the boundary of $C l\left(\left(N-\bigcup_{i=1}^{k} N_{i}\right)\right)$, say S^{*}, is a sphere. For each $i=$ $1,2, \cdots, k$, let N_{i}^{*} be a regular neighborhood of D_{i}^{*} in N^{*}. Now the union $N_{i} \cup N_{i}^{*}$ is a 3-ball such that
(1) $\left(N_{i} \cup N_{i}^{*}\right) \cap S^{*}$ is a disk on $\partial\left(N_{i} \cup N_{i}^{*}\right)$, and
(2) the meet $\left(N_{i} \cup N_{i}^{*}\right) \cap f(S)$ consists of admissible disks in $\left(N_{i} \cup N_{i}^{*}\right)$.

Connecting the balls $\left(N_{1} \cup N_{1}^{*}\right),\left(N_{2} \cup N_{2}^{*}\right), \cdots$, and ($N_{k} \cup N_{k}^{*}$) to get a waterdrop (see Figure 11). This completes the proof of Theorem 1.

Figure 11

§ 5. Proof of Theorem 2

First we need the following two key lemmata.
Lemma 1. Let B be a 3-ball. Let $g: M \rightarrow B$ be an immersion of an orientable compact connected 3-manifold M into B such that $g^{-1}(\partial B)$ is a surface on ∂M and that the map g embeds the closure of each component of $\partial M-g^{-1}(\partial B)$. Then the map g is an embedding.

Proof. Let $F_{1}, F_{2}, \cdots, F_{m}$ be the closures of the components of $\partial M-g^{-1}(\partial B)$. For each $i=1,2, \cdots, m$, the image $g\left(F_{i}\right)$ splits the 3-ball B into two domains. Let G_{i} be the closure of one of the two domains such that any regular neighborhood of $g\left(F_{i}\right)$ in G_{i} does not contain the image of a regular neighborhood of F_{i} in M. Let $\widetilde{G_{1}}, \widetilde{G_{2}}, \cdots, \widetilde{G_{m}}$ be mutually disjoint copies of $G_{1}, G_{2}, \cdots, G_{m}$. Using the map g, glue $\widetilde{G_{1}}, \widetilde{G_{2}}, \cdots, \widetilde{G_{m}}$ to M. Let \widetilde{M} be the resulting 3-manifold. Then the map g extends to a covering map $\tilde{g}: \widetilde{M} \rightarrow B$ with $\tilde{g}\left(\widetilde{G_{i}}\right)=G_{i} \quad(i=$ $1,2, \cdots, m)$. Since B is a 3 -ball, the map \tilde{g} must be a homeomorphism. Therefore the restriction $g=\tilde{g} \mid M$ is an embedding.

LEMMA 2. Let $h: G \rightarrow B$ be an immersion of a closed connected surface G into a 3-ball B such that
(1) the closures of the complementary domains of $h^{-1}(\partial B)$ in G are mutually disjoint disks, say $D_{1}, D_{2}, \cdots, D_{n}$, and
(2) the images $h\left(D_{1}\right), h\left(D_{2}\right), \cdots, h\left(D_{n}\right)$ are admissible disks in B.

Then G is a sphere and the map h is an embedding.
Proof. Let $G^{\prime}=h^{-1}(\partial B)$. For each $i=1,2, \cdots, n$, the image $h\left(\partial D_{i}\right)$ splits the sphere ∂B into two disks. Let D_{i}^{\prime} be the one of the two disks which does not contain the image of any boundary collar of ∂D_{i} in G^{\prime} by h. Let $h^{\prime}: G \rightarrow \partial B$ be an immersion with $h^{\prime} \mid G^{\prime}=h$ and $h^{\prime}\left(D_{i}\right)=D_{i}^{\prime}(i=1,2, \cdots, n)$. Then h^{\prime} is a covering map. Hence h^{\prime} is a homeomorphism. Thus G is a sphere. The map h embeds G^{\prime} into ∂B. This means that $h\left(\partial G^{\prime}\right)=\bigcup_{i=1}^{n} h\left(\partial D_{i}\right)$ consists of mutually disjoint circles. Hence $h\left(D_{i}\right) \cap h\left(D_{j}\right)=\emptyset(i \neq j)$ by Condition (2). Therefore the map h is an embedding.

Let $f: S \rightarrow \mathbb{R}^{3}$ be the nice immersion possessing a criterion sphere S^{*} with a waterdrop B. Let $S^{* *}, B^{*}, B^{* *}, D^{*}$, and the $\operatorname{star} p^{*}$ as ones in $\S 2$. Let \mathbb{E} be the set of the equivalent extension classes of the map f and \mathfrak{H} be the set of houses on the criterion sphere with the waterdrop. By four steps, we shall prove Theorem 2 by constructing two maps $\mathfrak{h}: \mathfrak{E} \rightarrow \mathfrak{H}$ and $\mathfrak{g}: \mathfrak{H} \rightarrow \mathfrak{E}$ with $\mathfrak{h} \circ \mathfrak{g}=i d$ and $\mathfrak{g} \circ \mathfrak{h}=i d$, where $i d$ is the identity map.

In the following two steps, we define the map $\mathfrak{h}: \mathfrak{E} \rightarrow \mathfrak{H}$ as follows.
Step 1. Suppose that the nice immersion f extends to an immersion $g: M \rightarrow$ $\overline{\mathbb{R}^{3}}$ of an orientable compact connected 3-manifold M into \mathbb{R}^{3}. Let $[g]$ be the equivalent extension class of g. To make argument simple, we assume that $\partial M=S$ and $g \mid \partial M=f$. We shall construct a house $\mathfrak{H}(g)$ with a star stair $\mathfrak{P}^{*}(g)$ and a double-stars stair $\mathfrak{P}^{* *}(g)$. In this step, we shall construct $\mathfrak{P}^{*}(g)$.

Let $M_{1}^{*}, M_{2}^{*}, \cdots, M_{m}^{*}$ be the components of $g^{-1}\left(B^{*}\right)$. Then the restriction $g_{i}=g \mid M_{i}^{*}: M_{i}^{*} \rightarrow B^{*}$ is an embedding by Lemma 1. Let
$\mathfrak{R}\left(M_{i}^{*}\right)=$ the set of the walls on $g\left(M_{i}^{*}\right)$.
Recall the immersion $\nu: S \times[0,1] \rightarrow \mathbb{R}^{3}$ whose image does not meet the unbounded complementary domain of $f(S)$ in \mathbb{R}^{3}. Since $g^{-1}(\nu(S \times[0,1]))$ contains a boundary collar of the 3 -manifold M, it can be easily checked that $\mathfrak{R}\left(M_{i}^{*}\right)$ is a room. For $i=1,2, \cdots, m$, let

$$
\mathfrak{F}\left(M_{i}^{*}\right)=\text { the set of the components of } g\left(M_{i}^{*}\right) \cap S^{*}
$$

And set

$$
\mathfrak{P}^{*}(g)=\left\{\mathfrak{R}\left(M_{1}^{*}\right), \mathfrak{R}\left(M_{2}^{*}\right), \cdots, \mathfrak{R}\left(M_{m}^{*}\right)\right\}
$$

Then $\mathfrak{P}^{*}(g)$ is a star stair and $\bigcup_{i=1}^{m} \mathfrak{F}\left(M_{i}^{*}\right)$ is the floor diagram of $\mathfrak{P}^{*}(g)$.
Step 2. In this step, we shall construct $\mathfrak{P}^{* *}(g)$.
Let E be a 3-ball whose interior contains the set $g(M) \cup B \cup B^{*}$. Tunnel the 3-manifold $B^{* *} \cap E$ from the p^{*} to a point of ∂E to get a 3-ball B^{\prime} which contain the set $g(M) \cap B^{* *}$. Use B^{\prime} instead of B^{*} in the step 1 to get a double-stars stair. Let $M_{1}^{* *}, M_{2}^{* *}, \cdots, M_{n}^{* *}$ be the components of $g^{-1}\left(B^{\prime}\right)$. Set
$\mathfrak{R}\left(M_{j}^{* *}\right)=$ the set of the walls on $g\left(M_{j}^{* *}\right)$,
$\mathfrak{F}\left(M_{j}^{* *}\right)=$ the set of the components of $g\left(M_{j}^{* *}\right) \cap S^{* *}$, and
$\mathfrak{P}^{* *}(g)=\left\{\mathfrak{R}\left(M_{1}^{* *}\right), \mathfrak{R}\left(M_{2}^{* *}\right), \cdots, \mathfrak{R}\left(M_{n}^{* *}\right)\right\}$.
Then $\mathfrak{P}^{* *}(g)$ is a double-stars stair and $\bigcup_{j=1}^{n} \mathfrak{F}\left(M_{j}^{* *}\right)$ is the floor diagram of $\mathfrak{P}^{* *}(g)$. Therefore the star stair $\mathfrak{P}^{*}(g)$ and the double-stars stair $\mathfrak{P}^{* *}(g)$ make a house $\mathfrak{H}(g)$. The house $\mathfrak{H}(g)$ is uniquely determined by the equivalent extension class $[g]$. Set $\mathfrak{h}([g])=\mathfrak{H}(g)$.

Step 3. In this step, we shall define the map $\mathfrak{g}: \mathfrak{H} \rightarrow \mathfrak{E}$.
Let \mathcal{H} be a house with a star stair $\mathcal{P}^{*}=\left\{\mathcal{R}_{1}^{*}, \mathcal{R}_{2}^{*}, \cdots, \mathcal{R}_{m}^{*}\right\}$ and a double-stars stair $\mathcal{P}^{* *}=\left\{\mathcal{R}_{1}^{* *}, \mathcal{R}_{2}^{* *}, \cdots, \mathcal{R}_{n}^{* *}\right\}$. For each $i=1,2, \cdots, m$, let
$W_{i}=$ the inner wall of the room \mathcal{R}_{i}^{*}, and
$M\left(\mathcal{R}_{i}^{*}\right)=C l\left(\operatorname{In}\left(W_{i}\right)-\bigcup_{W^{\prime} \in \mathcal{R}_{i}^{*}-W_{i}} \operatorname{In}\left(W^{\prime}\right)\right)$,
where $\operatorname{In}(\cdots)$ is the one defined in $\S 1$ for walls.
Then it is easy to show that
$\mathfrak{R}\left(M\left(\mathcal{R}_{i}^{*}\right)\right)=\mathcal{R}_{i}^{*}$, where $\mathfrak{R}(\cdots)$ is the one defined in Step 1,
$\mathfrak{F}\left(M\left(\mathcal{R}_{i}^{*}\right)\right)=\mathcal{F}\left(\mathcal{S}\left(\mathcal{R}_{i}^{*}\right)\right)$,
where $\mathfrak{F}(\cdots)$ is the one defined in Step 1, and
$\mathcal{F}(\mathcal{S}(\cdots))$ is the one difined in Observation 1 in $\S 2$.
Similarly we have orientable compact connected 3-maifolds $M\left(\mathcal{R}_{1}^{* *}\right), M\left(\mathcal{R}_{2}^{* *}\right)$, $\cdots, M\left(\mathcal{R}_{n}^{* *}\right)$ with $\mathfrak{R}\left(M\left(\mathcal{R}_{j}^{* *}\right)\right)=\mathcal{R}_{j}^{* *}$, and $\mathfrak{F}\left(M\left(\mathcal{R}_{j}^{* *}\right)\right)=\mathcal{F}\left(\mathcal{S}\left(\mathcal{R}_{j}^{* *}\right)\right)(j=$ $1,2, \cdots, n)$.
Let

$$
\mathcal{F}=\bigcup_{i=1}^{m} \mathfrak{F}\left(M\left(\mathcal{R}_{i}^{*}\right)\right) \cup\left(\bigcup_{j=1}^{n} \mathfrak{F}\left(M\left(\mathcal{R}_{j}^{* *}\right)\right)\right), \text { and }
$$

$\mathcal{W}=\{Q \mid$ for some $F \in \mathcal{F}, Q$ is a component of $F \cap \partial B\}$.
Recall the circle $C=\partial D^{*}$ on the waterdrop B. For each configuration Q in \mathcal{W}, let
$\mathcal{E}(Q)=$ the set of components of $\partial Q \cap C$.
Let \sim be a relation on the set \mathcal{W} defined by
$Q \sim Q^{\prime}$ if and only if there exists a sequence of configurations
$Q_{1}, Q_{2}, \cdots, Q_{q}$ in \mathcal{W} with $Q_{1}=Q, Q_{q}=Q^{\prime}$ and $\mathcal{E}\left(Q_{i}\right) \cap \mathcal{E}\left(Q_{i+1}\right) \neq$
$\emptyset \quad(i=1,2, \cdots, q-1)$.
Then the relation \sim is an equivalence relation. Let $\mathcal{W}_{1}, \mathcal{W}_{2}, \cdots, \mathcal{W}_{r}$ be the equivalence classes of \mathcal{W}. For $k=1,2, \cdots, r$, the union $F_{k}=\bigcup_{Q \in \mathcal{W}_{k}} Q$ is an immersed connected surface by the condition that the two tight floor diagrams coincide. Now $f(S) \cap B$ consists of admissible disks in B. Glue some of the disks to the surface F_{k} so that we get an immersed closed connected surface G_{k}. Note that any two surfaces G_{i} and G_{j} never have common disks of $f(S) \cap B$. Since $f(S) \cap B$ consists of admissible disks in B, each surface G_{k} is a sphere by Lemma 2. Let B_{k} be the 3-ball bounded by the sphere G_{k}. Let $M_{1}^{*}, M_{2}^{*}, \cdots, M_{m}^{*}, M_{1}^{* *}, M_{2}^{* *}, \cdots, M_{n}^{* *}$, and $B_{1}^{*}, B_{2}^{*}, \cdots, B_{r}^{*}$ be mutually disjoint copies of $M\left(\mathcal{R}_{1}^{*}\right), M\left(\mathcal{R}_{2}^{*}\right), \cdots, M\left(\mathcal{R}_{m}^{*}\right), M\left(\mathcal{R}_{1}^{* *}\right), M\left(\mathcal{R}_{2}^{* *}\right), \cdots, M\left(\mathcal{R}_{n}^{* *}\right)$, and $B_{1}, B_{2}, \cdots, B_{r}$ respectively. Using floor diagrams, glue together the copies to get an orientable compact connected 3-manifold $M_{\mathcal{H}}$ and an immersion $g_{\mathcal{H}}$: $M_{\mathcal{H}} \rightarrow \mathbb{R}^{3}$ with $g_{\mathcal{H}}\left(M_{i}^{*}\right)=M\left(\mathcal{R}_{i}^{*}\right), g_{\mathcal{H}}\left(M_{j}^{* *}\right)=M\left(\mathcal{R}_{j}^{* *}\right)$, and $g_{\mathcal{H}}\left(B_{k}^{*}\right)=B_{k}$. Then the map $g_{\mathcal{H}}$ is an extension of the map f. Set $g(\mathcal{H})=\left[g_{\mathcal{H}}\right]$.

Step 4. In the sence of Step 1 and Step 2, we have

$$
\begin{aligned}
& \mathfrak{P}^{*}\left(g_{\mathcal{H}}\right)=\mathcal{P}^{*}, \text { and } \\
& \mathfrak{P}^{* *}\left(g_{\mathcal{H}}\right)=\mathcal{P}^{* *} .
\end{aligned}
$$

Hence $\mathfrak{h} \circ \mathfrak{g}(\mathcal{H})=\mathcal{H}$. Also the two extentions $g_{\mathfrak{f}(g)}$ and g are equivalent. Hence $\mathfrak{g} \circ \mathfrak{h}([g])=[g]$. Therefore \mathfrak{h} is bijective. This completes the proof of Theorem 2.

References

[1] M.Hircsh, Immersions of manifolds, Trans.Amer.Math.Soc. 3 (1959), 242-276.
[2] V.Poénaru, Extensions des immersions en codimension one (d'après Samuel Blank), Séminaire Bourbaki,1967-68.no.342.
[3] C.Pappas, Extensions of codimension one immersions, Trams.Amer. Math.Soc. 348 (1996), 3065-83.
[4] S.Smale, The classification of immersions of spheres in Euclidean space, Ann.of.Math. 69 (1959), 327-344.
[5] C.J.Titus, Lectures of functions of a comlex variable, 433-435. The University of Michigan Press, Ann Arbor, 1955.

Keiichi Masuda
Graduate school, Tokai University
Japan
Teruo Nagase
Department of Mathematics, Tokai University

Japan

E-mail: nagaselsm.u-tokai.ac.jp

[^0]: 2000 Mathematics Subject Classification: Primary 57R42; Secondary 57Q35
 Key words and phrases: immersion, extension, 2-sphere

