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Abstract. We give a method to construct all of the extensions of a nice immer-
sion of the 2-sphere into the Euclidean 3-space by using a sphere.

\S 1. Preliminary

Titus [5] gave a necessary and sufficient condition whether a properly nested
immersion of a circle into the plane extends to an immersion of a disk into.the
plane. Smale [4] classified immersed spheres in the Euclidean 3-space by regular
homotopies, and Hirsch [1] built an obstruction theory to classify immersions
up to regular homotopies. Blank [2] extends the Titus’ result to all immersions
of a circle into the plane. Pappus [3] gives a method for constructing all of the
extensions of an immersion by using Morse theory. We give a method to construct
all of the extensions of a nice immersion of the 2-sphere into the Euclidean 3-
space by using a sphere.

We work in the piecewise linear category.
Throughout this paper let $f$ : $S\rightarrow R^{3}$ be a nice immersion of a 2-sphere

$S$ into the Euclidean 3-space $\mathbb{R}^{3}$ , i.e. the singularities of the map $f$ consist of
finitely many double curwes in which two sheets pierce each other and isolated
trple points in which three sheets pierce each other. Let $z_{f}$ be the unbounded
domain of $\mathbb{R}^{3}-f(S)$ .

Proper surfaces $F_{1},$ $F_{2},$ $\cdots F_{n}$ in a 3-manifold are said to be admissible pro-
vided that (see Figure 1)

(1) $ F_{i}\cap F_{j}\neq\emptyset$ implies $\partial F_{i}\cap\partial F_{j}\neq\emptyset$ ,where $\partial(\cdots)$ means the boundary of
$(\cdots)$ , and

(2) $\bigcup_{i=1}^{n}\partial F_{i}$ contains finite double points but no triple point.
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$D_{i}^{\prime}s$ : proper disks
$\{D_{1}, D_{2}, D_{3}\}$ is admissible, but $\{D_{1}, D_{2}, D_{3}, D_{4}\}$ is not admissible

Figure 1

Let $B$ and $B^{*}$ be 3-balls in $\mathbb{R}^{3}$ such that $B\cap B^{*}=\partial B\cap\partial B^{*}$ is a disk, say
$D^{*}$ . Let $B^{**}=Cl(\mathbb{R}^{3}-(B\cup B^{*}))$ , where $Cl(\cdots)$ is the closure of $(\cdots)$ . Set
$S^{*}=\partial B^{*}$ and $S^{**}=\partial B^{**}$ . The sphere $S^{**}$ is called the twin of $S^{*}$ . The sphere
$S^{*}$ is called a criteriion sphere with a waterdrop $B$ for the map $f$ provided that

(1) the intersection $f(S)\cap B^{*}$ (resp. $f(S)\cap B^{**}$ ) consists of admissible surfaces
in $B^{*}$ (resp. $B^{**}$ ),

(2) the intersection $f(S)\cap B$ consists of admissible disks in $B$ ,
(3) the set $\partial D^{*}$ does not contain singularities of the map $f$ , and
(4) $(S^{*}-D^{*})\cap Cl(Z_{f})\neq\emptyset$ .

Fix a point $ p^{*}\ln$ $(S‘‘ -D^{*})\cap Cl(Z_{f})$ . The point $p^{*}$ is called the star of the
criterion sphere. The closure of each component of the complementary domain
of $f^{-1}(S^{*}\cup S^{**})$ in $S$ is called a piece. The image of a piece is called a wall.

Remark. The star is not essential but we use the star to make our argument
simple.

Next theorem assures us the existence of a criterion sphere.

THEOREM 1. Any nice immersion of a 2-sphere into $\mathbb{R}^{3}$ possesses a criterion
sphere unth a waterdrop.

Let $M$ be an orientable compact connected 3-manifold with $\partial M$ a 2-sphere.
The map $f$ is said to extend to an immersion $f$ : $M\rightarrow R^{3}$ if there exists a
homeomorphism $h:S\rightarrow\partial M$ with $f\circ h=f$ $(cf.[3])$ .
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For the nice immersion $f$ , there exists an immersion $\nu$ : $S\times[-1,1]\rightarrow \mathbb{R}^{3}$

with $\nu(x, 0)=f(x)$ for all $x\in S$ . If the map $f$ extends to an immersion of
an orientable compact connected 3-manifold, then we can assume that one of
$\nu(S\times[-1,0])$ or $\nu(S\times[0,1])$ does not meet $z_{f}$ . Hence throughout this paper
we assume that

$\nu(S\times[0,1])\cap Z_{f}=\emptyset$ .
Further for the criterion sphere $S^{*}$ with the waterdrop, we assume that

(1) $\nu^{-1}(S^{*})=f^{-1}(S^{*})\times[0,1]$ ,
(2) $\nu^{-1}(S^{**})=f^{-1}(S^{**})\times[0,1]$ , where $S^{**}$ is the twin of $S^{*}$ , and
(3) for each piece $Q$ , the map $\nu$ embeds $Q\times[0,1]$ into $\mathbb{R}^{3}$ .

Now for each wall $W$ in $B^{*}$ (resp. $B^{**}$ ), the union $W\cup S^{*}$ (resp. $W\cup S^{**}$ ) splits
$\mathbb{R}^{3}$ into three domains, two are bounded, and the other unbounded. We denote
by In $(W)$ the closure of the bounded domain that does not contain the star $p^{*}$ .
A wall $W$ is said to be inner if $\nu(Q\times[0,1])\subset In(W)$ , where $Q$ is the piece with
$f(Q)=W$ . A wall is said to be outer if the wall is not inner. A wall $W$ is said
to dominate another wall $W^{\prime}$ if $W\subset In(W)$ . A set of mutually disjoint walls is
called a room provided that

(1) there exists only one inner wall (hence the other walls are outer walls),
(2) the inner wall dominates all other walls, and
(3) none of outer walls dominate any walls.

For a room $\mathcal{R}$ in $B^{*}$ (resp. $B^{**}$ ), let $W$ be the inner wall of $\mathcal{R}$ . Let

$R=Cl(In(W)-\bigcup_{W^{\prime}\in \mathcal{R}-W}In(W^{\prime}))$ .

Each component of the set $R\cap S^{*}$ (resp. $R\cap S^{**}$ ) is called a floor of the room.
For each floor $F$ , each component of the set $F\cap S‘‘\cap S^{**}$ is called a tight floor.
A set of ro $0$ms is called a star stair (resp. a double-stars stair) provided that

(1) each wall of the rooms belongs to $B^{*}$ (resp. $B^{**}$ ), and
(2) any wall in $B^{*}$ (resp. $B^{**}$ ) belongs to exactly one room in the set.

The set of the floors of the rooms on a stair is called the floor diagmm of the
stair. The set of the tight floors of the rooms on a stair is called the tight floor
diagram of the stair. A pair of a star stair and a double-stars stair is called
a house on the criterion sphere with the waterdrop, if both of the tight floor
diagrams are same.

Suppose that the nice immersion $f$ extends to immersions $g_{i}$ : $M_{1}\rightarrow R^{3}(i=$

$1,2)$ . Then the maps $g_{1}$ and $g_{2}$ are equivalent if and only if there exists a
homeomorphism $h$ : $M_{1}\rightarrow M_{2}$ such that the following diagram commutes (cf.
[3]):
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where $h_{i}$ : $S\rightarrow\partial M_{i}$ is the homeomorphism with $g_{i}\circ h_{i}=f$ .
Then we have the following classifying theorem of extensions.

THEOREM 2. The number of equivalent extension classes of the map is equal
to the one of houses on the $cr\dot{\tau}te\tau\dot{v}on$ sphere with the waterdrop.

\S 2. Quick building of a house

To build a house quickly we investigate the relation between a room and its
tight floors. Throughout this section the map $f$ possesses a criterion sphere $S^{*}$

with a waterdrop $B$ . Let
$B^{*}=the$ 3-ball bounded by $S^{*}$ ,
$B^{**}=Cl(R^{3}-(B\cup B^{*}))$ ,
$D^{*}=B\cap S^{*}$ ,
$S^{**}=\partial B^{**}$ , and
$p^{*}$ be the star of the criterion sphere $S^{*}$ .

We shall show how to build the stairs and get the (tight) floor diagrams. For each
circle $C$ on the sphere $S^{*}$ (resp. $S^{**}$ ), the circle $C$ bounds a disk on $S^{*}$ (resp. $S^{**}$ )
which does not contain the star $p^{*}$ . We denote the disk by In $(C)$ . Let $\not\subset$ be a set
of mutually disjoint circles on the sphere $S^{*}$ (resp. $S^{**}$ ). For each circle $C$ in $\not\subset$,
let depth$(C)$ be the number of the circles in the set $\{C^{\prime}\in\not\subset|C’\neq C, C\subset In(C^{\prime})\}$ .
Hence for the outermost circle $C$ in $\not\subset$ , we have depth$(C)=0$ . For a circle $C$ in
$\not\subset$, let

$\not\subset(C)=$ { $C^{\prime}\in\not\subset|$ depth $(C^{\prime})=depth(C)+1$ }, and

$F(C)=Cl(In(C)-\bigcup_{C^{\prime}\in C(C)}In(C^{\prime}))$
.

Let
$\mathcal{F}(\not\subset)=$ { $ F(C)|C\in\not\subset$, depth $(C)$ is even}, and
$F(\not\subset)=\cup\{F(C)|F(C)\in \mathcal{F}(\not\subset)\}$ (see Figure 2).

For a room $\mathcal{R}$, let
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$\not\subset=\{C_{1}, C_{2}, \ldots , C_{7}\}$ $F(C)$ : shaded area

Figure 2

$S(\mathcal{R})=\{C|Cisaboundarycomponentofawallin\mathcal{R}\}$ .
We start with the following easy observations,

$\mathcal{R}.$ -
$OB$ $S$ERVATION 1. For a room $\mathcal{R},$ $\mathcal{F}(S(\mathcal{R}))$ is the set of the floors of the room

For a wall $W$ , let

$S(W)=$ { $C|C$ is a boundary component of the wall $W$}.

OBSERVATION 2. For an inner wall $W$ and outer walls $W_{1},$ $W_{2},$ $\cdots W_{n}$ in
$B^{*}$ (resp. $B^{**}$ ), the set $\{W, W_{1}, W_{2}, \cdots W_{n}\}$ is a room if and only if the following
two conditions are satisfied:
(1) for each $i=1,2,$ $\cdots n,$ $F(S(W_{i}))\subset F(S(W))$ , and
(2) $F(S(W_{i}))\cap F(S(W_{j}))=\emptyset(i\neq j)$ . $\blacksquare$

OBSERVATION 3. If $\mathcal{R}=\{W, W_{1}, W_{2}, \cdots , W_{n}\}$ is a room with the inner wall
$W$ and the outer walls $W_{1},$ $W_{2},$ $\cdots$ , $W_{n}$ , then

$F(S(\mathcal{R}))=Cl(F(S(W))-\bigcup_{i=1}^{n}F(S(W_{i})))$ (see Figure 3). $\blacksquare$

OBSERVATION 4. Let $\mathcal{R}=\{W, W_{1}, W_{2}, \cdots W_{n}\}$ be a room as above. Let $W^{\prime}$
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$\mathcal{R}=\{W, W_{1}, W_{2}, W_{3}\}$ $F(S(\mathcal{R}))$ : dotted area

Figure 3

be an outer wall in $B^{*}$ (resp. $B^{**}$ ) where $\mathcal{R}$ lies. Then $\mathcal{R}^{\prime}=\{W,$ $W_{1},$ $W_{2},$ $\cdots W_{n}$ ,
$W^{\prime}\}$ is a room if and only if $F(S(W^{\prime}))\subset F(S(\mathcal{R}))$ . $\mathbb{R}rthe7more$ if $\mathcal{R}^{\prime}$ is a room,
then

$F(S(\mathcal{R}^{\prime}))=Cl(F(S(\mathcal{R}))-F(S(W^{\prime})))$ . $\blacksquare$

For a wall $W$ , let

$\epsilon_{W}=\left\{\begin{array}{ll}+1 & (if W is an inner wall)\\-1 & (if W is an outer wall).\end{array}\right.$

Let
$p*=$ { $(F(S(W)),\epsilon_{W})|W$ lies on $B^{*}$ }, and
$p**=$ { $(F(S(W)),\epsilon_{W})|W$ lies on $B^{**}$ }.

Using Observation 2 and Observation 4, allot each element $(F(S(W)), -1)$ in
$\mathcal{P}^{*}(r\propto p. \mathcal{P}^{**})$ to an element $(F(S(W^{\prime})), +1)$ in $\mathcal{P}^{*}$ (r\’ep. $\mathcal{P}^{**}$ ) next by next
so that we have a star stair (resp. a doublestars stair) and a floor diagram by
Observation 3 and Observation 4. Once we have a floor diagram, easily we can
get a tight floor diagram. Finally find couples with the same tight floor diagram.

\S 3. An Example of Houses

Let $H=\{(0, y, z)|0\leq y\leq 1,0\leq z\leq 1\}$ . Let $\alpha$ be an immersed arc in
$H$ , as shown in Figure 4, where boundary points lie on z-axis. We denote by
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$S_{\alpha}$ the immersed sphere in $\mathbb{R}^{3}$ obtained by rotating the immersed arc $\alpha$ around
z-axis. Let $a_{1},$ $a_{2},$ $\cdots a_{6}$ be the double points of the $arc\alpha$ as shown in Figure
4. For each $i=1,2,$ $\cdots 6$ , let $T_{i}$ be a regular neighborhood of the double curve
of $S_{\alpha}$ that contains the point $a_{i}$ . We assume that $T_{i}\cap H$ is a proper disk of the
solid torus $T_{i}$ . Let

$X^{+}=\{(x, y, z)|x\geq 0\}$ , and $X^{-}=\{(x, y, z)|x\leq 0\}$ .

Figure 4

Let $N_{i}$ be a regular neighborhood of $T_{i}\cap H$ in the 3-ball $T_{i}\cap X^{-}$ . For each
$i=1,2,$ $\cdots$ , 6, let $A_{i}$ be a line segment in $H$ , as shown in Figure 5, between
a boundary point of $T_{i}\cap H$ and a point $z_{i}$ on z-axis. We denote by $D_{i}^{*}$ be
the disk obtained by rotating the arc $A_{i}$ around z-axis. Let $N_{\ell}^{*}$ be a regular
neighborhood of $D_{i}^{*}$ in $Cl(\mathbb{R}^{3}-T_{i})$ . Let $B^{\prime}$ be a regular neighborhood of the
line segment between $z_{1}$ and the point $(0,0,2)$ .
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Figure 5

We assume that $N_{1}^{*}\cup B^{\prime}$ is a 3-ball. Let $L_{1},$ $L_{2},$ $\cdots L_{5}$ be simple arcs as
shown in $Figure56$ For $i=1,2,$ $\cdots$ , 5, let $E_{i}$ be a regular neighborhood of $L_{i}$ in

$Cl(\mathbb{R}^{3}-\cup T_{j})$ . We assume that
$j=1$

$E_{i}^{+}=E_{i}\cap X^{+}$ , and $E_{i}^{-}=E_{i}\cap X^{-}$ are 3-balls.
Then $N=T_{1}\cup T_{3}\cup E_{2}^{+}$ is an unkotted handle body Set

$B^{*}=Cl(N-(N_{1}\cup N_{3}))\cup N_{1}^{*}\cup N_{3}^{*}\cup B^{\prime}$ .

Now $B=(\bigcup_{i=1}^{6}N_{i})\cup(\bigcup_{j=1}^{5}E_{j}^{-})$ is a waterdrop (see Figure 6). Then $\partial B^{*}$ is a

criterion sphere with the waterdrop $B$ for the immersed sphere $S_{\alpha}$ . Let $p^{*}$ be a
point on $\partial B^{*}\cap z$-axis whose z-coordinate is larger than 2. Then $p^{*}$ is the star
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of the criterion sphere $\partial B^{*}$ . For the immersed sphere $S_{\alpha}$ , we shall count the
number of houses with respect to the criterion sphere $\partial B^{*}$ with the waterdrop
$B$ and the star $p^{*}$ .

Figure 6

Now $\alpha\cap B^{*}$ consists of seven simple arcs. Let $v_{1},$ $v_{2},$ $\cdots v_{7}$ be the seven
arcs as shown in Figure 7. For each $i=1,2,$ $\cdots 7$ , let $V_{i}$ be the wall in $B^{*}$

which contains the arc $v_{i}$ . Similarly $Cl(\alpha-B^{*})$ consists of seven simple arcs
$w_{1},$ $u_{b},$ $\cdots w_{7}$ as shown in Figure 7. Let $B^{**}=Cl(R^{3}-(B^{*}\cup B))$ . For each
$i=1,2,$ $\cdots,77$ let $W_{i}$ be the wall in $B^{**}$ which contains the arc $w_{i}$ . Now
$\cup^{7}\partial V_{i}=(\cup V_{i})\cap\partial B^{*}$

consists of nine circles as shown in Figure 8. And

$i=1\bigcup_{i=1}^{7}\partial W_{i}=i=1(\bigcup_{i=1}^{7}W_{i})\cap\partial B^{**}$

consists of 21 circles as shown in Figure 9, eight circles

of which are contained in $Cl(\partial B-\partial B^{*})$ .
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$B\cap H:I\iota r\iota a$ bounded by the dotted circle

$|^{\prime}I\infty$
‘ $|!||\cdot|^{\prime}|$ : part of the image of the map $\nu$ defined in \S 1

Figure 7

Our problem, how to construct houses, is reduced to the problem, how to
find extensions of oriented circles in two planes, which is investigated by many
people. We investigate area near a cirlce $\partial B^{*}\cap H^{\prime}$ , where $ H^{\prime}=\{(\epsilon, y, z)|-1\leq$

$y\leq 1,0\leq z\leq 1\}$ for some small $\epsilon>0$ . Note that $\partial B^{*}\cap H^{\prime}=\partial B^{**}\cap H^{\prime}$ .
Now $V_{1},$ $V_{4},$ $V_{6},$ $W_{1},$ $W_{4}$ , and $W_{7}are$ only the inner walls. Observing Figure

9, we have

(1) $W_{1}$ never dominates $W_{2}$ ,
(2) $W_{7}$ never dominates $W_{6}$ , and
(3) $W_{3}$ and $W_{5}$ must be dominated by different walls.

Observing, in Figure 8, the line segment $P_{1}P_{2}$ in $Cl(\partial B^{*}-F(\partial V_{3}))$ , where $F(\cdots)$

is the one defined in \S 2, we have
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Figure 8

(4) $W_{2}$ and $W_{3}$ must be dominated by the same wall (see the line segment
$P_{1}P_{2}$ in Figur 9). Hence $W_{1}$ never dominates $W_{3}$ by (1).

Observing, in Figure 8, the line segment $P_{3}P_{4}$ in $F(\partial V_{6})$ , we have
(5) $W_{5}$ and $W_{6}$ must be dominated by the same wall (see the line segment

$P_{3}P_{4}$ in Figur 9). Hence $W_{7}$ never dominates $W_{5}$ by (2).

Thus only three cases are possible. Namely,

CASE I. $W_{1}$ dominates $W_{5}$ and $W_{6},$ $W_{4}$ dominates $W_{2}$ and $W_{3}$ , and $W_{7}$ dom-
inates none.

CASE II. $W_{1}$ dominates $W_{5}$ and $W_{6},$ $W_{4}$ dominates none, and $W_{7}$ dominates
$W_{2}$ and $W_{3}$ .

CASE III. $W_{1}$ dominates none, $W_{4}$ dominates $W_{5}$ and $W_{6}$ , and $W_{7}$ dominates
$W_{2}$ and $W_{3}$ .

For Case I, we have a house
$\{\{W_{1}, W_{5}, W_{6}\}, \{W_{4}, W_{2}, W_{3}\}, \{W_{7}\}\},$ $\{\{V_{1}, V_{7}\}, \{V_{4}, V_{3}\}, \{V_{6}, V_{2}, V_{5}\}\}$ .
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Figure 9
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For Case III, we have a house
$\{\{W_{1}\}, \{W_{4}, W_{5}, W_{6}\}, \{W_{7}, W_{2}, W_{3}\}\},$ $\{\{V_{1}, V_{2}\}, \{V_{4}, V_{3}, V_{7}\}, \{V_{6}, V_{5}\}\}$ .

For Case II, since $W_{4}$ dominates none, $V_{4}$ dominates $V_{5}$ by observing the line
segment $Q_{1}Q_{2}$ in $F(\partial W_{4})$ . Since $V_{4}$ dominates $V_{5}$ , we can not get the line
segment $Q_{3}Q_{4}$ in $Cl(F(\partial V_{4})-F(\partial V_{5}))$ , but we must have the line segment
$Q_{3}Q_{4}$ in $F(\partial W_{4})$ . This is a contradiction.Therefore we have exactly two houses.

Figure 10

Note: For $i=1,3,5,6$ , split the 3-ball $N_{i}^{*}$ into two balls $N_{i}^{\prime}$ and $N_{i}^{\prime\prime}$ with
$ N_{i}^{\prime}\cap N_{i}=\emptyset$ and $ N\text{{\it \’{i}}}’\cap S_{\alpha}=\emptyset$ . Set

$B^{*}=Cl(\bigcup_{i=1}^{6}(T_{i}-N_{i}))\cup(\bigcup_{i=2}^{5}E_{j}^{+})\cup N_{1}^{\prime}\cup N_{3}^{\prime}\cup N_{5}^{\prime}\cup N_{6}^{\prime}$ , and
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$B=Cl(\bigcup_{i=1}^{6}N_{i})\cup(\bigcup_{i=2}^{5}E_{j}^{-})\cup N_{1}^{\prime\prime}\cup N_{2}^{*}\cup N_{3}^{\prime\prime}\cup N_{4}^{*}\cup N_{5}^{\prime\prime}\cup N_{6}^{\prime}$ .

The images of $B$ and $B^{*}$ are shown in Figure 10. Then $\partial B^{*}$ will be a criterion
sphere with the water drop $B$ obtained by the method of the proof of Theorem
1 in the next section.

\S 4. Proof of Theorem 1

Let $f$ : $S\rightarrow \mathbb{R}^{3}$ be the nice immersion. Let $L_{1},$ $L_{2},$ $\cdots L_{m}$ be the closures

of the double curves of the map. Hence the union $X=\bigcup_{i=1}^{m}L_{i}$ is the set of

singularities of the map $f$ . Using an isotopy $of\mathbb{R}^{3}$ , for the projection $p:\mathbb{R}^{3}\rightarrow \mathbb{R}^{2}$ ,
we may assume that $p(X)$ is a connected graph such that the degree of each
vertex is 2, 4 or 6, where all the vertices of degree 6 are the images of triple
points of the map $f$ . For each vertex of degree 4, choose mutually disjoint
vertical line segments $L_{m+1},$ $L_{m+2},$ $\cdots L_{n}$ with

$L_{i}\cap X=\partial L_{i}(i=m+1, m+2, \cdots n)$ .
We may assume that

the set $L_{i}-\partial L_{i}$ pierces $f(S)(i=m+1, m+2, \cdots n)$ .

Then $Y=\bigcup_{i=1}^{n}L_{i}$ is connected. Let $N$ be a regular neighborhood of Y.Since $N$

is ambient isotopic to a regular neighborhood of the planar graph $p(Y)=p(X)$ ,
$N$ is an unkotted handle body. Note that $Cl(f(S)-N)$ consists of mutually
disjoint surfaces. Let $k$ be the genus of the surface $\partial N$ . We can find mutually
disjoint proper disks $D_{1},$ $D_{2},$ $\cdots D_{k}$ of the handle body $N$ such that

(1) for each $i=1,2,$ $\cdots k$ , let $N_{i}$ be a regular neighborhood of $D_{i}$ in $N$ , then

$Cl(N-\bigcup_{t=1}^{k}N_{i})$ is a 3-ball,

(2) for each $i=1,2,$ $\cdots k$ , the disk $D_{i}$ is pierced once by one of $L_{1},$ $L_{2},$ $\cdots$ ,
$L_{n}$ , and

(3) for each $i=1,2,$ $\cdots$ $k$ , the meet $D_{i}\cap f(S)$ is empty or the letter $\times$ , i.e.
the union of two arcs which intersect each other at one point.

Let $N^{*}$ be the closure of the complementary domain of $N$ in $\mathbb{R}^{3}$ . We can find
mutually disjoint proper disks $D_{1}^{*},$ $D_{2}^{*},$ $\cdots$ , $D_{k}^{*}$ of $N^{*}$ such that

(4) $D:\cap D_{j}=\emptyset(i\neq j)$ ,
(5) for $i=1,2,$ $\cdots$ , $k$ , on the surface $\partial N$ , the circle $\partial D_{i}^{*}$ transversely intersects

the circle $\partial D_{i}$ by one point.
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If there exists a circle in $D_{i}^{*}\cap f(S)$ , then choose an arc connecting a point in an
outermost circle and a point in $\partial D_{i}^{*}-N_{i}$ . Let $Q$ be a small regular neighborhood
of the union of the arc and the disk bounded by the outermost circle (see Figure
11). Then the union $N\cup Q$ is still an unkotted handle body. We use the
same notation $N$ and $D_{i}^{*}$ for $N\cup Q$ and $Cl(D_{i}^{*}-Q)$ respectively. Repeat this
modification of $N$ to $N\cup Q$ , then we can assume that

(6) for $i=1,2,$ $\cdots k$ , the meet $D_{i}^{*}\cap f(S)$ consists of mutually disjoint proper
arcs of $D_{i}^{*}$ where $D_{i}^{*}$ and $f(S)\cap N^{*}$ transversely intersect.

Then the boundary of $Cl((N-\bigcup_{i=1}^{k}N_{i}))$ , say $S^{*}$ , is a sphere. For each $i=$

$1,2,$ $\cdots$ , $k$ , let $N_{1}^{*}$ be a regular neighborhood of $D_{i}^{*}$ in $N^{*}$ . Now the union
$N_{i}\cup N_{i}^{*}$ is a 3-ball such that

(1) $(N_{i}\cup N_{i}^{*})\cap S^{*}$ is a disk on $\partial(N_{i}\cup N_{i}^{*})$ , and
(2) the meet $(N_{i}\cup N_{i}^{*})\cap f(S)$ consists of admissible disks in $(N_{i}\cup N_{t}^{*})$ .

Connecting the balls $(N_{1}\cup N_{1}^{*}),$ $(N_{2}\cup N_{2}^{*}),$ $\cdots$ , and $(N_{k}\cup N_{k}^{*})$ to get a waterdrop
(see Figure 11). This completes the proof of Theorem 1.

Figure 11

\S 5. Proof of Theorem 2

First we need the following two key lemmata.

LEMMA 1. Let $B$ be a 3-ball. Let $g:M\rightarrow B$ be an immersion of an orientable
compact connected 3-manifold $M$ into $B$ such that $g^{-1}(\partial B)$ is a surface on $\partial M$

and that the map $g$ embeds the closure of each component of $\partial M-g^{-1}(\partial B)$ .
Then the map $g$ is an embedding.
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Proof. Let $F_{1},$ $F_{2},$ $\cdots$ , $F_{m}$ be the closures of the components of $\partial M-g^{-1}(\partial B)$ .
For each $i=1,2,$ $\cdots m$ , the image $g(F_{i})$ splits the 3-ball $B$ into two domains.
Let $G_{i}$ be the closure of one of the two domains such that any regular neigh-
borhood of $g(F_{i}\underline{)i}n\underline{G}_{i}$ does not contain the image of a regular neighborhood
of $F_{i}$ in $M$ . Let $G_{1},$ $G_{2}\underline,$$\cdots,$$G_{m}-$ be mutually $disj\underline{oin}t$ copies of $G_{1},$ $G_{2},$

$\cdots,$
$G_{m}$ .

Using the map $g$ , glue $G_{1},$ $G_{2},$ $\cdots G_{m}$ to $M$ . Let$\underline{M}$ be the r\’eultin,X 3-manifold.
Then the map $g$ extends to a covering map $\overline{g}$ : $M\rightarrow B$ with $\tilde{g}(G_{i})=G_{i}(i=$

$1,2,$ $\cdots m$). Since $B$ is a 3-ball, the map $\tilde{g}$ must be a homeomorphism. There-
fore the restriction $g=\tilde{g}|M$ is an embedding. $\blacksquare$

LEMMA 2. Let $h$ : $G\rightarrow B$ be an immersion of a closed connected surface $G$

into a 3-ball $B$ such that

(1) the closures of the complementary domains of $h^{-1}(\partial B)$ in $G$ are mutually
disjoint disks, say $D_{1},$ $D_{2},$ $\cdots$ , $D_{n}$ , and

(2) the images $h(D_{1}),$ $h(D_{2}),$ $\cdots$ , $h(D_{n})$ are admissible disks in $B$ .
Then $G$ is a sphere and the map $h$ is an embedding.

Proof. Let $G^{\prime}=h^{-1}(\partial B)$ . For each $i=1,2,$ $\cdots n$ , the image $h(\partial D_{i})$ splits the
sphere $\partial B$ into two disks. Let $D_{i}^{\prime}$ be the one of the two disks which does not
contain the image of any boundary collar of $\partial D_{i}$ in $G^{\prime}$ by $h$ . Let $h^{\prime}$ : $G\rightarrow\partial B$

be an immersion with $h^{\prime}|G^{\prime}=h$ and $h^{\prime}(D_{i})=D_{i}^{\prime}(i=1,2, \cdots , n)$ . Then $h^{\prime}$ is a
covering map. Hence $h^{\prime}$ is a homeomorphism. Thus $G$ is a sphere. The map $h$

embeds $G^{\prime}$ into $\partial B$ . This means that $h(\partial G^{\prime})=\bigcup_{i=1}^{n}h(\partial D_{i})$ consists of mutually

disjoint circles. Hence $h(D_{i})\cap h(D_{j})=\emptyset(i\neq j)$ by Condition (2). Therefore
the map $h$ is an embedding. $\blacksquare$

Let $f$ : $S\rightarrow \mathbb{R}^{3}$ be the nice immersion possessing a criterion sphere $S^{*}$ with
a waterdrop $B$ . Let $S^{**},$ $B^{*},$ $B^{**},$ $D^{*}$ , and the star $p^{*}$ as ones in \S 2. Let $\not\subset$ be the
set of the equivalent extension classes of the map $f$ and fl be the set of houses on
the criterion sphere with the waterdrop. By four steps, we shall prove Theorem
2 by constructing two maps $\mathfrak{h}$ $:\not\subset\rightarrow fl$ and $\mathfrak{g}$ : $\ovalbox{\tt\small REJECT}\rightarrow\not\subset$ with $\mathfrak{h}\circ \mathfrak{g}=id$ and
$\mathfrak{g}0\mathfrak{h}=id$, where $id$ is the identity map.

In the following two steps, we define the map $\mathfrak{h}$ $:\not\subset\rightarrow fl$ as follows.
Step 1. Suppose that the nice immersion $f$ extends to an immersion $ g:M\rightarrow$

$\overline{\mathbb{R}^{3}}$of an orientable compact connected 3-manifold $M$ into $\mathbb{R}^{3}$ . Let $[g]$ be the
equivalent extension class of $g$ . To make argument simple, we assume that
$\partial M=S$ and $g|\partial M=f$ . We shall construct a house $\ovalbox{\tt\small REJECT}(g)$ with a star stair $\mathfrak{P}^{*}(g)$

and a doublestars stair $\mathfrak{P}^{**}(g)$ . In this step, we shall construct $\mathfrak{P}^{*}(g)$ .
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Let $M_{1}^{*},$ $M_{2}^{*},$ $\cdots M_{m}^{*}$ be the components of $g^{-1}(B^{*})$ . Then the restriction
$g_{i}=g|M_{i}^{*}$ : $M_{i}^{*}\rightarrow B^{*}$ is $an$ embedding by Lemma 1. Let

$\Re(M_{i}^{*})=the$ set of the walls on $g(M_{i}^{*})$ .
Recall the immersion $\nu$ : $S\times[0,1]\rightarrow R^{3}$ whose image does not meet the un-
bounded complementary domain of $f(S)$ in $\mathbb{R}^{3}$ . Since $g^{-1}(\nu(S\times[0,1]))$ contains
a boundary collar of the 3-manifold $M$ , it can be easily checked that $\Re(M_{i}^{*})$ is
a room. For $i=1,2,$ $\cdots$ , $m$ , let

$S(M_{i}^{*})=the$ set of the components of $g(M_{i}^{*})\cap S^{*}$ .
And set

$\mathfrak{P}^{*}(g)=\{\Re(M_{1}^{*}), \Re(M_{2}^{*}), \cdots, \Re(M_{m}^{*})\}$ .

Then $\mathfrak{P}^{*}(g)$ is a star stair and $\bigcup_{i=1}^{m}ff(M_{1}^{*})$ is the floor diagram of $\mathfrak{P}^{*}(g)$ .

Step 2. In this step, we shall construct $\mathfrak{P}^{**}(g)$ .
Let $E$ be a 3-ball whose interior contains the set $g(M)\cup B\cup B^{*}$ . Tunnel the

3-manifold $B^{**}\cap E$ from the $p^{*}$ to a point of $\partial E$ to get a 3-ball $B^{\prime}$ which contain
the set $g(M)\cap B^{**}$ . Use $B^{\prime}$ instead of $B^{*}$ in the step 1 to get a double-stars
stair. Let $M_{1}^{**},$ $M_{2}^{**},$ $\cdots M_{n}^{**}$ be the.components of $g^{-1}(B^{\prime})$ . Set

$\Re(M_{j}^{**})=the$ set of the walls on $g(M_{j}^{**})$ ,
$ff(M_{j}^{**})=the$ set of the components of $g(M_{j}^{**})\cap S^{**}$ , and
$\mathfrak{P}^{**}(g)=\{\Re(M_{1}^{**}), \Re(M_{2}^{**}), \cdots\Re(M_{n}^{**})\}$ .

Then $\mathfrak{P}^{**}(g)$ is a double-stars stair and $\bigcup_{j=1}^{n}S(M_{j}^{**})$ is the floor diagram of $\mathfrak{P}^{**}(g)$ .

Therefore the star stair $\mathfrak{P}^{*}(g)$ and the double-stars stair $\mathfrak{P}^{**}(g)$ make a house
$\mathfrak{H}(g)$ . The house $\mathfrak{H}(g)$ is uniquely determined by the equivalent extension class
$[g]$ . Set $\mathfrak{h}([g])=fl(g)$ .

Step 3. In this step, we shall define the map $\mathfrak{g}$ : $\ovalbox{\tt\small REJECT}\rightarrow\not\subset$ .
Let $\prime H$ be a house with a star stair $\mathcal{P}^{*}=\{\mathcal{R}_{1}^{*}, \mathcal{R}_{2}^{*}, \cdots , \mathcal{R}_{m}^{*}\}$ and a double-stars

stair $\mathcal{P}^{**}=\{\mathcal{R}_{1}^{**}, \mathcal{R}_{2}^{**}, \cdots , \mathcal{R}_{n}^{**}\}$ . For each $i=1,2,$ $\cdots$ , $m$ , let
$W_{\ell}=the$ inner wall of the room $\mathcal{R}_{i}^{*}$ , and

$M(\mathcal{R}\ddagger)=Cl(In(W_{i})-\bigcup_{:W^{\prime}\in \mathcal{R},.-W}In(W^{\prime}))$
,

where In $(\cdots)$ is the one defined in \S 1 for walls.
Then it is easy to show that

$\Re(M(\mathcal{R};))=\mathcal{R}_{i}^{*}$ , where $\Re(\cdots)$ is the one defined in Step 1,
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$\theta(M(\mathcal{R}_{i}^{*}))=\mathcal{F}(S(\mathcal{R}_{i}^{*}))$ ,
where $S(\cdots)$ is the one defined in Step 1, and
$\mathcal{F}(S(\cdots))$ is the one difined in Observation 1 in \S 2.

Similarly we have orientable compact connected 3-maifolds $M(\mathcal{R}_{1}^{**}),$ $M(\mathcal{R}_{2}^{**})$ ,
.. . , $M(\mathcal{R}_{n}^{**})$ with $\Re(M(\mathcal{R}_{j}^{**}))=\mathcal{R}_{j}^{**}$ , and $\mathfrak{F}(M(\mathcal{R}_{j}^{**}))=\mathcal{F}(S(\mathcal{R}_{j}^{**}))(j=$

$1,2,$ $\cdots n$).
Let

$\mathcal{F}=\bigcup_{i=1}^{m}ff(M(\mathcal{R}_{i}^{*}))\cup(\bigcup_{j=1}^{n}\theta(M(\mathcal{R}_{j}^{**})))$ , and

$\mathcal{W}=$ { $Q|$ for some $F\in \mathcal{F},$ $Q$ is a component of $F\cap\partial B$ }.
Recall the circle $C=\partial D^{*}$ on the waterdrop $B$ . For each configuration $Q$ in $\mathcal{W}$ ,
let

$\mathcal{E}(Q)=the$ set of $mponents$ of $\partial Q\cap C$ .
$Let\sim be$ a relation on the set $\mathcal{W}$ defined by

$Q\sim Q^{\prime}$ if and only if there exists a sequence of configurations
$Q_{1},$ $Q_{2},$ $\cdots$ , $Q_{q}$ in $\mathcal{W}$ with $Q_{1}=Q,$ $Q_{q}=Q^{\prime}$ and $\mathcal{E}(Q_{i})\cap \mathcal{E}(Q_{i+1})\neq$

$\emptyset$ $(i=1,2, \cdots q-1)$ .
Then the relation $\sim$ is an equivalence relation. Let $\mathcal{W}_{1},$ $\mathcal{W}_{2},$ $\cdots$ , $\mathcal{W}_{r}$ be the
equivalence classes of $\mathcal{W}$ . For $k=1,2,$ $\cdots r$ , the union $F_{k}=$ $\cup Q$ is

$Q\in W_{k}$

an immersed connected surface by the condition that the two tight floor dia-
grams coincide. Now $f(S)\cap B$ consists of admissible disks in $B$ . Glue some
of the disks to the surface $F_{k}$ so that we get an immersed closed connected
surface $G_{k}$ . Note that any two surfaces $G_{i}$ and $G_{j}$ never have common disks
of $f(S)\cap B$ . Since $f(S)\cap B$ consists of admissible disks in $B$ , each surface
$G_{k}$ is a sphere by Lemma 2. Let $B_{k}$ be the 3-ball bounded by the sphere
$G_{k}$ . Let $M_{1}^{*},$ $M_{2}^{*},$ $\cdots$ , $M_{m}^{*},$ $M_{1}^{**},$ $M_{2}^{**},$ $\cdots$ , $M_{n}^{**}$ , and $B_{1}^{*},$ $B_{2}^{*},$ $\cdots$ , $B_{r}^{*}$ be mutually
disjoint copies of $M(\mathcal{R};),$ $M(\mathcal{R}_{2}^{*}),$ $\cdots M(\mathcal{R}_{m}^{*}),$ $M(\mathcal{R}_{1}^{**}),$ $M(\mathcal{R}_{2}^{**}),$ $\cdots$ , $M(\mathcal{R}_{n}^{**})$ ,
and $B_{1},$ $B_{2},$ $\cdots$ , $B_{r}$ respectively Using floor diagrams, glue together the copies
to get an orientable compact connected 3-manifold $M_{7\{}$ and an immersion $g_{7\{}$ :
$M_{H}\rightarrow \mathbb{R}^{3}$ with $g’\kappa(M_{i}^{*})=M(\mathcal{R}_{i}^{*}),$ $g_{?t}(M_{j}^{**})=M(\mathcal{R}_{j}^{**})$ , and $g_{?\prec}(B_{k}^{*})=B_{k}$ .
Then the map $g_{7t}$ is an extension of the map $f$ . Set $\mathfrak{g}(H)=[g_{\mathcal{H}}]$ .

Step 4. In the sence of Step 1 and Step 2, we have
$\mathfrak{P}^{*}(g_{H})=\mathcal{P}^{*}$ , and
$\mathfrak{P}^{**}(g_{?t})=\mathcal{P}^{**}$ .

Hence $\mathfrak{h}\circ \mathfrak{g}(?\{)=H$ . Also the two extentions $g_{\mathfrak{H}(g)}$ and $g$ are equivalent. Hence
$\mathfrak{g}\circ \mathfrak{h}([g])=[g]$ . Therefore $\mathfrak{h}$ is bijective. This completes the proof of Theorem 2.
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