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Abstract. Suppose that Q(z’,y’) € L1(S"~! x §™~1) is a homogeneous func-
tion of degree zero satisfying the mean zero property (1.1), and that h(s,t) is a
bounded function on R x R. The Marcinkiewicz integral operator vn(f) along
a continuous surface y(u,v) on the product space R* x R™ (n > 2, m > 2) is
defined by

v f(§,n2) = ( /m /m |Ft,a(:v,y,z)|22—2‘"2’dtds)1/2

where F3 s(¢, 7, 2)

= [oj<zt MUl D127y~ ) F€ ~ 2, - v, 2 = (2, [y]))dzdy.
lvl<2?

We prove that the operator v f is bounded on LP(R™ x R™ x R), p € (1,00),
provided that €2 is a function in certain block space 32'1(5"-1 x §S™~1) for some
g > 1 and that two lower dimensional maximal functions related to v are bounded
on LP. These two lower dimensional maximal functions are natural extension of
a well-known maximal function along curves.

1. Introduction

Let RY (N = n or m), N > 2, be the N-dimensional Euclidean space and
SN—1 be the unit sphere in R equipped with normalized Lebesgue measure
do = do(-). For nonzero points £ € R™ and y € R™, we define ’ = z/|z| and
Yy =y/|yl- Forn > 2, m > 2, let Q(z',y’) € L}(§™"~! x S™1) be a homogeneous
function of degree zero, and satisfy

(L1 /.06t = [ 86w =0
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Let h(s,t) be a locally integrable function on R x R. The Marcinkiewicz integral
operator Tq f on the product space R™ x R™ is defined by

1/2
(1.2) Taf(z,y) = ( /m /R |ﬁt,,(x,y)|22—2t—2*dtds) ,

for all test functions f € S(R™ x R™), where 5, ,(£,7)
= [ [ hal DO, Il (6 - 2, ~ y)dod
|z| <2t J|y|<2* :

In the one parameter case, if h = 1 and  satisfies some regularity conditions,
then it is known that the operator Tq is bounded on LP(R"), 1 < p < 00
(see [13]). In order to weaken the regularity condition on 2, the following two
theorems were proved.

THEOREM A (see [2]). Suppose n > 2, m > 2 and that Q is a homogeneous
function of degree zero and satisfies (1.1). If h is a bounded function, then the
operator Ty, is bounded on L?(R™ x R™) provided Q € L(Log*L)?(S"~1x §m-1),

THEOREM B (see [1]). Suppose n > 2, m > 2 and that Q is a homogeneous
function of degree zero and satisfy (1.1). If h is a bounded function, then the
operator Tq is bounded on LP(R™ x R™), 1 < p < oo, provided 2 € LI(S™! x
S™=1) for some ¢ > 1.

On the other hand, recently Jiang and Lu introduced the block spaces
BJ', ¢ >1on S x S™! (see Section 2 for the definition). It was proved by
Keitoku and Sato [6] that for any fixed ¢ > 1, BS1(S™!) D LT(S™?) for all
r > 1 and the inclusion is proper, although, so far, it is still not clear about the
relationship between the spaces B! and L Log*L on the sphere.

In this paper, we will study the operator Ty along a continuous surface.
Precisely, for (z,y, z) € R**™+1 we define

1/2
vaf(z,y,z) = ( / / lFt,,(z,y,Z)l22'2“2’dtds>
RJR

Where Ft,s(ga n, Z)

= /zl<2' R(lz|, lyD|=| ="y~ U, v ) f(€ —z,n —y, 2 — (||, |ly])) dzdy.
lyi<2*

Let t, s, z € R, we define the following two maximal functions

R S
Mlh(t,s,z) = sup R‘IS"I/ / |h(t — u, s — v, z — y(u, v))|dudv,
R>0,5>0 o Jo
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R /S
M2g(t,z) = sup R71S7! / / lg(t — u, z — ¥(u, v))|dudv.
R>0,5>0 o Jo

The main purpose of this paper is to prove the following theorem.

THEOREM 1. Suppose that ) is a homogeneous function of degree zero satisfy-
ing (1.1), and that h is a bounded function. Then vq is bounded on LP(R™ x R™ X
R), provided that Q € B}'(S™~! x S™~1) for some q > 1, and for r € (1, 00)

(@) 1My RllL-msy < Clihll-@e),
(i) |MIgllL-ma) < CllgllL-(r2)-

We remark that the above two maximal functions are natural extensions of
the maximal functions

R
Mrh(s,t) = sup R_I/ |h(s — u,t — T'(u))|du
R>0 0
and

R
peg() = sup B [ lo(e = ).

The maximal functions Mt and pr play an important role in harmonic analysis
and they are extensively studied by many authours. See [14] for the results
through 1993.

The surfaces v satisfying (i) and (ii) are easily available. For example,
v(s,t) = s°t’ with & > 0 and 8 > 0 (see Corollary 3 in [3]). However, it
will be more interesting to investigate more general curvature conditions on 7 to
assert the L? boundedness of M and M2, similar to those for Mr and ur.

By we can also obtain an improvement of Theorem B.

THEOREM 2. Suppose that 2 and h satisfy the conditions in Theorem 1, then
the operator Tq is bounded on LP(R™ x R™).

This paper is organized as follows. In the second section we will review
the difinition of the block spaces. After proving the LP boundedness property
for certain maximal functions in Section 3 and obtaining some L? estimates in
Section 4, we will prove the theorems in Section 5. Qur proofs clearly also work
for the one parameter case. Thus, even in the one parameter case, our
2 presents an improvement over the classical result by Stein.

Throughout this paper, we always use letter C to denote positive constants
that may vary at each occurrence but is independent of the essential variables.
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2. Block Spaces

First we review the definition of the block spaces.
A g-blockon S™~1 x S™~! is an L7 (1 < ¢ < oo) function b(:, ) that satisfies
the following conditions (a) and (b).

(a) supp(b) C Q where Q@ is an interval on S"~! x S™~1. Precisely,

Q=0 (é,’ a) X Q2(7I', :5)’ where
Qi¢',a)={z'eS" |’ -¢|<afor ¢ € S*! and a € (0,1]},
Q7,8 ={y eS™ |y —n| <Bforn’ € S™ " and B € (0,1]}.
(b) |lbllq < 1Q|Y/9-1), where |Q)| is the volume of Q.
The block spaces BY' on 5™7! x §™~! are defined by

Bl ={QeL'(S" !t xS™ ) : Q',y) = ZC#b#(x’,y’), where each b,
H

is a g-block supported in an inverval @*, and MJ*'({C,}) < oo}

where

(2.1) MQ'({Cu}) = Cul{1+ (log* 1/|Q*])?}.
N

The “norm” MJ'(Q) of Q € B! is defined by M} (Q) = inf{MP({C,})}
where the infimum is taken over all g-block decompositions of 2.

The block spaces were invented by M.H. Taibleson and G. Weiss in the study
of the convergence of the Fourier series (see [12]). Later on, these spaces and
their applications were studied by many authors [7], [9], [10], [11], etc. For
further information, readers may see the book . In particular, it was noted by
Keitoku and Sato that, for any fixed ¢ > 1, {J,, L"(S""1) € BQ!(S""!), and
the inclusion is proper (see [6]).

r>1

3. Certain Maximal Functions

Let the functions h and Q = )" Cy,b,, be as in[Theorem 1. Let B; , = {(z,y) €
R™ x R™ : |z| < 2%, |y| < 2°} and R? = R x R. We define the measure oq
by oq,,s * f(z,y,2) = 272 F, ,(z,y, z). Then it is easy to see that its Fourier
transform is

&ﬂ,t,a(és , Z)
:/ 2-t=2h(|z|, |y|)|ml—n+1|y|-—m+1g(m/,y/)e—i{(&z)+<n,y)+v(|zl,lyl)z}dxdy_
t,s
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Similarly, we define the measures |0b,,t,s| and |oqy,s| by letting their Fourier
transforms be

|o%,.,t,51 (€, 7, 2)

[06,601(6, 7, 2)

:/ 2‘-’—t|;1;|*"+1|y|—m+1|g(x’,y’)Ie—i{(w,5)+(y,n)+‘v(lzl,Iyl)z}dzdy.
Bt,s

Then we define the maximal functions o3, f and o5 f by
03, f(@,4,2) = sup | |ob,.¢.s| * f(z,9,2) |
t,scR3

O;If(x3 Y, Z) = sup I laﬂ,t,al * f(Z, Y, Z) "
t,sCR3
It is easy to see that the total variations of oq,,s and gy, ¢ 5 satisfy

IHoa,esl Il = / 277 |h(l=], lyhU', ¥ Je| "y "™ dwdy < C,
(3.1) B:..

” Ioburtval ”1 S C
uniformly for ¢, s and b, and both |og 4 ,| and |os, ¢ | are positive.

PROPOSITION 3.1. If the surface v satisfies (i) in Theorem 1, then both o}
and og are bounded on LP(R™ x R™ x R) and the bound of o} is independent of
the block b(-, -).

Proof. Sinceogf <3 |Culos, £, clearly we only need to prove the L? bounded-
ness of ;. By the definition, for any f(z) > 0, oy f(z,y, z) is equal to

s pt
sups ™[ [ e )15 — ',y v, 2~ (0 ) o (€)do () hud

;ig —lx§m-1
SC/ 1, gen [PE Mg 1 (2,9, 2)do (€')do ()
n—1y gm—
where

S t
Mg o f(z,y,2) = sup /0 /0 fx—ué,y —vr, z — y(u, v))dudv

8>0,t>0
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is the Hardy-Littlewood maximal function in the space R x R along 7 in the
direction (¢/,7'). Thus

o3 flo< [, M€ Mo Flodo(€)do ().

Let 1 = (1,0,0,...,0) € S* ! and 1 = (1,0,0,...,0) € S™ 1. For each fixed
(&’,n') choose a rotation p = p; ® p2 such that p;§ = 1 and pan = 1. Let
p~! = p7' ® p; ' be the inverse of p. We define the function f, by f,(z,y, 2) =

f(prz, p2y, 2). So
f(CE - ’U{l, Y- 1”7/, z—= ’Y(u’ U)) = fp‘l(plz - 'U.l, p2Yy — 'Ui, z - 7(“’? 'U))-

By this fact, Condition (i) in [Theorem 1, and changing variables, it is easy to
see that

IMer y fll Lo@rscrm xmy < ClIf | Lo @ xrm xm)
where C is independent of (¢/,7'). The proposition is proved.

We also need to study two more maximal functions. For any block function
b, we define Ay s by Apt,s * f(§,7,2) =

27t /B h(lel, lyDb(', o )| ™" |y~ £(€ — =, m, 2 — (|2, |y])) dwdy.

Then it is easy to see that the Fourier transform of A, , is

. Ab,t,a (Ea n, Z)
— g—s—t / h(lxl, Iyl)lwl_"+1|y|_m+1b($', y’)e—'i{(z,€)+7(|-’”la|y|)z}dzdy.
Bt,s

Similarly we define Ay 4, 7p¢,s and Xy, , by

At,a(g: n, Z)
— 2—a—t/ h(|z], |y|)|z|""+1ly|'m+1b(m', y')e—i{<ym)+z’7(|$|,|y|)}dxdy,
Bt,s

To,t,8 (6,712 2) = Ob,0,8(6, 7 2) — Abt,s(€,m, 2)
and . R
Eb,t,a(ga m Z) = 6b,t,s(E, m Z) - Ab,t,a(é’ m, Z).

Then for any non-negative function f

(3 2) IAb,t,a * f(E’ n, Z)l < CIDb,t,s * f(és m Z)|
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(3.3) |Ab,t,s * f(£,7, 2)| < |Goyt,s * f(§,, 2)]
where both Dy, . and Gy ; , are positive and
Dyt,s * f(&;m, 2)
=27t [, ) (6 - 3 2 = (ol o) ldad,
Gb,t,s * f(&, 7, 7—)
=27t ]B‘ |~y =™ (2, )1 (€ — 9, 2 — (2], ly])) dzdy.

PROPOSITION 3.2. Let

Gyf = sup |Gb,t,s * [, Dyf = sup |Db,e,s * fl-
(t,8)ER? (t,s)€R?

If the surface v satisfies (ii) in Theorem 1, then both G} and D} are LP bounded.

Proof. The proof for the proposition is exactly the same as that in proving
Proposition 1, but using (ii) instead of (i) in Theorme 1. We omit the detail.

It is easy to see that 734 , and ¥, ; , are bounded by positive measures. More
precisely, for any non-negative function f

(3.4) 175,t,s * fl < {lob,t,s] + Dut,s} * f
(3.5) 26,8, * | < {lob,8,5] + G5} * [-

Thus by Propositions 3.1 and 3.2, we have

(3.6) | sup |7b,t,6 * fl llp < Cllos fllp + 105 fllp < ClIf llp;
(t,s)eR?

(3.7) | sup |Z¢,s* f] lp < Clioy fllp + IG3 fllp < Cll fllp;
(t,s)€R3

where C is independent of the block b(-, -).

4. L? Estimates
The main purpose of this section is to obtain the following lemma.

LEMMA 4.1. Let Q = 3" Cub, be a block function in Theorem 1, where each
b=>b, is a g-block with supp(b) C Q. Let q' be the conjugate exponent to q.
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Then

0)  oa.s(&m2)] < Cl2%] 2%

(ii) [7o,0,s (€, 7, 2)| < C|28€|Y/ 108 1Q1 | 237) if Q| < e/1-9;
(i) |Fore(6m, 2)| < CJ2%MT |20 if Q| > eV,
(iv)  |Bpes(&m2)| < C|2t| |20n|/ 1oelql if Q| < e?/19;
(V) Eoes(6m,2)| < CI2%] om0 if QI et/ 'y,
(vi) |5,0,5(&, 7, 2)| < C{|2%¢] |2°n|} Y/ loslQ if Q| < e/~
(ViD) 101,06 m 2)] < C{I2%] |2}V if 1Q|> e/,

where C is a constant independent of t,s,z € R, (&,17) € R*t™ and the block
b(-,+).

For the sake of simplicity, we prove the case n > 2 and m > 2 only. The
proof for other cases are similar, with only minor modifications.

By the mean zero property (1.1) of 2, we have
2t p2°
Pacaen <o [* [ i) ()
o Jo Sn-lxgm-1
x {e” &Y _ 1}{em ™2 _ 1}do (2! )do (y')|dudv
2t 20
< Ol smixsmnlél 27~ [ [ urlh(u, wldudv.
o Jo
So we obtain (i).

We turn to prove (ii). Fixing any £ # 0 and 1 # 0, by the method of rotation,
without loss of generality, we may write

l'f-b,t,s(g, n, Z)I

2t 27
sczt [0 [T | b, v/)
0 o n-lx§m-1

x e~ #ulel{La’) fe—winly) _ 1}do (') do (y') |dudy

2t 2°
<ozt [Tt [ V][ o wemiiedo @)|do o aud.
0 m-—1 0 n—1

Thus |74 5(§, 7, 2)| is dominated by

2%{¢| L,
C|2’n|/ 1/0 2't|§|"1|/m¢y,(x'1)e“w1“da:'1lduda(y’)
sm-
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where
¢y (€)= (1= )" g1 (<) /S M6 =¢)23,y)do(2)

is a one dimension function. Therefore,

2*|¢| n
Prssm Al < el [ [ 26y ()ldudo ).
m=1J0

Pick a number w in the interval (1,2) such that w < q. By Hélder’s inequality
we have

Pres(@m 2l <Clonl [ @1ED™ Iyl do(w)

where «' is the conjugate exponent to w. Thus by the Hausdorff-Young inequal-
ity, we find that |7y, (€, 7, 2)| is dominated by

(@1 Cletnl € [ Idylludo ).
By the definition of ¢,, and Holder’s inequality again, we have

(4 2) /Sm—l ”¢y'”Lw(R)dU(y’) < C”b”L..,(s,,_lem__l)
< C"b”Lq(S"—lxSm—l)’Qll/w_l/q < CIQl—l/w'.

Now combining (4.1) and (4.2) and taking w = log|Q|/(1 + log |Q|), we easily
obtain (ii). Switching the variables ¢ and 7 in the proof of (ii), we obtain the
estimate (iv). If |Q| > €?/(1-9)| taking w = q in the proofs of (4.1) and (4.2),
then we obtain that

7,06, m, 2)] < C2°n] 129177 1QI7Y7 < Gyl2°] 2€] /7,
where the constant C depends only on g > 1. Thus (iii) is proved. Similarly we

can prove (v). Since the proof of (vi) and (vii) are similar, we will prove (vi)
only. By the method of rotation

‘ 281¢| p2%Inl
1Bb.0.5(6,m 2)| < CJ2%€|~2 250 /0 / \Fo(s, )| dudv

where

Fols, t) = (1 — s?)=3/2(1 tz)(m_s)/zxuala,ukx}(8, t)O(s, t)
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and

0= [ [ | b= ) (1 £)2) do () )

Again we use Holder's inequality and the Hausdpff-Young inequality to obtain

2°1¢| r2°|n| 1w
9nca&m 2 < Clg om0 duan} YA
0 0

Using the proof in (4.2), we obtain || F|l, < C|Q|~"/*". Therefore
|6b,0.5(€,m, 2)| < C|Q|~V/«'|2k¢|~ 1/ |29 p| =1/,

Letting w = log |Q|/{log |Q] + 1}, we obtain (vi).

5. Proof of Theorem

Our proof is based on the method used in [3]. For a given block function
1 = Y Cub,, by Lemma 4.1, without loss of generality, we assume that the
supports Q, of b, are uniformly small such that

|Qul <e”U~0 and  log(log(1/|Qu]) > 1.

Take two radial Schwartz functions, & € S(R"), ¥ € S(R™) such that the
values of their Fourier transforms are between 0 and 1 and satisfy

/méfzt\)dtzfmﬁw\)dszl,

'supp(®) C {z € R™; 27! < |z < 2},
supp(¥) C {y e R™; 27! < |y| < 2}.

Let ®4(z) = 27™*®(x/2") and W,(y) = 2=™*¥(y/2%). Then by checking the
Fourier transforms, it is easy to see that for any test function f,

(5.1) fz//(¢t®\113®6)*fdsdt.
R JR
Define the g-function by
’ ) 1/2
oD@ 52 = ([ [ 120880 (z,y,2)dids)
R /R
where (also in (5.1)) ¢ is the Dirac § function. By [4], we know that

(5.2) l9() | Lo@ntmtsy < Cllfll Lo mmsmsry
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for any p € (1, 00).
By (5.1) and the Minkowski inequality, we have that

2 1/2
vaf(z,y,z) = (/ (/ (Pr4u @ Vypy @) %0015 * f(z,y, z)dudv) dtds)
R? \JR3
< f Lo f (@, , 2)dudy
]Kﬂ
where
) 1/2
hmmmmﬂ:(/J@mﬂ®wﬁm®®*muﬁyﬂ@%@|aa)
R ,

By Minkowski’s inequality, for any p € (1, o)

”mNmSC/HQJMMMu
RQ

Now we prove that there exists a constant C independent of u and v such that
(5. 3) ”Iu’uf”Lp(mn-O-m-f-l) < C“fIILp(]Rn+m+1) for all PE (l, 00)

Note that

Jga,ts = Zcpo'b,‘,t,a and Z 'cl»tl < co.
Let

1/2
Fassf @39 = (|| 190 @ Woru 80) $000% S (0,,2) dsct)

To prove [(5.3), it suffices to show that
(5.4) MuvpfllLe < C| fllLe

where the constant C is independent of u,v and the blocks b. We define a
linear operator T on any function F(z,y, 2,t,5) by TF(z,y, 2,t,s) = Obt,s *
F(z,y, 2,t,5) and want to prove the mixed norm inequality

(5.5) ” ||Tf||L’(R’)IlL»(mn+m+l) hS C“ ||f“L’(1R°)“LP(mn+m+l)'
for p € (1, 0).

By duality, we only need to show the cases p € (1,2]. By the definition and
(3.1), it is easy to see that

” IIT-F”LI(]R’)IIL1(]K':+m+1) < Cl“ llf”L"(Rz)“Ll(mn-}-m-}-l)!
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By [Proposition 3.1, we have

” lIT‘FllL“(Rg)lqu(mn-f‘m-f-l) < C2|| ”‘F”L""(]R’)”Lq(mn-{-m-i-l)

for any ¢ > 1. Clearly the above constants C; and C; are independent of
the functions b. Thus by interpolation we obtain (5.5). In particular, letting
F(z,y,t,8) = (Pt4u ® Yspy ® 6) * f(z,y), then we obtain that

Muwpfllize = || 1TFlLa]| L < C|| 1Fzal| 1o = Cllg(Hllze < Clifll Lo
(5.4) is proved.

We are in a position to proveTheorem 1. If u > 0 and v > 0, by Plancherel’s
theorem

MunfB<C [ [ 1assen P 1fEn 2 dedndzdids

where

Atauv—{(g, )ER")(IRM 2—t u—1<|§|<2 —t— u+1
| 2_’"1<ln|<2"’+1}><111';

Thus by (i) of Lemma 4.1, we know tha.t if (€,7m,2) € A¢ 54,0 then
6a,,s(&m, 2)| < CI2¢] |2°9] < C27"277.
Thus
uo g < 02720 [ [ yi(em, )P dgdndzatas.
Thus by the definition of A 4 4,4, it is ;;;;'uto see that
I1uufl} < C272CHI| fIf & C272C | £,
which shows that

(5.6) uollamgs < C274270.

We now use interpolation between [(5.3) and (5.6) to obtain a § > 0 such that

(5.7) 1w flle < €227 fllp-

Thus we have

(5.8) / / M fllpdudv < C| flp-



MARCINKIEWICZ INTEGRALS ON PRODUCT SPACES 13

For u < 0 and v > 0, by the cancellation condition of €2 and the definition of
TQ,t,s; i1t is easy to see that oq ¢ s = Ta,t,s. So we have

, 2 1/2
[u,vf = (/ |Tn,t,a * (q)t+u ® \Il.s+v ® 6) * f' dtds)
R3

Thus

0 oo ' 0 oo
[ Mo ttudo < el [ [ 10l

—-o00 JO L —o00 JO

where
' 2 1/2
Iopsun = ([ Mot * (B1tr ® Vasy © )  f2dsct)
R2

Using the exactly same argument in proving (5.4), by (3.6) we can prove
(5.9) 195, 00f o < Cllfllpo for any 1< po < oo,

where C is independent of b,, u and v. On the other hand, by Plancherel’s
theorem

iwsdla < [ [ oaa@m DP1FEm, e dn i dud
Thus by (ii) of Lemma 4.1, we know that if (§,7,2) € Ay s, then
I'f-b,,,t,.s(gy n, z)| < C|2‘§|1/1°5|Q"||2"17| < C2—u/1081Qulg—v,
Therefore, it is éasy to see |
(5.10) I T a0l L3spa < G274/ 1081Qulg=,
We now use interpolation to obtain
(5.11) 1,00 fllp < C27202727 E1GH 1],

for some @ > 0. This shows that

0 oo
f / o flpdudv
—00 JO

(5.12) < C/ / Z |c,,|2‘""/‘°g'Q"'2'9"]|f||,,dudv
u<0 Jv>0 u

< Clfllp Y ICu| log(1/1Qul)-
7
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Clearly, the constant C above is independent of the essential variables. Similarly,

by (iv) in [Lemma 4.1, we can prove
6:13) [ [ luuflpdud < Clflly 3 Cullog(1/1QuD.
u>0 Ju<0 L

Finally, using (vi) in and the same argument in (5.12), we find

(5. 14) / 0 / M fllpdudy < Clfllp 3 1C,l Qo8 (1/1QuD)™
u v< n

Now follows by (5.8), (5.12), (5.13) and (5.14).

Finally we will prove [Theorem 2. In fact, let y(u,v) = 1, then clearly v
satisfies (i) and (ii) in [Theorem 1. For any function f € S(R**™+1), we let h be
a function on S(R) such that ||h||, # 0. Then it is easy to see, by the definition
and [Theorem 1, that

Nhllze @y I T fll Logntmy = lva(f @ h)|| Le@n+m+ry < Cll fll Le@n+my 1Rl Lr g)»

where (f ® h)(z,y, z) = f(z,y)h(2). The theorem is proved.
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