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Abstract. A general helicoid and a rotation surface have isometric relation by
Bour’s $threm$ . In this paper, we determine pairs of surfaces of Bour’s $threm$
with an additional condition that they have the same Gauss map.

1. Introduction

In classical differential geometry, it is well known that the right helicoid (resp.
catenoid) is the only ruled (resp. rotation) surface which is minimal. Moreover,
a pair of the right helicoid and the catenoid has interesting properties. That is,
they are both members of a one-parameter family of isometric minimal surfaces
and have the same Gauss map. This pair is a typical example of a minimal surface
and its conjugate one on the Weierstrass-Enneper representation for minimal
surfaces.

On the other hand, in surface theory, following Bour’s theorem is well known.

Bour’s theorem ([1], [3]). A generalized helicond is isometric to a rotation
surface so that helices on the helicoid correspond to parallel circles on the rotation
surface.

This theorem is a generalization of the pair of the right helicoid and the
catenoid. In this generalization, however, original properties that they were
minimal and preserved the Gauss map are not generally kept. Hence it is a
natural question that on Bour’s theorem if the Gauss map is preserved then two
surfaces are determined or not.

The purpose of this paper is to answer this question.
In Section 2, we recall some formulas to study surface theory on $R^{3}$ and give

an outline of the proof of Bour’s theorem to make the paper self-contained. In
Section 3 we determine the helicoid and the rotation surface that preserve the
Gauss map on Bour’s theorem.
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2. Bour’s theorem

First we recall the definition of the rotation surface and the generalized he-
licoid and some formulas to study surface theory on $R^{3}[2]$ .

For an open interval $I$ , let $\gamma$ : $ I\rightarrow\Pi$ be a curve in a plane $\Pi$ on $R^{3}$ and
let $l$ be a straight line in $\Pi$ which does not intersect the curve $\gamma$ . A rotation
surface $R$ is defined as a surface rotating the curve $\gamma$ around $l$ (these are called
the profile cume and the axis, respectively). We may suppose that the axis $l$

is the $x_{3}$ -axis and the plane $\Pi$ is the $x_{1}x_{3}$ -plane, without loss of generality.
Then the profile curve $\gamma$ is given as

$\gamma(u)=(u, 0, \varphi(u))$ .

Hence a rotation surface $R$ can be parametrized by

(2. 1) $R(u, v)=$ ( $u$ cos $v,$ $u$ sin $v,$ $\varphi(u)$ ).

In the rest of this paper, we shall identify a vector $(a, b, c)$ with a transpose
${}^{t}(a, b, c)$ of $(a, b, c)$ .

Suppose that when a profile curve $\gamma$ rotates around the axis $l$ , it simultane-
ously displaces parallel to $l$ so that the speed of displacement is proportional to
the speed of rotation. Then resulting surface $H$ is called the generalized helicoid.
Hence this surface can be parametrized by

(2. 2) $H(u, v)=$ ( $u$ cos $v,$ $u$ sin $v,$ $\varphi(u)+av$).

where $a$ is a constant. When $\varphi$ is a constant function, then the generalized
helicoid is called the right helicoid.

For a surface $X(u, v)$ , the coefficients $E,$ $F$ and $G$ of the first fundamental
form in the base $\{X_{u}, X_{v}\}$ are defined as

(2. 3) $ E=\langle X_{u}, X_{u}\rangle$ , $ F=\langle X_{u}, X_{v}\rangle$ , $ G=\langle X_{v}, X_{v}\rangle$ .

The coefficients $L,$ $M$ and $N$ of the second fundamental form of $X(u, v)$ are given
as

(2.4) $ L=\langle X_{uu}, e\rangle$ , $ M=\langle X_{uv}, e\rangle$ , $ N=\langle X_{vv}, e\rangle$ ,

by the Gauss map

(2.5) $e=\frac{X_{u}\times X_{v}}{\sqrt{\langle X_{u}\times X_{v},X_{u}\times X_{v}\rangle}}$
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By using the first fundamental form and the second fundamental form, the
mean curvature $H$ is defined by

(2.6) $H=\frac{EN+GL-2FM}{2(EG-F^{2})}$

In the rest of this section, we sketch the proof of Bour’s theorem to make the
paper self-contained.

The line element of a generalized helicoid (2. 2) is

(2. 7) $ds^{2}=(1+\varphi^{\prime 2})du^{2}+2a\varphi^{\prime}dudv+(u^{2}+a^{2})dv^{2}$ .

A helix on the generalized helicoid is a curve of $u=(const.)$ . To give a curve
orthogonal to the helix, we consider the orthogonal condition

$a\varphi^{\prime}(u)du+(u^{2}+a^{2})dv=0$ .

Rom this equation, we obtain

$v=-\int\frac{a\varphi^{\prime}}{u^{2}+a^{2}}du+c$ ,

where $c$ is a constant. Hence if we put

$\overline{v}=v+\int\frac{a\varphi^{\prime}}{u^{2}+a^{2}}du$

then the orthogonal curve is given by $\overline{v}=$ (const.). So, it follows that

$ds^{2}=(1+\frac{u^{2}\varphi^{\prime 2}}{u^{2}+a^{2}})du^{2}+(u^{2}+a^{2})d\overline{v}^{2}$ .

If we put

tt $=\int\sqrt{1+\frac{u^{2}\varphi^{\prime 2}}{u^{2}+a^{2}}}du$ , $\sqrt{u^{2}+a^{2}}=f(\overline{u})$ ,

then the line element of the generalized helicoid is given as

(2. 8) $ds^{2}=d\overline{u}^{2}+f^{2}(0)de^{2}$ .

On the other hand, the line element of a rotation surface

(2. 9) ( $u_{R}$ cos $v_{R},$ $u_{R}$ sin $v_{R},$ $\varphi_{R}(u_{R})$ )
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is

$ds_{R}^{2}=(1+\varphi_{R}^{;2})du_{R}^{2}+u_{R}^{2}dv_{R}^{2}$ .

So, if we put

$\overline{u}_{R}=\int\sqrt{1+\varphi_{R}^{\prime 2}}du_{R},$ $u_{R}=f_{R}(\overline{u}_{R}),$ $\overline{v}_{R}=v_{R}$ ,

then the line element of the rotation surface is rewritten as

(2. 10) $ds_{R}^{2}=d\overline{u}_{R}^{2}+f_{R}^{2}(\overline{u}_{R})d\overline{v}_{R}^{2}$ .

From (2. 8) and (2. 10), if we put

(2. 11) $\overline{u}=\overline{u}_{R},$ $\overline{v}=\overline{v}_{R},$ $u_{R}=f_{R}(\overline{u}_{R})=f(\overline{u})=\sqrt{u^{2}+a^{2}}$ ,

then we have an isometry. Therefore, a generalized helicoid

(2. 12) $H(u,v)=\left\{\begin{array}{l}ucosv\\suinv\\\varphi(u)+av\end{array}\right\}$

is isometric to the rotation surface

(2. 13) $R(u, v)=\left\{\begin{array}{l}\sqrt{u^{2}+a^{2}}cos(v+\int\frac{a\varphi^{\prime}}{u^{2}+a^{2}}du)\\\sqrt{u^{2}+a^{2}}sin(v+\int\frac{a\varphi^{\prime}}{u^{2}+a^{2}}du)\\\int\sqrt{\frac{a^{2}+u^{2}\varphi^{2}}{u^{2}+a^{2}}}du\end{array}\right\}$ .

3. Gauss map

In this section, we prove the following theorem.

THEOREM. Let a generalized helicoid and a rotation surface be isometrically
related by Bour’s theorem. If these two surfaces have the same Gauss map, then
the pair of two surfaces is

$\left\{\begin{array}{ll}u & cosv\\u & sinv\\ & \varphi(u)+av\end{array}\right\}$ and $[\sqrt{u^{2}+a^{2}}b\sin(v\frac{\frac{a\varphi^{\prime}}{u^{2}+a^{2}}a\varphi^{\prime}}{u^{2}+a^{2},a)}du)]$
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where

$\varphi(u)=a\tan^{-1}(\frac{\sqrt{b^{2}-a^{2}}}{a}\sqrt{\frac{u^{2}+a^{2}}{u^{2}+a^{2}-b^{2}}})$

$+\sqrt{b^{2}-a^{2}}$ log $\sqrt{\frac{\sqrt{u^{2}+a^{2}}+\sqrt{u^{2}+a^{2}-b^{2}}}{\sqrt{u^{2}+a^{2}}-\sqrt{u^{2}+a^{2}-b^{2}}}}$ ,

and $a$ and $b$ are constants of $b^{2}-a^{2}\geq 0$ .

Proof. First we consider a helicoid (2. 12). Since

$H_{u}=\left\{\begin{array}{l}cosv\\sinv\\\varphi^{\prime}\end{array}\right\}$ , $H_{v}=\left\{\begin{array}{l}s-uinv\\ucosv\\a\end{array}\right\}$ ,

the Gauss map $e_{H}$ of the helicoid is given as

(3. 1) $e_{H}=\frac{1}{\sqrt{a^{2}+u^{2}+u^{2}\varphi^{\prime 2}}}[-au\sin v-u\varphi^{\prime}\cos v$

by virtue of (2.5). Differentiating $H_{u}$ and $H_{v}$ , we have

$H_{uu}=\left\{\begin{array}{l}0\\0\\\varphi^{jj}\end{array}\right\}$ , $H_{vv}=\left\{\begin{array}{ll}-u & cosv\\-usinv & \\0 & \end{array}\right\}$ , $H_{uv}=\left\{\begin{array}{l}-sinv\\cosv\\0\end{array}\right\}$ .

Hence the mean curvature $H_{H}$ is given as

(3.2) $H_{H}=\frac{(1+\varphi^{\prime 2})u^{2}\varphi^{\prime}+u\varphi^{\prime\prime}(u^{2}+a^{2})+2a^{2}\varphi^{\prime}}{2(u^{2}(1+\varphi^{\prime 2})+a^{2})^{3/2}}$ ,

by virtue of the first and second fundamental forms

$E_{H}=1+\varphi^{\prime 2}$ , $F_{H}=a\varphi^{j}$ , $G_{H}=u^{2}+a^{2}$ ,

$L_{H}=\frac{u\varphi^{\prime\prime}}{\sqrt{u^{2}(1+\varphi^{\prime 2})+a^{2}}},$
$M_{H}=\frac{-a}{\sqrt{u^{2}(1+\varphi^{2})+a^{2}}}$

,

$N_{H}=\frac{u^{2}\varphi^{\prime}}{\sqrt{u^{2}(1+\varphi^{2})+a^{2}}}$ .
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Next we calculate the Gauss map $e_{R}$ and the mean curvature $H_{R}$ of the
rotation surface (2. 13). Since

$ R_{u}=[\frac{\frac u\sqrt{u^{2}+a^{2}}u}{\sqrt{u^{2}+a^{2}}}scions((\frac{\frac{a\varphi^{\prime}}{u^{2}+a^{2}}a\varphi^{\prime}}{u^{2}+a^{2}}du))\sqrt{\frac{a^{2}+u^{2}\varphi+_{u}-ua_{2}a}{u^{2}+a^{2}}}\Leftrightarrow_{+a}\Leftrightarrow_{+a}^{\prime}c\sin$

$R_{v}=[^{-\sqrt{u^{2}+a^{2}}()}\sqrt{u^{2}+a^{2}}csoisn(0vv++\int\int\frac{\overline{u}\acute{*}+aa\varphi^{\prime}}{u^{2}+a^{2}}\tau^{du}du)]$ ,

the Gauss map $e_{R}$ of the rotation surface is given as

(3.3) $e_{R}=\frac{1}{\sqrt{a^{2}+u^{2}+u^{2}\varphi}}[^{-\sqrt{a^{2}+u^{2}\varphi^{\prime}}\cos(v+\int*^{\prime}du)}-\sqrt{a^{2}+u^{2}\varphi^{\prime}}\sin u(v+\int_{\overline{u}^{F}+}^{a}\overline{u+a^{I}}f\acute{i}_{a}du)]$ .

By a straight calculation, we have the coefficients of the second fundamental
form as follows

$L_{R}=\frac{1}{\sqrt{a^{2}+u^{2}+u^{2}\varphi^{\prime 2}}}(-\frac{(a^{2}-a^{2}\varphi^{\prime^{2}})\sqrt{a^{2}+u^{2}\varphi^{\prime 2}}}{(u^{2}+a^{2})^{3/2}}$

$+\frac{u^{2}(-a^{2}+a^{2}\varphi^{\prime 2}+(a^{2}+u^{2})u\varphi^{\prime}\varphi^{\prime\prime})}{(u^{2}+a^{2})^{3/2}\sqrt{a^{2}+u^{2}\varphi^{2}}})$

$N_{R}=\frac{\sqrt{u^{2}+a^{2}}\sqrt{a^{2}+u^{2}\varphi^{\prime 2}}}{\sqrt{a^{2}+u^{2}+u^{2}\varphi^{\prime Z}}}$ ,

$M_{R}=\frac{a\varphi^{\prime}\sqrt{a^{2}+u^{2}\varphi^{\prime l}}}{\sqrt{u^{2}+a^{2}}\sqrt{a^{2}+u^{2}+u^{2}\varphi^{\prime l}}}$ .

So, the mean curvature $H_{R}$ is

(3.4) $H_{R}=\ovalbox{\tt\small REJECT} u^{2}\varphi^{\prime}(2a^{2}\varphi^{\prime}+u^{2}\varphi^{\prime}+u^{2}\varphi^{\prime 3}+a^{2}u\varphi^{\prime\prime}+u_{2}^{3}\varphi^{\prime\prime})2\sqrt{u^{2}+a^{2}}\sqrt{a^{2}+u^{2}\varphi^{2}}(a^{2}+u^{2}+u^{2}\varphi)^{3/2}$

Now suppose that the Gauss map $e_{H}$ is identically equal to $e_{R}$ .
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If $\varphi^{\prime}=0$ , then the helicoid reduces to right helicoid and the mean curvature
$H_{R}$ of the rotation surface is identically zero. So the rotation surface is the
catenoid and the function $\varphi_{R}(u_{R})$ of (2. 9) is $\varphi_{R}(u_{R})=b\cosh^{-1}(^{\underline{u}_{b}}R)$ , where $b$

is a constant. Comparing this equation and the third element of (2. 13), we have

$b\cosh^{-1}(\frac{\sqrt{u^{2}+a^{2}}}{b}I=\int\frac{a}{\sqrt{u^{2}+a^{2}}}du$ .

By differentiating this equation, it follows that

$\frac{bu}{\sqrt{u^{2}+a^{2}-b^{2}}}=a$ .

Hence we have $a=b$ .
Next we suppose $\varphi^{\prime}\neq 0$ . Then compairing (3. 1) and (3. 3), we have

$\tan^{-1}(\frac{a}{u\varphi^{\prime}})=\int\frac{a\varphi^{\prime}}{u^{2}+a^{2}}du$ .

Differentiating this equation, we obtain

(3. 5) $a^{2}u\varphi^{\prime\prime}+u^{3}\varphi^{\prime\prime}+u^{2}\varphi^{\prime 3}+u^{2}\varphi^{\prime}+2a^{2}\varphi^{\prime}=0$ .

From (3. 2) and (3.4), this equation means that the generalized helicoid and the
rotation surface have zero mean curvature. Hence, again, the rotation surface
reduces to the catenoid. So, it follows that

$b\cosh^{-1}(\frac{\sqrt{u^{2}+a^{2}}}{b}I=\int\sqrt{\frac{a^{2}+u^{2}\varphi^{\prime 2}}{u^{2}+a^{2}}}du$ .

From this equation, we can give the profile curve $\varphi$ of the generalized helicoid.
In fact, differentiating this equatin, we have

(3.6) $\varphi^{\prime 2}=\frac{(b^{2}-a^{2})u^{2}-a^{4}+a^{2}b^{2}}{u^{2}(u^{2}+a^{2}-b^{2})}$ .

By substituting this equation into (3.5), it follows that

$(ua^{2}+u^{3})\varphi^{\prime\prime}+(a^{2}+u^{2}+\frac{b^{2}u^{2}}{u^{2}+a^{2}-b^{2}})\varphi^{\prime}=0$ ,

so that

$-\frac{\varphi^{\prime\prime}}{\varphi^{\prime}}=\frac{a^{2}+u^{2}+\frac{b^{2}u^{2}}{u^{2}+a^{2}-b^{2}}}{a^{2}u+u^{3}}$
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From this, we obtain

$-\log\varphi^{\prime}=\log c\frac{u\sqrt{u^{2}+a^{2}-b^{2}}}{\sqrt{u^{2}+a^{2}}}$ ,

where $c$ is a constant, so

$\varphi^{\prime}=\frac{\sqrt{u^{2}+a^{2}}}{cu\sqrt{u^{2}+a^{2}-b^{2}}}$ .

Comparing this equation with (3. 6), we have

$(b^{2}-a^{2})c^{2}=1$ ,

so

(3.7) $\varphi^{\prime}=\frac{\sqrt{b^{2}-a^{2}}\sqrt{u^{2}+a^{2}}}{u\sqrt{u^{2}+a^{2}-b^{2}}}$ .

To solve this differential equation, we put

$\sqrt{\frac{u^{2}+a^{2}}{u^{2}+a^{2}-b^{2}}}=t$ .

Then it follows that

$\varphi=\sqrt{b^{2}-a^{2}}\int\frac{\sqrt{u^{2}+a^{2}}}{u\sqrt{u^{2}+a^{2}-b^{2}}}du=\sqrt{b^{2}-a^{2}}\int\frac{b^{2}t^{2}}{((a^{2}-b^{2})t^{2}-a^{2})(t^{2}-1)}dt$

$=\sqrt{b^{2}-a^{2}}(\frac{a}{\sqrt{b^{2}-a^{2}}}\tan^{-1}(\frac{\sqrt{b^{2}-a^{2}}}{a}t)+\log\sqrt{\frac{t+1}{t-1}})+d$,

where $d$ is a constant. Hence we can give the profile curve of the generalized
helicoid and this completes the proof.
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