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Abstract. Let $M$ be a Haken manifold with a toral or empty boundary which
is not a closed Seifert manifold. Zimmermann [31] showed that any mapping
class $c$ of $M$ of finite order $n$ can be realized by an autuhomeomorphism of
period $n$ using algebraic methods. In a special case, Heil and TollefSon [4], and
Hong and McCullough [9] used methods from 3-manifold topology to approach
the Zimmermann’s theorem. This paper provides a complete proof by another
topological approach.

1. Introduction

Let us begin by introducing the realization problem and some related work.
The mapping class group $\mathcal{M}(M)$ of a manifold $M$ is the quotient group of the
group of autohomeomorphisms of $M$ by the subgroup of those which are isotopic
to the identity map. If a mapping class $c\in \mathcal{M}(M)$ of order $n$ is represented by
an autxhommmorphism $f$ of period $n$ , we say $c$ is realized by $f$ . Similarly, if a
finite subgroup $G\subset \mathcal{M}(M)$ is isomorphic to a group $F$ of auto-homeomorphisms
each of which is a representative of a corresponding mapping class in $G$ , we say
$G$ is malized by $F$ .

The Realization Problem. Is any mapping dass in $\mathcal{M}(M)$ of finite order
realized by a periodic auto-homeomo$rphism^{\varphi}$ Moreover, is any finite subgroup of
$\mathcal{M}(M)$ realized by a group of auto-homeomorphisms?

For the 2-dimensional case, Nielsen [17, p.24] first dealt with the first half of
the problem for any compact, orientable surfaces, and Kerckhoff [15] gave the
following full solution:
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THEOREM 1.1 (Kerckhoff). Let $M$ be a compact surface. Then any finite sub-
group of $\mathcal{M}(M)$ is realized by a group of $auto- homeomo\gamma phisms$ of $M$ .

The problem for 3-dimensional case is more difficult. A triple $(A, \pi_{1}M, \Omega)$

consisting of a finite subgroup $A$ of $\mathcal{M}(M)$ and the fundamental group $\pi_{1}M$ of $M$

together with a homomorphism $\Omega:A\rightarrow Out(\pi_{1}M)$ is called an abstract kemel,

where Out $(\pi_{1}M)$ denotes the group of outer automorphisms of $\pi_{1}M$ . A group $E$

with an exact sequence $1\rightarrow\pi_{1}M\rightarrow^{i}E\rightarrow^{j}A\rightarrow 1$ is called an extension to
the abstract kernel $(A, \pi_{1}M, \Omega)$ , if for each $a\in A$ and $f\in E$ satisfying $j(f)=a$

the automorphism of $\pi_{1}M$ carrying $x$ to $i^{-1}(f^{-1}i(x)f)$ belongs to the class $\Omega(a)$ .
We say a Seifert manifold has an orbit-manifold $X$ of hyperbolic type if $X$ is an
orbifold finitely covered by a hyerbolic surface. Zieschang and Zimmermann have
proved the following theorem for Seifert 3-manifolds (see [28, Satz 5.7]):

THEOREM 1.2 (Zieschang and Zimmermann). Let $M$ be a compact Seifert
manifold with an orbit-manifold of hyperbolic type w\’ith nonempty boundary, and
$A$ a finite subgroup of $\mathcal{M}(M)$ . If there is an extension to an abstract kemel
$(A,\pi_{1}M, \Omega),$ $A$ is realized by an isomorphic group of auto-homeomorphisms of
$M$ .

They also proved that the realization problem is not always affirmative for gen-
eral Seifert manifolds (see [28, Satz 4.1]):

THEOREM 1.3 (Zieschang and Zimmermann). Let $F_{2p+1}$ be an $0$rientable
closed surface with genus $2p+1$ for $p>0$ . Then there is a finite subgroup
$A$ of $\mathcal{M}(F_{2p+1}\times S^{1})$ which cannot be realized.

Furthermore, Zimmermann gave a partial answer for Haken manifolds, i.e. ori-
entable, irreducible and sufficiently large 3-manifolds (see [31, Satz 0.1 and Ad-
dendum]):

THEOREM 1.4 (Zimmermann). Let $M$ be a Haken manifold such that $\partial M$ is
either empty or a union of some tori. Suppose $M$ is not a closed Seifert manifold.
Then for any homeomorphism $f:M\rightarrow M$ representing a mapping class offinite
order $n$ , there is a homeomorphism $g:M\rightarrow M$ of period $n$ which is isotopic to
$f$ .

It should be noted that the exterior of a non-separable link $L$ in the 3-sphere
$S^{3}$ is a Haken manifold and that the symmetry group $Sym(S^{3}, L)$ of $L$ is de
fined to be the mapping class group of the pair $(S^{3}, L)$ . For the definition of
the symmetries of links, we refer the reader to $[6, 7]$ . The following corollary
immediately follows from Theorem 1.4:
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COROLLARY 1.5. Let $L$ be a non-separable link in $S^{3}$ . Suppose the symmetry
group $Sym(S^{3}, L)$ of $L$ has an element of order $n$ . Then $L$ has the following

four possibilities:

(1) $L$ has cyclic period $n$ ,
(2) $L$ has free period $n$ ,
(3) $L$ is strongly invertible, $or$

(4) $L$ is strongly $(\pm)$ amphicheiral.

It should be noted that the possibility either (3) or (4) in the above corollary
occurs only when $n=2$ .

In this paper, we will give a new proof of Theorem 1.4. Let us explain the
difference between our approach and the previous work. Zimmermann [31] first
proved the theorem using the theory of group actions, extensions and crystal-
lographic groups. Heil and Tollefson [4] used methods from the topology of
3-manifolds in case of closed Haken manifolds. Their main idea is a modification
of $f$ such that afterwards $f$ is periodic on a system $\mathcal{T}$ of essential tori in $M$ ,
which is based on the vanishment of the algebraic obstruction for $f$ to be homo-
topic to a homeomorphism which has period $n$ on respective pieces obtained by
cutting $M$ along $\mathcal{T}$ . Hong and McCullough [9] extended the Heil and Tollefson’s
work to the case of Haken manifolds with toral boundaries, but they required
the condition $f^{n}\simeq id_{M}$ rel $\partial M$ . Our approach provides a complete proof by
topological methods with no argument about the algebraic obstruction. We start
with constructing realizations on respective pieces, and modify them according
to the twists occured along $\mathcal{T}$ .

The author would like to express his gratitude to Prof. Yukio Matsumoto for
his helpful advices and encouragement.

2. Preliminary

For fundamental notations on 3-manifolds, we refer the reader to [5], [12]
or [13]. Throughout this paper, we will denote by $\mathcal{N}(X, Y)$ the regular neigh-
bourhood of $X$ in $Y$ , by $id_{X}$ the identity map of $X$ , and by $I=[0,1]$ the umit
interval. Furthermore we will consider $S^{1}$ and $D^{2}$ parametrized as $\{e^{i\theta}|\theta\in \mathbb{R}\}$

and $\{re^{i\theta}|0\leq r\leq 1, \theta\in \mathbb{R}\}$ respectively.
In the following let us prove two lemmas which provide elementary properties

of isotopies.

LEMMA 2.1. (1) Let $N$ be a manifold homeomorphic to $D^{2}\times S^{1}$ . Suppose $f_{1}$

and $f_{2}$ are auto-homeomo$7p$hisms of $N$ satisfying $f_{1}|_{\partial N}=f_{2}|_{\partial N}$ . Then there is
an isotopy from $f_{1}$ to $f_{2}$ relative to $\partial N$ .
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Figure 1

(2) Let $N$ be a manifold homeomo $\prime phic$ to $S^{1}\times S^{1}\times I,$ $\alpha$ a pmper arc in $N$

join$ing$ the distin$ct$ boundary components of N. Suppose $f_{1}$ and $f_{2}$ are auto-
homeomo$rp$hisms of $N$ satisfy $ingf_{1}|_{\partial N\cup\alpha}=f_{2}|_{\partial N\cup\alpha}$ . Then there is an isotopy

from $f_{1}$ to $f_{2}$ relative to $\partial N\cup\alpha$ .

Proof. (1) Let $D$ be a meridian disk of $N$ . Modify $f_{1}$ by an isotopy relative to
$\partial N$ so that $f_{1}(D)=f_{2}(D)$ . Since $f_{1}^{-1}\circ f_{2}|_{\partial D}=id_{\partial D}$ , it follows from Alexander’s
isotopy theorem [1] that there is an isotopy on $D$ from $f_{1}^{-1}\circ f_{2}|_{D}$ to $id_{D}$ relative
to $\partial D$ . We may therefore assume $f_{1}^{-1}\circ f_{2}|_{N(D,N)}=f_{2}|_{N(D,N)}$ . Consider the
ball $B=d(N-\mathcal{N}(D, N))$ . Since $f_{1}^{-1}\circ f_{2}|_{\partial B}=id_{\partial B}$ , it follows from Alexander’s
isotopy theorem that there is an isotopy on $Bhomf_{1}^{-1}\circ f_{2}$ to $id_{B}$ relative to
$\partial B$ . Hence there is an isotopy on $B$ from $f_{1}$ to $f_{2}$ relative to $\partial B$ .

(2) Let $A$ be an essential annulus of $N$ containing $\alpha$ , see Figure 1. Modify
$f_{1}$ by an isotopy relative to $\partial N\cup\alpha$ so that $f_{1}(A)=f_{2}(A)$ and $f_{1}|_{\mathcal{N}(\alpha,A)}=$

$f_{2}|_{\mathcal{N}\langle\alpha,A)}$ . By applying Alexander’s isotopy theorem to $f_{1}^{-1}\circ f_{2}$ on the disk
$d(A-\mathcal{N}(\alpha, A))$ , we may assume $f_{1}|_{N(A,N)}=f_{2}|_{\mathcal{N}(A,N)}$ . Consider a solid torus
$V=d(N-\mathcal{N}(A, N))$ . Then we have $f_{1}|_{\partial V}=f_{2}|_{\partial V}$ . It follows from (1) that
there is an isotopy on $V$ from $f_{1}$ to $f_{2}$ relative to $\partial V$ . This completes the proof.
$\square $

LEMMA 2.2. Let $A$ be an annulus, $N=A\times I,$ $A_{t}=A\times\{t\}$ , and $\alpha$ a proper arc
in $N$ joining $A_{0}$ and $A_{1}$ . If two homeomo $7p$hisms $f_{1}$ : $N\rightarrow N$ and $f_{2}$ : $N\rightarrow N$

satisfy $f_{1}|_{A_{O}\cup A_{1}\cup\alpha}=f_{2}|_{A_{0}\cup A_{1}\cup\alpha}$ , then $f_{2}$ is isotopic to $f_{1}$ relative to $ A_{0}\cup A_{1}\cup\alpha$ .

Proof. Let $D$ be a meridian disk of $N$ which contains $\alpha$ such that each of $D\cap A_{0}$

and $D\cap A_{1}$ is an arc. Modify $f_{2}$ by an isotopy relative to $ A_{0}\cup A_{1}\cup\alpha$ so that
$f_{1}(D)=f_{2}(D)$ . Let $I_{1}$ and $I_{2}$ denote the distinct components of $\partial D-int(A_{0}\cup$

$A_{1})$ (see Figure 2). Then $f_{1}^{-1}\circ f_{2}(I_{1})=I_{i}$ and $f_{1}^{-1}\circ f_{2}|_{\partial I}:=id_{\partial I:}$ for each $i$ . It
follows bom Alexander’s isotopy theorem [1] that there is an isotopy on $I_{:}$ from
$f_{1}^{-1}\circ f_{2}|_{I}$: to $id_{I}$. relative to $\partial I_{i}$ . Therefore by an isotopy of $f_{2}$ on $N$ relative to
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Figure 2

$ A_{0}\cup A_{1}\cup\alpha$ , we may assume $f_{1}=f_{2}$ on $ A_{0}\cup A_{1}\cup\partial D\cup\alpha$ .
Let $D_{1}$ and $D_{2}$ denote the disks on $D$ such that $D_{1}\cup D_{2}=D$ and $ D_{1}\cap D_{2}=\alpha$ .

Then $f_{1}^{-1}\circ f_{2}(D_{i})=D_{i}$ and $f_{1}^{-1}\circ f_{2}|_{\partial D_{i}}=id_{\partial D}$: for each $i$ . Let $\Delta_{1}$ and $\Delta_{2}$

denote the components of $\partial N-int(A_{0}\cup A_{1})$ such that $\Delta_{i}\supset I_{1}$ for each $i$ . Then
we have $f_{1}^{-1}\circ f_{2}(\Delta_{i})=\Delta_{i}$ and $f_{1}^{-1}of_{2}|_{\partial\Delta:\cup I}$. $=id_{\partial\Delta_{i}\cup I}$. for each $i$ . Note that we
obtain a disk by cutting each $\Delta_{:}$ along $I_{:}$ . Therefore it follows from Alexander’s
isotopy theorem that there is an isotopy on $\partial N\cup D$ from $f_{1}^{-1}\circ f_{2}|\partial N\cup D$ to
$id\partial N\cup D$ relative to $ A_{0}\cup A_{1}\cup\partial D\cup\alpha$ . Hence by an isotopy of $f_{2}$ on $N$ relative
to $ A_{0}\cup A_{1}\cup\partial D\cup\alpha$ , we may assume $f_{1}=f_{2}$ on $\partial N\cup D$ .

Note that we obtain a ball by cutting $N$ along $D$ . Therefore it follows from
Alexander’s isotopy theorem that there is an isotopy on $Nhomf_{1}^{-1}\circ f_{2}$ to $id_{N}$

relative to $\partial N\cup D$ . This completes the proof. $\square $

3. Hyperbolic 3-Manifolds

As in Theorem 1.4, let $M$ be a compact, connected Haken 3-manifold whose
boundary is either empty or a union of some tori. Suppose that $M$ is algebraically
simple, and that $M$ is not homeomorphic to neither $D^{2}\times S^{1},$ $S^{1}\times S^{1}\times I$ nor the
twisted I-bundle over the Klein bottle. It follows $hom$ Thurston’s Uniformization
Theorem [16, Theorem $B$ in Chapter V] that $M$ is a complete, finitevolume,
hyperbolic 3-manifold.

PROPOSITION 3.1. Let $M$ be a complete, finite-volume, hyperbolic 3-manifold.
Then any mapping class in $\mathcal{M}(M)$ of finite order $n$ is realized by a homeomor-
phism of $pe$riod $n$ .
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Proof. The irreducibility of $M$ follows from [2, Proposition D.3.17.] and the
incompressibility of $\partial M$ in $M$ follows from [2, Proposition D.3.18.]. Therefore it
follows from [27, Corollary 7.5] that $\mathcal{M}(M)$ is naturally isomorphic to Out $(\pi_{1}M)$

respecting the peripheral structure. Moreover it follows from Mostow’s Rigidity
Theorem [16, Corollaries 2 and 3 in Chapter V] that Out $(\pi_{1}M)$ is a finite group,
and that there is a natural isomorphism Isom(intM) $\cong Out(\pi_{1}M)$ . Thus any
homeomorphism representing a mapping class $c\in \mathcal{M}(intM)$ of order $n$ is iso-
topic to a unique isometory $g$ of intM of period $n$ . Hence $c$ is realized by a
homeomorphism defined as an extension of $g$ to M. $\square $

4. Seifert 3-Manifolds

In this section we will prove the Seifert 3-manifold version of Theorem 1.4.
Let $M$ be a Seifert 3-manifold whose boundary is a union of some tori. Let

$B$ be the orbit-manifold of $M$ and $p:M\rightarrow B$ the projection map. It $sbuld$ be
noted that each of the disk, annulus and M\"obius band admits both a hyperbolic
and euclidean structure. So we may assume that intB is finitely covered by
a hyperbolic surface. We consider the two fibrations $\{\{x\}\times \mathbb{R}|x\in \mathbb{H}^{2}\}$ and
$\{\mathbb{H}^{2}\times\{r\}|r\in \mathbb{R}\}$ of the universal covering $\mathbb{H}^{2}\times \mathbb{R}$ of intM. It follows from [28,
\S 5] that the former fibration induces the Seifert fibration of $M$ and the latter
fibraton induces a foliation of $M$ dual to the Seifert fibration, which we call the
dual foliation of $M$ .

Let $i$ be the least common multiple of the orders of all exceptional fibers in
$M$ . Then the i-fold orbifold covering $\tilde{B}$ of $B$ is a surface. If $\tilde{B}$ is orientable, we
can regard any dual foliation of $M$ as a $\tilde{B}$-bundle over $S^{1}$ . Otherwise $M$ has two
exceptional leaves each homeomorphic to $\tilde{B}$ and any normal leaf homeomorphic
to the orientable double cover of $\tilde{B}$ .

4.1 Elementary Seifert 3-manifolds

First we deal with the elementary Seifert 3-manifolds, $D^{2}\times S^{1}$ and $S^{1}\times S^{1}\times I$ ,
which are exceptional in terms of [26, Satz 10.1].

PROPOSITION 4.1. Let $M$ be a manifold homeomorphic to either $D^{2}\times S^{1}$ or
$S^{1}\times S^{1}\times I$ . For any homeomorphism $f:M\rightarrow M$ representing a mapping class

of order $n$ , there is a homeomorphism $g:M\rightarrow M$ of peri $odn$ which is isotopic
to $f$ . Moreover, if $M$ is Seifert fibered and $f$ is isotopic to a fiber-preserving
homeomo$7p$hism, $g$ can be chosen so as to preserve both the Seifert fibration and
a dual foliation of $M$ .
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Proof. First we assume that $M$ is homeomorphic to $D^{2}\times S^{1}$ . Regard the torus
$\partial M$ as the quotient of $\mathbb{R}^{2}$ by the integer lattice $\mathbb{Z}^{2}$ . We may assume that $\pi_{1}(\partial M)$

acts on $\mathbb{R}^{2}$ as the universal covering group of $\partial M$ with the generators $[S^{1}\times\{y\}]$

and $[\{x\}\times S^{1}]$ corresonding to $(1, 0)$ and $(0,1)$-translation on $\mathbb{R}^{2}$ respectively. By
the natural homomorphism $\mathcal{M}(\partial M)\cong GL(2, \mathbb{Z})$ (see [20, 3]), $[f|_{\partial M}]\in \mathcal{M}(\partial M)$

corresponds to a matrix $A=\left(\begin{array}{ll}a & b\\c & d\end{array}\right)$ satisfying $A^{n}=\left(\begin{array}{ll}1 & 0\\0 & 1\end{array}\right)$ . It should be

noted that $\left(\begin{array}{l}a\\c\end{array}\right)=\pm\left(\begin{array}{l}1\\0\end{array}\right)$ since $f$ carries any meridian of $M$ to a meridian.

Then the homeomorphism $g:M\rightarrow M$ defined by $g(re^{i\theta}, e^{i\varphi})=(re^{i(\pm\theta+b\varphi)}, e^{id\varphi})$

satisfies $g^{n}=id_{M}$ , and $g\simeq f$ follows $hom$ Lemma 2.1.
Suppose that $M$ is Seifert fibered and that $f$ is isotopic to a fiber-preserving

homeomorphism. After a modification of the Seifert fibration of $M$ by an iso-
topy, we may assume that the fiber passing $(re^{:\theta}, 1)\in D^{2}\times S^{1}$ is the set
$\{(re^{i(\theta+p\varphi)}, e^{iq\varphi})|\varphi\in \mathbb{R}\}$ where $p$ and $q\neq 0$ are coprime integers. Therefore
$A$ has the eigen vectors $\left(\begin{array}{l}1\\0\end{array}\right)$ and $\left(\begin{array}{l}p\\q\end{array}\right)$ . Hence $g$ preserves both the Seifert fibra-

tion and the dual foliation $\{D^{2}\times\{y\}|y\in S^{1}\}$ .
Next we assume that $M$ is homeomorphic to $S^{1}\times S^{1}\times I$ . Let $p:M\rightarrow S^{1}\times S^{1}$

be the natural projection map. Regard the torus $S^{1}\times S^{1}$ as the quotient of $\mathbb{R}^{2}$

by the integer lattice $\mathbb{Z}^{2}$ . We may assume that $\pi_{1}(S^{1}\times S^{1})\cong\pi_{1}M$ acts on $\mathbb{R}^{2}$

as the universal covering group of $S^{1}\times S^{1}$ with the generators $[S^{1}\times\{y\}]$ and
$[\{x\}\times S^{1}]$ corresonding to $(1, 0)$ and $(0,1)$-translation on $\mathbb{R}^{2}$ respectively. Let

$\overline{f}$ denotes the auto-homeomorphism of $S^{1}\times S^{1}$ induced from $f|_{S^{1}xS^{1}x\{0\}}$ by $p$ .
By the homomorphism $\mathcal{M}(\partial M)\cong GL(2, \mathbb{Z}),$ $[\overline{f}]\in \mathcal{M}(S^{1}\times S^{1})$ corresponds to a
matrix $A=\left(\begin{array}{ll}a & b\\c & d\end{array}\right)$ where $A^{n}=\left(\begin{array}{ll}l & 0\\0 & 1\end{array}\right)$ . Define a homeomorphism $g:M\rightarrow M$

by

$g(e^{i\theta}, e^{i\varphi},t)=\left\{\begin{array}{ll}(e^{i(a\theta+b\varphi)}, e^{i(c\theta+d\varphi)},t), & if f fixes the boundary components,\\(e^{i(a\theta+b\varphi)}, e^{i(c\theta+d\varphi)}, 1-t) & otherwise.\end{array}\right.$

Then we have $g^{n}=id_{M}$ and $g\simeq f$ follows from Lemma 2.1.
Suppose that $M$ is Seifert fibered and that $f$ is isotopic to a fiber-preserving

homeomorphism. Without loss of generality, we may assume that $M$ has fibers
$\{S^{1}\times\{(y,t)\}|y\in S^{1}, t\in I\}$ . Then $A=\pm\left(\begin{array}{ll}1 & b^{\prime}\\0 & d\end{array}\right)$ . Since $A^{n}=\left(\begin{array}{ll}1 & 0\\0 & l\end{array}\right)$ ,

$|\det A|=|d^{\prime}|=1$ . If $d’=1,$ $A=\pm\left(\begin{array}{ll}1 & 0\\0 & 1\end{array}\right)$ follows from [3, \S 0]. Hence $g$

preserves both the Seifert fibration and the dual foliation $\{\{x\}\times S^{1}\times I|x\in S^{1}\}$ .
If $d’=-1$ , then $A=\pm\left(\begin{array}{ll}1 & b^{\prime}\\0 & -1\end{array}\right)$ has eigen vectors $\left(\begin{array}{l}1\\0\end{array}\right)$ and $\left(\begin{array}{l}b^{j}\\-2\end{array}\right)$ . Therefore



146 T. IKEDA

$g$ preserves both the Seifert fibration and the dual foliation whose leaf passing
$(e^{i\theta}, 1,0)$ is the annulus $\{(e^{i(\theta+b^{\prime}\varphi)}, e^{-2i\varphi})\times I|\theta\in \mathbb{R}\}$ . This completes the proof.

$\square $

4.2 $S^{1}$-bundles over surfaces and twists along annulus systems

Let $M$ be a compact, connected, orientable $S^{1}$-bundle over a surface such
that $\partial M$ is a union of some tori. Suppose that $M$ is homeomorphic to neither
$D^{2}\times S^{1}$ nor $S^{1}\times S^{1}\times I$ . Let $B$ be the base manifold of $M$ and $p:M\rightarrow B$ the
projection map. Let us consider a fiber-preserving homeomorphism $f:M\rightarrow M$

representing a mapping class of order $n$ such that the homeomorphism $\varphi:B\rightarrow B$

induced $homf$ is periodic.
It follows from [4, Lemma 1] that there is a system $\{\alpha_{1}, \alpha_{2}, \ldots , \alpha_{\mu}\}$ of

disjoint, essential arcs in $B$ such that $\alpha_{i}=\varphi^{i-1}(\alpha_{1})$ for 1 $<i\leq\mu$ and
$\alpha_{1}=\varphi(\alpha_{\mu})$ , which builds up to a system $\mathcal{A}=\{A_{1}, A_{2}, \ldots A_{\mu}\}$ of disjoint,
saturated, essential annuli in $M$ such that $A_{i}=p^{-1}(\alpha_{1})$ . We may assume
$f(\mathcal{N}(\cup \mathcal{A}, M))=\mathcal{N}(\cup \mathcal{A}, M)$ . Suppose that $f^{\mu}$ reverses the orientation of
the normal of each $A_{:}$ . Let $A_{1}^{\prime}$ be a component of $cl(\partial \mathcal{N}(A_{1}, M)-\partial M)$ and
$A_{1}^{\prime}\cdot=f^{i-1}(A_{1}^{\prime})$ for $ 1<i\leq 2\mu$ . Then $A_{1}^{\prime}\cup A_{2}^{\prime}\cup\cdots\cup A_{2\mu}^{\prime}$ is a system of disjoint,
saturated, essential annuli and $f^{2\mu}$ preserves the orientation of the normal of
each $A_{1}^{\prime}$ . Thus we may assume that $f^{\mu}$ preserves the orientation of the normal
of each $A_{i}$ . We call $\mathcal{A}$ an annulus system for $f$ .

We call each connected component of $E_{A}=d(M-\mathcal{N}(\cup \mathcal{A}, M))$ the piece.
Suppose that each piece is endowed with the $S^{1}$-bundle structure induced $hom$

that of $M$ . Let $\mathcal{P}$ denotes the set of all pieces. Then $f$ induces a permutation
on a finite set $\mathcal{P}$ , which can be written as a product of disjoint cycles as follows:

$(M_{1,1}M_{1,2}$ . . . $M_{1,\nu_{1}})(M_{2,1}M_{2,2}$ . . . $M_{2,\nu_{2}})\cdots(M_{\kappa,1}M_{\kappa,2}$ . . . $M_{\kappa,\nu_{\kappa}})$

We call $O_{i}=\bigcup_{j=1}^{\nu_{*}}M_{i,j}$ the i-th orbit of $f$ . It should be noted that $\kappa$ is either
one or two according as the arc $\alpha_{i}/\varphi$ on the orbit surface $ B/\varphi$ is non-separating
or separating. Let $\mathcal{A}_{1,j}$ denotes the set of the annuli in $\mathcal{A}$ each of which has $M_{i,j}$

on a side (i.e. $\mathcal{N}(A_{k},$ $ M)\cap M_{i,j}\neq\phi$ for any $A_{k}\in A_{j}$ ).
In the following, we assume that $f^{n}|_{E_{A}}=id_{E_{A}}$ and that $f|_{E_{A}}$ preserves both

the $S^{1}$-bundle structure and a dual foliation of $E_{A}$ .

LEMMA 4.2. Suppose that $M$ is not homeomorphic to the twisted I-bundle over
the Klein boule. Then the automorphism $(f^{n})_{*}:$ $\pi_{1}M\rightarrow\pi_{1}M$ induced from $f^{n}$

$ca7\gamma\dot{v}es$ any element $t\in\pi_{1}M$ to $\gamma^{r}t\gamma^{-r}$ where $\gamma\in\pi_{1}M$ is the homotopy class
represented by any fiber of $M$ and $r$ is an integer.

Prvof Let us fix a base point $x\in E_{A}$ for $\pi_{1}M$ . It follows from [27, Corollary
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$\rightarrow^{f^{n}}$

Figure 3

7.5] that $(f^{n})_{*}$ is an inner automorphism. So there is an element $\xi\in\pi_{1}M$ such
that $(f^{n})_{*}(t)=\xi t\xi^{-1}$ for any $t\in\pi_{1}M$ . Regard $p(x)$ as the base point for $\pi_{1}B$ .
Put $\eta=p_{*}(\xi)$ where $p_{*}:$ $\pi_{1}M\rightarrow\pi_{1}B$ is a homomorphism induced from $p$. Then
the automorphism $(\varphi^{n})_{*}:$ $\pi_{1}B\rightarrow\pi_{1}B$ induced $hom\varphi^{n}$ carries any element $t$ to
$\eta t\eta^{-1}$ . Since $\varphi$ is periodic, we have $(\varphi^{n})_{*}(t)=t$ for any $t\in\pi_{1}B$ . Hence $\eta$ lies
in the center of $\pi_{1}B$ and therefore $\eta=1$ . Since the kernel of $p_{*}$ is generated by
any fiber, we obtain $\xi=\gamma^{r}$ . $\square $

If $B$ is orientable, Lemma 4.2 implies that $(f^{n})_{*}$ is the identity map.
Let $\alpha_{k}$ be a proper arc in $\mathcal{N}(A_{k}, M)$ joining distinct components of

$\partial \mathcal{N}(A_{k}, M)-\partial M$ . If the loop $\alpha_{k}\cup f^{n}(\alpha_{k})$ is homotopic to $\tau$ fibers in $\mathcal{N}(A_{k}, M)$ ,
we call $\tau$ the twist number of $f$ along $\mathcal{A}$ (see Figure 3). Let $M_{i,j}$ be a piece in
$\mathcal{P}$ with an orientable base manifold such that $A_{k}\in A_{j}$ . Assume that $M_{1,j}$ is
placed on only one side of $A_{k}$ and that fibers in $M_{:,j}\cup \mathcal{N}(A_{k}, M)$ are oriented
consistently. We consider the orientation of $\alpha_{k}$ outward from $M_{i,j}$ . If the loop

$t_{0\tau_{ij}^{(k)}}fibersbyanorientation- preservinghomotopy,weca11\tau_{i,j}thenomahzed\alpha_{k}\cup,f^{n}(\alpha_{k})endowedwiththeorinetationdeterminedbyf^{n}\{\alpha_{k})ishomotopic$

tutst number of $f$ for $M_{i,j}$ along $A_{k}$ .

LEMMA 4.3. If any piece in $\mathcal{P}$ has the nonorientable base manifold (see Figure
4), then the twist number of $f$ along $\mathcal{A}$ is zero.

Proof. Let $M_{:,j}$ and $M_{:^{\prime},j^{\prime}}$ be the pieces in $\mathcal{P}$ each placed on the mutually op-
posite sides of $A_{1}$ . We fix $x_{1}\in M_{i,j}$ and $x_{2}\in M_{1^{\prime},j^{\prime}}$ , and regard $x_{1}$ as the
base point for $\pi_{1}M$ . Let $\gamma\in\pi_{1}M$ be the homotopy class of infinite order repre-
sented by a fiber passing $x_{1}$ . It follows from Lemma 4.2 that the automorphism
$(f^{n})_{*}:$ $\pi_{1}M\rightarrow\pi_{1}M$ induced $homf^{n}$ carries any element $t$ to $\gamma^{r}t\gamma^{-r}$ for some
integer $r$ .
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Figure 4

Figure 5

First take a closed path $l_{1}\subset M_{i,j}$ with the base point $x_{1}$ such that $[l_{1}]\gamma=$

$\gamma^{-1}[l_{1}]$ as illustrated in Figure 5. Then $f^{n}(l_{1})=l_{1}$ implies $\gamma^{r}[l_{1}]\gamma^{-r}=\gamma^{2r}[l_{1}]=$

$[l_{1}]$ . Hence $r=0$ .
Next take a path $\beta\subset M$ from $x_{1}$ to $x_{2}$ intersecting $\cup \mathcal{A}$ in a point on $A_{1}$ ,

and a closed path $l_{2}^{\prime}\subset M_{1^{\prime},j^{\prime}}$ with the base point $x_{2}$ such that the product path
$l_{2}=\beta l_{2}^{\prime}\beta^{-1}$ satisfies $[l_{2}]\gamma=\gamma^{-1}[l_{2}]$ . Suppose that the twist number of $f$ along
$\mathcal{A}$ is $\tau$ . Then $(f^{n})_{*}([l_{2}])=\gamma^{\pm\tau}[l_{2}]\gamma^{\mp\tau}=\gamma^{\pm 2\tau}[l_{2}]=[l_{2}]$ . Hence $\tau=0$ . $\square $

Suppose that the orbit $O_{i}$ has an orientable base manifold and that all the
fibers in $O_{i}$ are oriented consistently. Recall that $O_{i}$ has $\nu_{1}$ pieces. It should
be noted that the $S^{1}$-bundle structure and the dual foliation of $M_{i,1}$ preserved
by $f^{\nu_{i}}|_{M_{l,1}}$ induces a product bundle structure $p(M_{i,1})\times S^{1}$ of $M_{i,1}$ . Then we
may assume that $f^{\nu}:(x, e^{i\theta})=(\varphi^{\nu}:(x), e^{\epsilon i(\theta+2\pi\delta)})$ for any $(x, e^{i\theta})\in p(M_{i,1})\times S^{1}$

where $\varphi:B\rightarrow B$ is a homeomprhism induced from $f,$ $\epsilon=\pm 1$ and $\delta\in \mathbb{R}$ . Define
an isotopy $h_{s}^{\prime}$ : $M_{i,1}\times I\rightarrow M_{i,1}$ by $h_{s}^{\prime}(x, e^{i\theta},t)=(\varphi^{\nu_{l}}(x), e^{\epsilon i(\theta+2\pi(\delta\sim_{n}}+^{\nu st})))$ . Here

$\nu_{i}$

$h_{s}^{\prime}$ translates the image of $f^{\nu_{i}}|_{M_{11}}$

, in the direction of fibers-es times. Moreover
define an isotopy $h_{s}$ : $0_{i}\times I\rightarrow O_{i}$ by $h_{s}(x, t)=x$ on $O_{i}-M_{i,\nu}n$

: and $(h_{\epsilon})_{t}=$

$(h_{\epsilon}^{\prime})_{t}\circ f^{1-\nu}$: on $ M_{i,\nu}.\cdot$ Then $h_{s}$ translates the image of $f^{n}|0_{:}$ in the direction of
fibers $s$ times. We call $h_{s}$ the s-translation of $f$ on $O_{i}$ .
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Figure 6

Figure 7

LEMMA 4.4. $If\mathcal{P}$ has only one piece whose base manifold is $0$rientable, then we
can isotope $f$ by an isotopy whose restriction on $E_{A}$ is an s-translation, $s\in \mathbb{Q}$ ,
so that afterwards the twist number of $f$ along $\mathcal{A}$ is zero.

Proof. Let $\tau$ be the twist number of $f$ along $\mathcal{A}$. Let us fix a base point $x\in E_{A}$

for $\pi_{1}M$ and denote by $\gamma\in\pi_{1}M$ the homotopy class of infinite order represented
by the fiber passing $x$ .

First assume that $B$ is orientable. Figure 6 shows an example. There is a
closed path $l\subset M$ with the base point $x$ which intersects $\mathcal{A}$ at a point on $A_{1}$ as
illustrated in Figure 7. Then we have $[l]\gamma=\gamma[l]$ and $(f^{n})_{*}([l])=\gamma^{\pm\tau}[l]$ where
$(f^{n})_{*}:$ $\pi_{1}M\rightarrow\pi_{1}M$ is the automorphism induced from $f^{n}$ . It follows from
Lemma 4.2 that $(f^{n})_{*}([l])=\gamma^{r}[l]\gamma^{-r}=[l]$ . Hence $\tau=0$ .

Next assume that $B$ is nonorientable. Figure 8 shows an example. If $\mathcal{A}$

has only one annulus, then an isotopy of $f$ whose restriction on $E_{A}$ is either
$\frac{\tau}{2}$ or $(-\frac{\tau}{2})$ -translation cancels the twist number. Suppose that $\mathcal{A}$ has two
or more annuli. Then $B$ is not the M\"obius band. Let us fix a base point
$x\in E_{A}$ . For each $i$ let $l_{i}$ be a closed path in $M$ with base point $x$ intersecting
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Figure 8

Figure 9

$\cup \mathcal{A}$ at a point on $A_{i}$ as illustrated in Figure 9. Then we have $[l_{i}]\gamma=\gamma^{-1}[l_{i}]$ .
Suppose $(f^{n})_{*}([l_{i}])=\gamma^{\epsilon_{i^{\mathcal{T}}}}[l_{i}]$ where $\epsilon_{i}=\pm 1$ . It follows from Lemma 4.2 that
$(f^{n})_{*}([l_{i}])=\gamma^{r}[l_{i}]\gamma^{-r}=\gamma^{2r}[l_{i}]$ . Hence $\epsilon_{i}\tau=2r$ for any $i$ . Thus an isotopy
whose restriction on $E_{A}$ is $(-r)$-translation cancels the twist number. This
completes the proof. $\square $

LEMMA 4.5. If $f$ has only one orbit which consists of two or more pieses each
having an $0$rientable base manifold (see Figure 10), then we can isotope $f$ by
an isotopy which is an s-translation on $E_{A},$ $s\in \mathbb{Q}$ , so that afterwards the twist
number of $f$ along $\mathcal{A}$ is zero.

Proof. Assume that the twist number $\tau$ of $f$ along $\mathcal{A}$ is not zero. We denote by
$\tau_{1,1}^{\langle j)}$ the normalized twist number of $f$ for $M_{1,i}$ along $A_{j}\in \mathcal{A}_{1,i}$ .

We claim that, for any piece $M_{1,i},$ $f$ has a common normalized twist number
along all annuli in $\mathcal{A}_{1,i}$ (see Figure 11). Assume the converse.

Let us recall that $\mathcal{P}$ contains $\nu_{1}$ pieces. Let $A_{j}$ and $A_{j^{\prime}}$ be annuli in $\mathcal{A}_{1,i}$ .
Then $f^{j^{\prime}-j}(A_{j})=A_{j^{\prime}}$ . According as $f^{j^{\prime}-j}(M_{1,i})=M_{1,i}$ or $f^{j^{\prime}-j}(M_{1,i})\neq M_{1,i}$ ,
$j^{\prime}-j$ is or is not a multiple of $\nu_{1}$ . Then a permutation on $\mathcal{A}_{1,i}$ induced by
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Figure 10

Figure 11

$f^{\nu_{1}}$ is a product of two disjoint cycles $C_{1,:}^{\langle 1)}$ and $C_{1,:}^{(2)}$ . We regard each $C_{1,:}^{\langle k)}$ as
a subset of $\mathcal{A}_{1,:}$ . Let us consider a decomposition $\mathcal{A}_{1,:}=\mathcal{T}_{1,i}^{(\tau)}\cup \mathcal{T}_{1,1}^{(-\tau)}$ where
$\mathcal{T}_{1,1}^{\langle t)}=\{A_{j}\in \mathcal{A}_{1,i}|\tau_{1,:}^{(j)}=t\}$ . If $f^{\nu_{1}}$ preserves the orientation of fibers of $M_{1,i}$ , we
have $\{C_{1,:}^{(1)},C_{1,:}^{(2)}\}=\{\mathcal{T}_{1,:}^{(\tau)}, \mathcal{T}_{1,1}^{(-\tau)}\}$ . Otherwise we have both $ C_{1,:}^{\langle k)}\cap \mathcal{T}_{1,:}^{\langle\tau)}\neq\phi$ and
$ C_{1,i}^{\langle k)}\cap \mathcal{T}_{1,i}^{(-\tau)}\neq\phi$ for each $k$ .

Let us fix a piece $M_{1,i_{1}}$ in $\mathcal{P}$ . There are two annuli $A_{j_{0}}\in C_{1,:_{1}}^{\langle 1)}$ and $ A_{j_{1}}\in$

$C_{1,:_{1}}^{(2)}$ along which $f$ has different normalized twist number for $M_{1,i_{1}}$ . Thke a
path $\alpha$ from a point $x\in A_{j_{0}}$ to $f^{j_{1}-j_{0}}(x)\in A_{j_{1}}$ through $M_{1,i_{1}}$ such that $\alpha\cap$

$(\cup \mathcal{A})=\partial\alpha$ . It should be noted that $f^{j_{1}-j_{0}}$ carries $\alpha$ to a path on the opposite
side of $A_{j_{1}}$ . Let $\sigma$ be the minimal positive integer such that $(f^{j_{1}-j_{0}})^{\sigma}(A_{j_{0}})=$

$A_{j_{0}}$ . We put $\alpha_{k}=(f^{j_{1}-j_{0}})^{k-1}(\alpha)$ and take a path $\beta$ from $(f^{j_{1}-j_{0}})^{\sigma-1}(x)$ to
$x$ through $(f^{j_{1}-j_{0}})^{\sigma-1}(M_{1,i_{1}})$ such that $\beta\cap(\cup \mathcal{A})=\partial\beta$ . Then the product
$ l=\alpha_{1}\alpha_{2}\cdots\alpha_{\sigma-1}\beta$ is a closed path. Regard $x$ as a base point for $\pi_{1}M$ . As we
start from $x$ and go along $l$ , we obtain sequences $(A_{j_{1}}, A_{j_{2}}, \ldots , A_{j_{\sigma}})$ of annuli
in $\mathcal{A}$ where $j_{\sigma}=j_{0}td$ $(M_{1,i_{1}}, M_{1,i_{2}}, \ldots , M_{1,i_{\sigma}})$ of pieces in $\mathcal{P}$ as illustrated in
Figure 12. Then $\tau_{1,i_{k}}^{\langle j_{k-1})}=-\tau_{1,1_{k}}^{\langle j_{k})}$ for any $k$ . In other words, $l$ is twisted by $f^{n}$

along $A_{j_{k-1}}$ and $A_{j_{k}}$ in the same direction with respect to the orientations of $l$

and fibers of $M_{1,i_{k}}$ for each $k$ . This situation occurs only when $[l]\gamma=\gamma[l]$ where
$\gamma$ is the homotopy class of infinite order represented by the fiber passing $x$ . Let
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Figure 12

$(f^{n})_{*}:$ $\pi_{1}M\rightarrow\pi_{1}M$ be the isomorphism induced $homf^{n}$ . Then $(f^{n})_{*}([l])=$

$\gamma^{\pm\sigma\tau}[l]$ . It follows from Lemma 4.2 that $(f^{n})_{*}([l])=[l]$ . Therefore $\tau=0$ ,
contradiction. Hence our claim is proved.

Let $A_{j}$ be any annulus in $\mathcal{A}$ . Suppose that $A_{j}$ is placed between $M_{1,i}$ and
$M_{1,i^{\prime}}$ . We may assume that fibers in $M_{1,i}\cup A_{j}\cup M_{1,i^{\prime}}$ are oriented consistently.
Then $\tau_{1,i}^{(j)}=-\tau_{1,i}^{(j)},$ . Therefore, if $\tau\neq 0,$ $f^{i^{\prime}-i}|_{M_{1,:}}$ reverses the orientation of
fibers. So s-translation of $f$ on $E_{A}$ isotopes the images of $f^{n}|_{M_{1,i}}$ and $f^{n}|_{M_{1i}}$ ,
along fibers in the opposite directions s-times. Therefore an isotopy of $f$ which is
either $\frac{\tau}{2}$ or $(-\frac{\tau}{2})$ -translation on $E_{A}$ cancels the twist number. This completes
the proof. $\square $

LEMMA 4.6. Suppose that $\mathcal{P}$ contains a piece with an orientable basemanifold.
If $f$ has two orbits $O_{1}$ and $O_{2}$ , then either
(1) Any piece in $O_{1}$ has an orientable base manifold and we can isotope $f$ by

an isotopy which is s-translation on $O_{1},$ $s\in \mathbb{Q}$ , and invariant on $O_{2}$ so that
afterwards the twist number of $f$ along $\mathcal{A}$ is zero, $or$

(2) Any piece in $O_{2}$ has an orientable base manifold and we can isotope $f$ by
an isotopy which is s-tmnslation on $O_{2},$ $s\in \mathbb{Q}$ , and invareant on $O_{1}$ so that
afterwards the twist number of $f$ along $\mathcal{A}$ is zero.

Proof. Assume that the twist number $\tau$ of $f$ along $\mathcal{A}$ is not zero. Without loss of
generality, we may assume that any piece in $O_{1}$ has an orientable base manifold.

First assume that any piece in $O_{2}$ has the-nonorientable base manifold (see
Figure 13). We claim that, for any piece $M_{1,i}$ in $O_{1},$ $f$ has a common normalized
twist number along all annuli in $\mathcal{A}_{1,i}$ . Let us fix a base point $x_{1,i}\in M_{1,i}$ for
$\pi_{1}M$ . Let $A_{j}$ be any annulus in $\mathcal{A}_{1,i}$ , and $M_{2,i^{\prime}}$ the piece placed on the side
of $A_{j}$ opposite to $M_{1,i}$ . Let us take a path $\alpha_{j}$ from $x_{1,i}$ to a point $ x_{2,i^{\prime}}\in$

$M_{2,i^{\prime}}$ intersecting $\cup \mathcal{A}$ in a point on $A_{j}$ . Since $M_{2,i^{\prime}}$ has the nonorientable
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Figure 13

Figure 14

base manifold, there is a closed path $l_{j}^{\prime}\subset M_{2,i^{\prime}}$ with the base point $x_{2,i^{\prime}}$ such
that the product path $l_{j}=\alpha_{j}l_{j}^{\prime}\alpha_{j}^{-1}$ satisfies $[l_{j}]\gamma=\gamma^{-1}[l_{j}]$ where $\gamma$ is the
homotopy class of infinite order represented by the fiber passing $x_{1,i}$ (see Figure
14). Let $\tau_{1,i}^{(j)}$ be the normalized twist number of $f$ for $M_{1,i}$ along $A_{j}$ . Then we
have $(f^{n})_{*}([l_{j}])=\gamma^{\tau_{1,l}^{(j)}}[l_{j}]\gamma^{-\tau_{1}^{(g)}}’\cdot=\gamma^{2\tau_{1,:}^{(j)}}[l_{j}]$ where $(f^{n})_{*}:$ $\pi_{1}M\rightarrow\pi_{1}M$ is the
isomorphism induced from $f^{n}$ . It follows from Lemma 4.2 that $(f^{n})_{*}([l_{j}])=$

$\gamma^{r}[lj]\gamma^{-r}=\gamma^{2r}[l_{j}]$ . Therefore $\tau_{1,i}^{(j)}=r$ for any $A_{j}\in \mathcal{A}_{1,i}$ . Hence our claim is
proved. Then an isotopy of $f$ which is $(-r)$-translation on $O_{1}$ and invariant on
$O_{2}$ cancels the twist number.

Next assume that any piece in $O_{2}$ has an orientable base manifold (see Figure
15). We denote by $\tau_{i,j}^{(k)}$ the normalized twist number of $f$ for $M_{i,j}$ along $ A_{k}\in$

$A_{j}$ . The following argument is essentially based on the same method used in
the proof of Lemma 4.5.

We claim that, for any piece $M_{i,j},$ $f$ has a common normalized twist number
along all annuli in $A_{j}$ (see Figure 16). Assume the converse. For each piece
$M_{1j}$ in $\mathcal{P}$ we consider a decomposition $\mathcal{A}_{1,j}=\mathcal{T}_{i,j}^{(\tau)}\cup \mathcal{T}_{i,j}^{(-\tau)}$ where $\mathcal{T}_{i,j}^{(t)}=\{A_{k}\in$

$A_{j}|\tau_{i,j}^{(k)}=t\}$ . Let us fix a piece $M_{1,i_{1}}$ . We take two annuli $A_{j_{0}}\in\tau_{1,i_{1}}^{t-\tau)}$ and
$A_{j_{1}}\in\tau_{1,i_{1}}^{(\tau)}$ . Let $M_{2,i_{2}}$ be the piece placed on the side of $A_{j_{1}}$ opposite to $M_{1,i_{1}}$ .
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Figure 15

Figure 16

If $A_{j\iota}\in\tau_{2,:_{2}}^{t-\tau)}$ , we take an annulus $A_{j_{2}}\in \mathcal{T}_{2,:_{2}}^{(\tau)}$ . Otherwise $A_{j_{2}}\in\tau_{2,:_{2}}^{(-\tau)}$ . Let
$\alpha$ be a path from a point $x\in A_{j_{0}}$ to $f^{j_{2}-j_{0}}(x)\in A_{j_{2}}$ through $M_{1,i_{1}}$ and $M_{2,i_{2}}$

such that $\alpha\cap(\cup \mathcal{A})=$ {$x,$
$f^{j_{2}-j_{0}}(x)$ , a point on $A_{j_{1}}$ }. Note that $f^{j_{2}-j_{0}}$ carries

$\alpha$ to a path on the opposite side of $A_{j_{2}}$ . Let $\sigma$ be the minimal positive integer
such that $(f^{j_{2}-j_{0}})^{\sigma}(A_{j_{0}})=A_{j_{0}}$ . We put $\alpha_{k}=(f^{j_{2}-j_{0}})^{k-1}(\alpha)$ and take a path
$\beta$ from $(f^{j_{2}-j_{0}})^{\sigma-1}(x)$ to $x$ through $(f^{j_{2}-j_{0}})^{\sigma-1}(M_{1,i_{1}})$ and $(f^{j_{2}-j_{0}})^{\sigma-1}(M_{2,i_{2}})$

such that $\beta\cap(\cup \mathcal{A})=$ {$x,$
$(f^{j_{2}-j_{0}})^{\sigma-1}(x)$ , a point on $(f^{j_{2}-j_{0}})^{\sigma-1}(A_{j_{1}})$ }. Then

the product $ l=\alpha_{1}\alpha_{2}\cdots\alpha_{\sigma-1}\beta$ is a closed path. Regard $x$ as a base point for
$\pi_{1}M$ . As we start from $x$ and go along $l$ , we obtain sequences $(A_{j_{1}}, A_{j_{2}}, \ldots , A_{j_{2\sigma}})$

of annuli in $\mathcal{A}$ where $j_{2\sigma}=j_{0}$ and $(M_{1,i_{1}}, M_{2,i_{2}}, \ldots M_{2,i_{2\sigma}})$ of pieces in $\mathcal{P}$ (see

Figure 17). Then $\tau_{1,:_{2k-1}}^{(j_{2k-2})}=-\tau_{1,:_{2k-1}}^{(j_{2k-1})}$ and $\tau_{2,:_{2k}}^{(j_{2k-1})}=-\tau_{2,:_{2k}}^{(j_{2k})}$ for $ 1\leq k\leq\sigma$ .
This situation occurs only when $[l]\gamma=\gamma[l]$ where $\gamma$ is the homotopy class of
infinite order represented by the fiber passing $x$ . We obtain $(f^{n})_{*}([l])=\gamma^{\pm 2\sigma\tau}[l]$

where $(f^{n})_{*}:$ $\pi_{1}M\rightarrow\pi_{1}M$ is the isomorphism induced from $f^{n}$ . It follows bom
Lemma 4.2 that $(f^{n})_{*}([l])=[l]$ . Therefore $\tau=0$ , contradiction. Hence our
claim is proved.

Consequently an isotopy of $f$ which is $\tau$ or $(-\tau)$-translation on $O_{1}$ and in-
variant on $O_{2}$ cancels the twist number. This completes the proof. $\square $
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Figure 17

4.3 The realization theorem for $S^{1}$-bundles over surfaces

Let $M$ be a compact, connected, orientable 3-manifold whose boundary is a
union of some tori. Suppose that $M$ is endowed with an $S^{1}$ -bundle structure
$S$ and a dual foliation $\mathcal{F}$ . First suppose that the base manifold $B$ of $M$ is
orientable. Then $S$ and $\mathcal{F}$ induce a product bundle structure $B\times S^{1}$ of $M$ .
So we define $\Phi_{\mathcal{F}}$ : $M\rightarrow S^{1}$ as the natural projection map. Next suppose that
$B$ is nonorientable. Let $\tilde{B}$ be an orientable double cover of $B$ and $ T:\tilde{B}\rightarrow$

$\tilde{B}$ a covering transformation. Then $M$ is covered by $\tilde{B}\times S^{1}$ with a covering
transformation $(x, y)\rightarrow(T(x),\overline{y})$ for $(x, y)\in\tilde{B}\times S^{1}$ , and this product bundle
structure induces $S$ and $\mathcal{F}$ . So we define $\Phi_{\mathcal{F}}$ : $M\rightarrow S_{+}^{1}=\{x\in S^{1}|{\rm Im} x\geq 0\}$ as
the map induced $hom$ natural projection map $\tilde{B}\times S^{1}\rightarrow S^{1}$ . In both cases, we
call $\Phi_{\mathcal{F}}$ the projection map of $\mathcal{F}$ .

The following proposition is the $S^{1}$ -bundle version of Theorem 1.4.

PROPOSITION 4.7. Let $M$ be a compact, orientable $S^{1}\sim b$undle over a surface
such that $\partial M$ is a union of some to $r\dot{\tau}$ . For any homeomorphism $f:M\rightarrow M$

representing a mapping class of order $n$ , there is a homeomo$rp$hism $g:M\rightarrow M$

of period $n$ which is isotopic to $f$ . Moreover, if $f$ is $\dot{u}$otopic to a fiber-presentng
homeomo$7p$hism, $g$ can be chosen so as to preserve both the $S^{1}$ -bundle structure
and a dual foliation of $M$ .

Prvof Let us consider a permutation on the set of all connected components of
$M$ induced by $f$ which is written as a product of disjoint cycles as follows:

$(M_{1,1}M_{1,2}\cdots M_{1,\nu_{1}})(M_{2,1}M_{2,2}\cdots M_{2,\nu_{2}})\cdots(M_{\kappa,1}M_{\kappa,2}\cdots M_{\kappa,\nu_{\kappa}})$

Suppose that $f^{\nu}\cdot|_{M_{1}}.$. represents a mapping class of order $n_{i}$ . Assume that there
is a homeomorphism $g_{i}$ : $M_{:,1}\rightarrow M_{i,1}$ of period $n_{i}$ which is isotopic to $f^{\nu:}|_{M..\iota}$ .
Then we obtain a required periodic homeomorphism $g:M\rightarrow M$ isotopic to $f$
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as follows:

$g=\left\{\begin{array}{ll}f & on M-\bigcup_{i=1}^{\kappa}M_{i,\nu_{i}}\\g_{i}\circ f^{1-\nu_{i}} & on M_{i,\nu}:\end{array}\right.$

Here $g$ has period $n$ on each $M_{i,j}^{*}$ as is verified as follows:

$g^{n}|_{M_{i,j}}$ $=(g|_{M}:,j-1\circ\cdots og|_{M}.,1\circ g|_{M}:,\nu:og|_{M}:,-\circ\cdots og|_{M_{j}}.,)^{f}$.
$=(f|_{M_{l,j-1}}\circ\cdots of|_{M_{l,1}}\circ g_{i}\circ(f|_{M}:,1)^{-1}0\cdots\circ(f|_{M_{l,j-1}})^{-1})$ ft
$=f|_{M}.,j-1\circ\cdots of|_{M_{l,1}}\circ g:^{1_{:}}\circ(f|_{M}:,1)^{-1}\circ\cdots\circ(f|_{M_{i,j-1}})^{-1}$

$=id_{M:,j}$ .

Moreover assume that $f$ is fiber-preserving and each $g_{i}$ preserves both the
Seifert fibration and a dual foliation of $M_{i,1}$ . We consider each $M_{i,j}$ endowed
with the dual foliation induced bom that of $M_{i,1}$ by $g^{j-1}$ . These foliations define
a dual foliation of $M$ which is preserved by $g$ . Hence it is sufficient to prove the
proposition when $M$ is connected.

The case in which $M$ is homeomorphic to either $D^{2}\times S^{1}$ or $S^{1}\times S^{1}\times I$

follows $hom$ Proposition 4.1. In the other case, it follows $hom$ [$26$ , Satz 10.1]
that $f$ is isotopic to a fiber-preserving homeomorphism. We therefore assume
that $f$ preserves the $S^{1}$-bundle structure $S$ of $M$ . Moreover it follows $hom[27$ ,
Remark in P.85] that $f^{n}$ is isotopic to $id_{M}$ by a fiber-preserving isotopy. Let $B$

be the base manifold of $M$ and $\varphi:B\rightarrow B$ the homeomorphism induced $homf$ .
Then $\varphi$ represents the mapping class of order $n^{\prime}$ where $n^{\prime}$ is a divisor of $n$ . By
Theorem 1.1 we may assume that $\varphi$ has period $n^{\prime}$ .

We carry out the proof by induction on the minimal length of a hierarchy of
$M$ defined by saturated, essential annuli reducing $M$ to solid tori.

The basic step follows $hom$ Proposition 4.1.
We assume that $M$ is not a solid torus. Let $\mathcal{A}=\{A_{1}, \ldots , A_{\mu}\}$ be an annulus

system for $f$ . We put $N_{1}=\mathcal{N}(A_{i}, M)$ for $ 1\leq i\leq\mu$ . Suppose that $E_{A}=$

$d(M-\mathcal{N}(\cup \mathcal{A}, M))$ is endowed with the $S^{1}$-bundle structure $S_{A}$ induced from
$S$ . By the induction hypothesis, we assume that $f|_{E_{A}}$ is periodic and preserves
both $S_{A}$ and a dual foliation $\mathcal{F}_{A}$ of $E_{A}$ . Moreover, by Section 4.2, we may
assume that the twist number of $f$ along $\mathcal{A}$ is zero.

First we parametrize $N_{1}$ . Let us consider the i-th orbit $O_{i}$ of $f$ . Suppose
that any piece in $O_{i}$ has orientable (resp. nonorientable) base manifold. Let
$\Phi_{\mathfrak{i}}$ : $M_{i,1}\rightarrow S^{1}$ (resp. $S_{+}^{1}$ ) be a projection map of the foliation of $M_{i,1}$ induced
by $\mathcal{F}_{A}$ . By modifying the parametrization of $S^{1}$ (resp. $S_{+}^{1}$ ) if necessary, we
assume that the periodic auto-homeomorphism of $S^{1}$ (resp. $S_{+}^{1}$ ) induced $hom$

$f^{\nu}:|_{M}:,1$ by $\Phi_{i}$ is isometric. Let $\Psi_{i}$ : $O_{i}\rightarrow S^{1}$ (resp. $S_{+}^{1}$ ) be a map such that
$\Psi_{i}=\Phi_{i}\circ f^{1-j}$ on $M_{i,j}$ for $1\leq j\leq\nu_{i}$ . Suppose $A_{1}$ is placed between $M_{i_{0},j_{0}}$ and
$M_{1_{1},j_{1}}$ . We consider $N_{1}$ parametrized as $S^{1}\times I\times I$ so that:
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(1) $S^{1}\times I\times\{t\}=M_{i_{t},j_{\ell}}\cap N_{1}$ for $t\in\partial I$ ,
(2) $S$ induces the fibration $\{S^{1}\times\{(s, t)\}|(s, t)\in I\times I\}$ of $N_{1}$ ,
(3) if $M_{i_{t},j_{t}}$ has an orientable base manifold, $\Psi_{i_{t}}(x, s, t)=x$ or hi for $(x, s, t)\in$

$S^{1}\times I\times\partial I$ , and
(4) if $M_{i_{t},j_{t}}$ has the nonorientable base manifold, $\Phi_{i_{t}}(x, s, t)=x$ for $(x, s, t)\in$

$S_{+}^{1}\times I\times\partial I$ and $\Psi_{i_{t}}(x, s,t)=\overline{x}$ for $(x, s,t)\in(S^{1}-S_{+}^{1})\times I\times\partial I$ .
Next we extend $f|_{E_{A}}$ to a periodic map on $M$ . Since $\mathcal{A}$ has $\mu$ annuli, we have

$f^{\mu}(N_{1})=N_{1}$ . Let us recall that $f^{\mu}$ does not exchange the sides of $A_{1}$ . Since $f|_{E_{A}}$

preserves both $S_{A}$ and $\mathcal{F}_{A}$ , we may assume that $f^{\mu}(x, s, t)=(\xi_{t}(x), \eta_{t}(s),$ $t$) for
$(x, s,t)\in S^{1}\times I\times\partial I$ where $\xi_{t}$ : $S^{1}\rightarrow S^{1}$ and $\eta_{t}$ : $I\rightarrow I$ are homeomorphisms.
Note that $\xi_{0}$ and $\xi_{1}are$ isometries and that the twist number of $f$ along $\mathcal{A}$ is
zero. Therefore $\xi_{0}=\xi_{1}$ . We define a periodic homeomorphism $g_{N_{1}}$ : $N_{1}\rightarrow N_{1}$

by $g_{N_{1}}(x, s, t)=(\xi_{0}(x), (1-t)\eta_{0}(s)+t\eta_{1}(s),$ $t$). It follows from Lemma 2.2 that
$g_{N_{1}}\simeq f^{\mu}|_{N_{1}}$ relative to $d(\partial N_{1}-\partial M)$ . Moreover we define a homeomorphism
$g:M\rightarrow M$ by

$g=\left\{\begin{array}{ll}f & on M-f^{-1}(N_{1}),\\g_{N_{1}}\circ f^{1-\mu} & on f^{-1}(N_{1}).\end{array}\right.$

Then $g$ is a periodic homeomorphism which is isotopic to $f$ and preserves $S$ . Let
us consider the $D^{2}- fibration\{\{x\}\times I\times I|x\in S^{1}\}$ of $N_{1}$ and those of $N_{1}$ induced
by $f^{1-i}$ for $ 1<i\leq\mu$ . These $D^{2}- fibrations$ together with $\mathcal{F}_{A}$ determines a dual
foliation $\mathcal{F}$ of $M$ preserved by $g$ .

Although $g$ is periodic, there is a possibility that the period of $g$ is not $n$ .
Note that the autohomeomorphism of $B$ induced from $g$ has period $n^{\prime}$ . If $B$

is orientable, the $S$ and $\mathcal{F}$ induce a product bundle structure of $M$ . Therefore
some s-translation of $g$ on $M$ makes $g$ a homeomorphism of period $n$ . Otherwise
$g$ does either preserve or exchange the two exceptional leaves of $\mathcal{F}$ , and we have
either $n=n^{\prime}$ or $n=lcm\{2,n^{\prime}\}$ respectively. Then the period of $g$ is just $n$ . This
completes the proof. $\square $

4.4 The realization theorem for Seifert 3-manifolds

The following theorem is the Seifert 3-manifold version of Theorem 1.4, which
is proved by Zimmermann using algebraic methods (see Satz 2.1, Lemma 2.2,
Lemma 2.3, and Step $C$ in the proof of Satz 0.1 in [31]). Now we prove this
theorem using topological methods.

THEOREM 4.8 (Zimmermann). Let $M$ be a compact Seifert manifold whose
boundary $\dot{u}$ a union of some tori. For any homeomorphism $f:M\rightarrow M$ repre-
senting a mapping class of order $n$ , there is a homeomorphism $g:M\rightarrow M$ of
period $n$ which is isotopic to $f$ . Moreover, if $f$ is isotopic to a $fiber- presen\dot{n}ng$
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Figure 18

homeomorphism, $g$ can be chosen so as to preserve both the Seifert fibration and
a dual foliation of $M$ .

Proof. As in the proof of Proposition 4.7, it is sufficient to prove the theorem
when the Seifert manifold $M$ is connected. If $M$ is homeomorphic to either $ D^{2}\times$

$S^{1}$ or $S^{1}\times S^{1}\times I$ , the theorem follows from Proposition 4.1. Otherwise it follows
from [26, Satz 10.1] that $f$ is isotopic to a fiber-preserving homeomorphism. We
therefore assume that $f$ preserves the Seifert fibration $S_{M}$ of $M$ . It should be
noted that by [27, Remark in p.85] $f^{n}$ is isotopic to $id_{M}$ by a fiber-preserving
isotopy. Let $B$ be the orbit-manifold of $M,$ $p:M\rightarrow B$ the projection map, and
$\varphi:B\rightarrow B$ the homeomorphism induced $homf$ . By Theorem 1.1, we assume
that $\varphi$ is periodic.

Let $\mathcal{E}$ denotes the set of all exceptional fibers of $M$ . Then $f$ induces a
permutation on $\mathcal{E}$ which can be written as a product of disjoint cycles as follows:

$(e_{1,1}e_{1,2}$ .. . $e_{1,\nu_{1}})(e_{2,1}e_{2,2}$ . . . $e_{2,\nu_{2}})$ .. . $(e_{\kappa,1}e_{\kappa,2} . . . e_{\kappa,v}.)$

We denote by $0_{i}$ the common order of $e_{2,1},$ $e_{i,2},$ $\ldots e_{i,\nu_{i}}$ for each $i$ . Suppose
that $M^{\prime}=M-int\mathcal{N}(\cup \mathcal{E}, M)$ is a saturated submanifold endowed with the
$S^{1}$-bundle structure $S_{M^{\prime}}$ induced from $S_{M}$ . We may assume $f(M^{\prime})=M^{\prime}$ . By
Proposition 4.7, we assume that $f$ is periodic on $M^{\prime}$ and preserves both $S_{M^{\prime}}$

and a dual foliation $\mathcal{F}_{M}^{\langle 0)}$ of $M^{\prime}$ . Let $\Phi_{M^{\prime}}$ be a projection map of $\mathcal{F}_{M}^{\langle 0)}$ . We put
$V_{1,j}=\mathcal{N}(e_{i,j}, M)$ and $B^{\prime}=p(M^{\prime})$ .

First we construct a new foliation of $M^{\prime}$ . Let us consider the orbit surface
$ B/\varphi$ . Then each $p(\partial V_{i,j})\subset\partial B^{\prime}$ descends to an arc or a loop $\tau:\subset\partial(B^{\prime}/\varphi)$ . kke
disjoint arcs $\alpha_{1},$ $\alpha_{2},$ $\ldots$ , $\alpha_{\kappa}$ on $ B^{j}/\varphi$ such that each $\alpha_{i}$ joins $\tau_{i}$ and $\partial(B^{\prime}/\varphi)-$

$\bigcup_{1=1}^{\kappa}\tau$: and misses any branch points. Then we obtain an annulus system A
for $f|_{M^{\prime}}$ for each $i$ (see Figure 18). Suppose that $\partial V_{i,1}$ meets $\sigma_{i}$ annuli in $A$

and $A_{:}=\{A_{1,1}, A_{2}, \ldots , A_{i,\sigma:\nu_{i}}\}$ where $A_{:,j}=f^{j-1}(A:, 1)$ for $1<j\leq\sigma_{i}\nu_{1}$ and
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$A_{i,1}=f(A_{i,\sigma.\nu}.)$ . We may assume that each $N_{i,j}=\mathcal{N}(A_{i,j}, M^{\prime})$ is saturated and
satisfies $f(\bigcup_{j=}^{\sigma.\nu}iN_{i,j})=\bigcup_{j=1}^{\sigma_{i}\nu_{i}}N_{i,j}$ . For each $i$ we consider $N_{i,1}$ parametrized as
$S^{1}\times I\times I$ so that:

(1) $S^{1}\times I\times\partial I=d(\partial N_{i,1}-\partial M^{\prime})$ ,
(2) $S_{M^{\prime}}$ induces a fibration $\{S^{1}\times\{(s, t)\}|(s, t)\in I\times I\}$ of $N_{i,1}$ ,
(3) if $B^{\prime}$ is orientable, $\Phi_{M^{\prime}}(x, s, t)=x$ for $(x, s,t)\in S^{1}\times I\times I$ , and
(4) if $B^{\prime}$ is nonorientable, $\Phi_{M^{\prime}}(x, s, t)=x$ for $(x, s,t)\in S_{+}^{1}\times I\times I$ and

$\Phi_{M^{\prime}}(x, s,t)=\overline{x}$ for $(x, s,t)\in(S^{1}-S_{+}^{1})\times I\times I$ .
Note that $f^{\nu}$: preserves three fibrations of $\partial V_{i,1}$ ; the one induced $homS_{M}$ , the
one induced from $\mathcal{F}_{M}^{(0)}$ , and the meridians. Therefore $f^{v}$: does either preserve
or reverse the orientations of all these fibrations. Let us consider a $D^{2}- fibration$

of $N_{1,1}$ whose leaf passing $(x,0,0)$ is $\{(xe^{\frac{2\pi}{\circ:^{\sigma}:}t}, s,t)\in S^{1}\times I\times I|s,t\in I\}$ , and
those of $N_{i,j}$ induced by $f^{j-1}$ for $1<j\leq\sigma_{i}\nu_{i}$ . These fibrations together with
the foliation of $M^{\prime}-\bigcup_{=1}^{\kappa}\bigcup_{j=1}^{\sigma.v_{i}}N:,j$ induced by $\mathcal{F}_{M}^{(0)}$ determines a new foliation
$\mathcal{F}_{M}^{(1)}$ of $M^{\prime}$ . Let $0=lcm\{0_{1},0_{2}, \ldots 0_{\kappa}\}$ . It should be noted that each leaf of
$\mathcal{F}_{M}^{(1)}$ is an o-fold cover of the corresponding leaf of $\mathcal{F}_{M}^{(0)}$ .

Next we modify $\mathcal{F}_{M}^{(1)}$ so that any leaf has a meridional boundary component
on each $\partial V_{1,j}$ . Assume that $\partial V:,1$ meets $N_{1,1}$ and fibers on $V_{:,1}\cup N:,1$ are oriented
consistently. Let us consider the fibration of $\partial V_{i,1}$ induced by $\mathcal{F}_{M}^{(1)}$ . Suppose that
any fiber goes $p_{i}$ times in the direction of $e_{i,1}$ . It should be noted that any fiber
meets annuli in A in $0_{i}\sigma_{i}$ points and that the loop $\partial V_{1,1}\cap A_{i,1}$ goes $0_{i}$ times
in the direction of $e_{i,1}$ . Consider a new $D^{2}- fibration$ of $N_{1,1}$ whose leaf passing
$(x, 0,0)$ is $\{(xe^{\frac{2\pi}{\circ:^{\sigma}}t(1_{\circ}^{p}}:, s, t)\in S^{1}\times I\times I|s, t\in I\}$ , and those of $N_{1,j}$ induced
by $f^{j-1}$ for $1<j\leq\sigma_{i}\nu_{1}$ . Then the foliation $\mathcal{F}_{M}^{(2)}$, of $M^{\prime}$ determined by these
$D^{2}- fibrations$ together with the foliation of $M^{j}-\bigcup_{i=1}^{\kappa}\bigcup_{j=}^{\sigma.\nu}iN_{i,j}$ induced by $\mathcal{F}_{M}^{(1)}$

has the required property.
Finally we construct the required realization. Suppose that $S_{M}$ induces the

fibration of $V_{1,1}$ of type $(0_{i},\rho_{i})$ . We consider $V_{i,1}$ parametrized as $D^{2}\times S^{1}$ so
that:

(1) $S_{M}$ induces the fibration of $V_{i,1}$ whose fiber passing $(re^{i\theta}, 1)\in D^{2}\times S^{1}$ is
the loop $\{(re^{i\langle\theta+\rho.\varphi)}, e^{io_{i}\varphi})\in D^{2}\times S^{1}|\varphi\in \mathbb{R}\}$ , and

(2) $\mathcal{F}_{M}^{\langle 2)}$ induces the fibration $\{S^{1}\times\{y\}|y\in S^{1}\}$ of $\partial V_{1,1}$ .
Since $f|_{M^{\prime}}$ preserves both $S_{M^{\prime}}$ and $\mathcal{F}_{M}^{(2)}$ , we may suppose $(f^{\nu}:|_{\partial V}:,1)(e^{i\theta}, e^{i\varphi})=$

$(e^{i\xi(\theta)}, e^{i\zeta(\varphi)})$ for $(e^{i\theta}, e^{i\varphi})\in\partial D^{2}\times S^{1}$ where $\xi:\mathbb{R}\rightarrow \mathbb{R}$ and $\zeta:\mathbb{R}\rightarrow \mathbb{R}$ are
homeomorphisms. Define a homeomorphism $g_{i}$ : $V_{1,1}\rightarrow V_{i,1}$ by $g_{i}(re^{i\theta}, e^{i\varphi})=$

$(re^{i\xi\langle\theta)}, e^{i\zeta(\varphi)})$ . Then we obtain a homeomorphism $g:M\rightarrow M$ of period $n$ as
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follows:

$g=\left\{\begin{array}{ll}f & on M-\bigcup_{i=1}^{\kappa}N_{i,\sigma_{i}\nu}: and\\g_{i}\circ f^{1-\sigma.\nu}: & on N_{i,\sigma.\nu}:.\end{array}\right.$

It follows from Lemma 2.1 that $g$ is isotopic to $f$ . Let us consider the $D^{2_{-}}$

fibration $\{D^{2}\times\{x\}|x\in S^{1}\}$ of each $N_{i,1}$ and those of $N_{i,j}$ induced by $g^{j-1}$ for
$1<j\leq\sigma_{i}v_{i}$ . Then these $D^{2}- fibrat\ddagger ons$ together with $\mathcal{F}_{M}^{(2)}$ determine a dual
foliation of $M$ preserved by $g$ . This completes the proof. $\square $

REMARK 4.9. Figure 19 shows an example of the modifications of foliations
in the above proof. Let $V$ be a disk with two holes and $\varphi:V\rightarrow V$ an orientation
preserving homeomorphism of period two exchanging the holes. We consider a
Seifert manifold $M$ which is the quotient of $V\times I$ via the identification $(x, 0)=$

$(\varphi(x), 1)$ . Note that $M$ has an exceptional fiber $e$ of order two as illustrated
in (1). For the sake of simplicity, we suppose that $f:M\rightarrow M$ is a $\pi$-rotation
around $e$ . Then (2) shows a dual foliation of $M^{\prime}$ . In this figure two leaves
are illustrated. Next we construct a new foliation of $M^{\prime}$ such that each leaf is
a double cover of the original one, as illustrated in (3). Finally this foliation
extends to a dual foliation of $M$ , as illustrated in (4).

5. Haken 3-Manifolds

Let $M$ be a Haken manifold such that $\partial M$ is either empty or a union of
some tori. Let $\mathcal{T}$ be a finite set of disjoint, non-parallel, essential tori embed-
ded in $M$ obtained by Jaco, Shalen and Johannson’s Canonical Torus Decom-
position Theorem (see [13] and [14]). Then the closure of each component of
$M-int\mathcal{N}(\cup \mathcal{T}, M)$ , which we call a piece, is either a Seifert manifold or a sim-
ple manifold. We consider any piece homeomorphic to a Seifert manifold Seifert
fibered. In particular, we assume that any piece homeomorphic to the twisted
I-bundle over the Klein bottle has orbit-manifold a disk and two exceptional
fibers. We call a Seifert fibered piece simply a Seifert piece. We may assume by
[16, Theorem $B$ in Chapter V] that each of the pieces other than Seifert pieces
is endowed with a complete hyperbolic structure of finite volume in its interior,
which we call a hyperbolic piece.

We consider $M$ oriented and each piece endowed with the orientation induced
$hom$ that of $M$ . For each Seifert piece with an orientable oribit-manifold, we
consider the oribit-manifold oriented and each fiber endowed with the orientation
induced $hom$ those of the piece and the orbit-manifold.

Let $\mathcal{P}$ denotes the set of all pieces. Suppose that $f$ is an arbitrary auto-
homeomorphism of $M$ representing a mapping class of finite order $n$ . Isotope $f$
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Leaf $=\otimes$

(2) Dual foliation of $M^{\prime}$

Leaf $=$

(3) Modification of the foliation

Figure 19
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so that afterwards $f(\cup \mathcal{T})=\cup \mathcal{T}$ and $f(\mathcal{N}(\cup \mathcal{T}, M))=\mathcal{N}(\cup \mathcal{T}, M)$ . Then $f$

induces a permutation on a finite set $\mathcal{P}$ which can be written as a product of
disjoint cycles as follows:

$(M_{1,1}M_{1,2}\cdots M_{1,\nu_{1}})(M_{2,1}M_{2,2}\cdots M_{2,\nu_{2}})\cdots(M_{\kappa,1}M_{\kappa,2}\cdots M_{\kappa,v_{\kappa}})$

We call $O_{i}=\bigcup_{j=1}^{\nu}M_{1,j}$ the i-th orbit of $f$ .

5.1 Fundamental groups

Suppose that a piece $M_{i,j}\in \mathcal{P}$ is placed on a side of a torus $T\in \mathcal{T}$ . Since $T$ is
homotopic to a component of $\partial M_{i,j}$ , we may regard $\pi_{1}T$ as a subgroup of $\pi_{1}M_{:,j}$ .
The incompressibility of $T$ implies that $\pi_{1}M_{1,j}$ has a subgroup isomorphic to
$\mathbb{Z}\oplus \mathbb{Z}$ corresponding to $T$ . Therefore a nontrivial loop $l$ on $T$ generates an
infinite cyclic subgroup of $\pi_{1}M_{:,j}$ . We will study conditions for this subgroup to
lie in the center of $\pi_{1}M_{1,j}$ .

LEMMA 5.1. Let $M_{1,j}$ be a hyperbolic piece in $\mathcal{P}$ with nonempty boundary, $l$ a
nontnirial loop on $\partial M_{i,j}$ . Then $[l]\in\pi_{1}M_{1,j}$ does not lies in the center of $\pi_{1}M_{1,j}$ .

Proof. Assume the converse. It follows from [2, Proposition D.3.18.] that $\partial M_{1,j}$

is incompressible. Therefore $[l]$ generates an infinite cyclic subgroup of the center
of $\pi_{1}M_{:,j}$ . Hence it follows from [12, Theorem VI.24.] that $M_{i,j}$ is homeomorphic
to a Seifert manifold. Recall that hyperbolic pieces admit no Seifert fibration,
contradiction. $\square $

LEMMA 5.2. Let $M_{i,j}$ be a Seifert piece in $\mathcal{P}$ which is homeomo$rphic$ to neither
$D^{2}\times S^{1}$ nor $S^{1}\times S^{1}\times I$ . Let $l$ be a $nont’\dot{v}vial$ loop on $\partial M_{1,j}$ . Then $[l]\in\pi_{1}M_{i,j}$

lies in the center of $\pi_{1}M_{i,j}$ if and only if $M_{i,j}$ has an orientable orbit-manifold
and $[l]$ lies in the subgroup generated by any regular fiber.

Proof. Our argument will require three steps; (1) the existence of a Seifert fibra-
tion of $M_{:,j}$ which satisfy the necessity of the lemma, (2) the consistency with
the originally given Seifert fibration of $M_{i,j}$ , and (3) the sufficiency of the lemma.

Step 1. We claim that if $[l]$ lies in the center of $\pi_{1}M_{1,j}$ , then $M_{1,j}$ admits a
Seifert fibration such that the orbit-manifold is orientable and $[l]$ lies in the
group generated by any regular fiber.

It follows from [22, Corollary 3.3] that $\partial M_{1,j}$ is incompressible. Therefore $[l]$

generates an infinite cyclic normal subgroup of $\pi_{1}M_{i,j}$ . Hence it follows from [5,
Corollary 12.8] that $M_{i,j}$ admits a Seifert fibration such that $[l]$ lies in the group
generated by any regular fiber. It should be noted that at this step this Seifert
fibration is not necessarily isotopic to the originally given one.
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It suffices to show that $M_{i,j}$ has an orientable orbit-manifold. Assume the
converce. Suppose that $M_{i,j}$ has $p$ exceptional fibers and a nonorientable orbit-
manifold of genus $q$ with $r$ boundary components. Then [12, VI.10] shows that
the fundamental group of $M_{i,j}$ is presented as follows:

$\pi_{1}M_{i,j}\cong$ $\langle\gamma_{1},$

$\ldots\gamma_{q},$
$\delta_{1},$ $\ldots\delta_{p},\epsilon_{1},$ $\ldots\epsilon_{r},$ $\lambda|$

$\gamma_{i}\lambda\gamma_{i}^{-1}=\lambda^{-1},$ $[\delta_{j}, \lambda]=1,$ $[\epsilon_{k}, \lambda]=1$ ,
$\delta_{j}^{s_{j}}=\lambda^{t_{j}},$ $\lambda^{u}=\gamma_{1}^{2}\cdots\gamma_{q}^{2}\delta_{1}\cdots\delta_{p}\epsilon_{1}\cdots\epsilon_{r}\rangle$

where each $s_{j}$ is the index of the j-th exceptional fiber, $0<t_{j}<s_{j}$ for $1\leq j\leq p$,
and $u$ is an integer. Moreover $\lambda$ is represented by any regular fiber and generates
an infinite cyclic normal subgroup of $\pi_{1}M_{i,j}$ by [12, VI.II]. We therefore have
$[\lambda, \gamma_{i}]\neq 1$ and hence $[[l], \gamma_{i}]\neq 1$ , contradiction. Hence our claim was proved.

Step 2. Next we claim that the Seifert fibration of $M_{i,j}$ obtained in Step 1 is
isotopic to the originally given one.

If $M_{1,j}$ is not homeomorphic to the twisted I-bundle over the Klein bottle,
our claim follows from [26, Satz 10.1].

Assume that $M_{i,j}$ is homeomorphic to the twisted I-bundle over the Klein
bottle. It follows from [12, VI.5] that the twisted I-bundle over the Klein bottle
is a Sefiert manifold in two ways:
(1) it has an orbit-manifold the disk and two exceptional fibers, each of index

two, or
(2) it has an orbit-manifold the M\"obius band and no exceptional fibers.
Recall that any piece homeomorphic to the twisted I-bundle over the Klein
bottle is assumed to be endowed with a Seifert fibration of type (1). Therefore
two Seifert fibrations of $M_{i,j}$ are both of type (1). Hence our claim follows from
[26, Satz 10.1].

Step 3. Finally we claim that if $M_{i,j}$ has an orientable orbit-manifold and $[l]$

lies in the group generated by any regular fiber, then $[l]$ lies in the center of
$\pi_{1}M_{i,j}$ . Suppose that $M_{i,j}$ has $p$ exceptional fibers and the orbit-manifold of
genus $q$ with $r$ boundary components. Then it follows from [12, VI.9] that the
fundamental group of $M_{i,j}$ is presented as follows:

$\pi_{1}N\cong$ $\langle\gamma_{1},$ $\xi_{1},$ $\ldots\gamma_{q},\xi_{q},$ $\delta_{1},$ $\ldots\delta_{p},\epsilon_{1},$ $\ldots\epsilon_{r},$ $\lambda|$

$[\gamma_{i}, \lambda]=1,$ $[\xi_{i}, \lambda]=1,$ $[\delta_{j}, \lambda]=1,$ $[\epsilon_{k}, \lambda]=1$ ,

$\delta_{j}^{s_{j}}=\lambda^{t_{j}},$ $\lambda^{u}=(\prod_{1=1}^{q}[\gamma_{i}, \xi_{i}])\delta_{1}\cdots\delta_{p}\epsilon_{1}\cdots\epsilon_{r}\rangle$

where each $s_{j}$ is the index of the j-th exceptional fiber, $0<t_{j}<s_{j}$ for $1\leq j\leq p$ ,
and $u$ is an integer. Moreover $\lambda$ is represented by any regular fiber. Thus $\lambda$ lies



164 T. IKEDA

Figure 20

in the center of $\pi_{1}M_{1j}$ . Hence our claim was proved and this completes the proof
of the lemma. $\square $

LEMMA 5.3. Let $M_{l,j}$ be a piece in $\mathcal{P},$ $\psi:M_{i,j}\rightarrow M$ an inclusion map, and
$\psi_{*}:$ $\pi_{1}M_{i,j}\rightarrow\pi_{1}M$ a homomorphism induced from $\psi$ . Then $\psi_{*}$ is injective.

Proof. It suffices to prove that any loop $l\subset intM_{i,j}$ representing a homotopy
class in the kernel of $\psi_{*}$ is null-homotopic in $M_{i,j}$ .

We may assume that $l$ is an embedded loop. Since $l$ is null-homotopic in
$M$ , there is a map $homD^{2}$ into $M$ carrying $\partial D^{2}$ to $l$ . It follows from Dehn’s
lemma ([19, 8]) that $l$ bounds an embedded disk $D$ in $M$ . Isotope $D$ so that
$D$ and $\partial M_{i,j}-\partial M$ meet transversally in a union of loops. Note that these
loops are null-homotopic on $D$ . Let $l_{1},$ $l_{2},$ $\ldots l_{r}$ be loops in $D\cap(\partial M_{i,j}-\partial M)$

such that the component $C$ of $D-(\partial M_{i,j}-\partial M)$ containing $l$ is bounded by
$l\cup l_{1}\cup l_{2}\cup\cdots\cup l_{r}$ , as illustrated in Figure 20. Note that $l\subset intM_{i,j}$ implies
$C\subset M_{i,j}$ . Since $\partial M_{1,j}-\partial M$ is incompressible in $M$ , each $l_{i}$ is null-homotopic
on $\partial M_{i,j}-\partial M$ . Therefore each $l_{i}$ bounds a disk $D_{i}$ on $\partial M_{i,j}-\partial M$ , and hence
$C\cup D_{1}\cup D_{2}\cup\ldots\cup D_{r}$ forms a disk in $M_{i,j}$ bounded by $l$ . Thus $l$ is null-homotopic

in $M_{1j}$ and the lemma follows. $\square $

It should be noted that, for a piece $M_{i,j}\in \mathcal{P}$ placed on a side of a torus
$T\in \mathcal{T}$ , any loop on $\partial M_{i,j}$ is homotopic to a loop on $T$ . We summarize with the

following proposition.

PROPOSITION 5.4. Let $M_{i,j}$ be a piece in $\mathcal{P}$ which is homeomorphic to neither
$D^{2}\times S^{1}$ nor $S^{1}\times S^{1}\times I$ . Let $\psi_{*}:$ $\pi_{1}M_{1,j}\rightarrow\pi_{1}M$ be a homomorphism induced

from the inclusion map $\psi:M_{i,j}\rightarrow M$ . Suppose that $M_{i,j}$ is placed on a side

of a torus $T\in \mathcal{T}$ . Then a homotopy class $[l]\in\pi_{1}M$ of a nontrivial loop $l$ on
$T$ lies in the center of $i_{*}(\pi_{1}M_{i,j})$ if and only if $M_{i,j}$ is a Seifert piece with an
orientable orbit-manifold and $[l]$ lies in the group generated by any regular fiber
of $M_{i,j}$ .
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5.2 Realization on each orbit

We recall that $f$ preserves any orbit $O_{i}$ . We will construct a partial realization
on $O_{i}$ , i.e. a periodic auto-homeomorphism of $O_{i}$ which is isotopic to $f|0_{:}$ by
an isotopy on $O_{i}$ . The following lemma shows that $f^{n}|_{0:}$ represents a mapping
class in $\mathcal{M}(O_{i})$ of finite order.

LEMMA 5.5. $f^{n}|0$. $\simeq ido_{:}$ by an isotopy on $O_{i}$ for each $i$ .

Proof. The homeomorphisms $f^{n}$ and $f^{n}|_{0:}$ respectively induce the automor-
phisms of $\pi_{1}M$ and $\pi_{1}O_{i}$ each of which respects the peripheral structure. It fol-
lows $hom$ [$27$ , Corollary 7.5] that $f^{n}$ induces the identity map on Out $(\pi_{1}M)$ by
$f^{n}\simeq id_{M}$ . It follows from Lemma 5.3 that for any piece $M_{i,j}\subset O_{i}$ the homomor-
phism $(\psi_{i,j})_{*}:$ $\pi_{1}M_{i,j}\rightarrow\pi_{1}M$ induced from the inclusion map $\psi_{i,j}$ : $M_{1,j}\rightarrow M$

is injective. Then $f^{n}|_{M_{l,j}}$ induces the identity map on Out $(\pi_{1}M_{1,j})$ and therefore
$f^{n}|_{0_{*}}$ induces the identity map on Out $(\pi_{1}O_{i})$ . Hence $f^{n}|0_{:}$ is homotopic to $id_{O_{i}}$

by a homotopy on $O_{i}$ . Since $f^{n}|0_{:}$ is orientation-preserving by $f^{n}\simeq id_{M}$ , the
required isotopy therefore follows from [27, Theorem 7.1]. $\square $

Suppose that $f|0_{:}$ represents a mapping class in $\mathcal{M}(O_{i})$ of order $n_{i}$ . We
isotope $f$ to make an auto-homeomorphism of $M$ whose restriction on $O_{i}$ has
period $n_{i}$ for each $i$ . It is sufficient to show the following lemma because any
isotopy on $\bigcup_{i=1}^{\kappa}O_{i}$ extends to an isotopy on $M$ .

LEMMA 5.6. For each $i$ there is a periodic homeomorphism $f_{i}$ : $O_{i}\rightarrow O_{i}$ of
order $n_{i}$ which is isotopic to $f|0$. by an isotopy on $O_{i}$ . Moreover, if $O_{i}$ consists
of Seifert pieces, then $f_{i}$ can be chosen so as to preserve both the Seifert fibration
and a dual foliation of $O_{i}$ .

Proof. It follows from Proposition 3.1 and Theorem 4.8 that there is a homeo-
morphism $f_{i}^{\prime}$ : $M_{i,1}\rightarrow M_{i,1}$ of period $n_{i}/v_{i}$ which is isotopic to $f^{v}$: by an isotopy
on $M_{1,1}$ . Define a homeomorphism $f_{i}$ : $O_{i}\rightarrow O_{i}$ as follows:

$f_{1}=\left\{\begin{array}{ll}f & on O_{i}-M_{i,\nu}.\\f_{i}^{\prime}\circ f^{1-\nu}: & on M_{i,\nu_{i}}\end{array}\right.$

It should be noted that $f_{i}^{\prime}\simeq f^{v}:|_{M_{i,1}}$ implies $f_{i}\simeq f|0_{i}$ and that $f_{i}^{\prime}$ has period
$n_{i}$ . Therefore $f_{i}$ is a required periodic homeomorphism.

When $M_{i,1}$ is a Seifert piece, it follows $hom$ Theorem 4.8 that $f_{i}^{\prime}$ can be chosen
so as to preserve both the Seifert fibration and a dual foliation $\mathcal{F}_{1,1}$ of $M_{1,1}$ . By
[26, Satz 10.1], we may assume that $f_{i}^{\prime}|_{0.-M}.,\nu:=f|_{0:-M:},\nu_{i}$ is fiber-preserving.
Let us consider a foliation $\mathcal{F}_{1j}$ of $M_{1,j}$ induced from $\mathcal{F}_{i,1}$ by $f_{i}^{j-1}$ for $1<j\leq v_{i}$ .
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Then $f_{i}$ preserves the dual foliation of $O_{i}$ defined by $\mathcal{F}_{i,1},\mathcal{F}_{i,2},$ $\ldots \mathcal{F}_{i,\nu:}$ . $\square $

5.3 Twists between orbits

In the following we assume by Lemma 5.6 that $f|0_{:}$ has period $n_{i}$ , a divisor
of $n$ , for $ 1\leq i\leq\kappa$ . We remark that modifying $f$ only on $\mathcal{N}(\cup \mathcal{T}, M)$ is possibly
not enough to make $f$ a homeomorphism of peirod $n$ . So we will measure this
obstruction by studying twists in $\mathcal{N}(\cup \mathcal{T}, M)$ caused by $f^{n}$ .

Let $T$ be a torus in $\mathcal{T}$ . Although we cannot specify a meridian and a longitude
on $T$ (because $T$ is essential in $M$), we need them to describe the type of the
twist in $\mathcal{N}(T, M)$ caused by $f^{n}$ . So we take a pair of simple closed curves $m$

and $l$ on $T$ intersecting each other in a single point so that the homotopy classes
$[m]$ and $[l]$ generate the fundamental group $\pi_{1}T$ . We call $m$ and $l$ a meridian
and a longitude of $T$ respectively. We assume that $T,$ $m$ , and $l$ are oriented
consistently.

Take a proper arc $\alpha\subset \mathcal{N}(T, M)$ joining the distinct components of $\partial \mathcal{N}(T, M)$

with an orientation determined by those of $T$ and $M$ . Let $k=\alpha\cup f^{n}(\alpha)$ be a
loop with an orientation determined by that of $f^{n}(\alpha)$ . If $k$ is homotopic to a
link on $T$ of type $(p, q)$ , i.e. it goes longitudinal direction $p$ times and meridional
direction $q$ times algebraically, we say that the tunst type of $f^{n}$ along $T$ is $(p, q)$ .

First let us investigate the twist types of $f^{n}$ along the tori in $\mathcal{T}$ according to
the types of pieces placed on the both sides.

LEMMA 5.7. Let $T$ be a torus in $\mathcal{T}$ . Suppose that $M_{i_{1},j_{1}}$ and $M_{i_{2},j_{2}}$ are pieces
in $\mathcal{P}$ placed on the mutually oposite sides of T. Then one of the following cases
occurs:
(1) Each of $M_{:_{1},j_{1}}$ and $M_{i_{2},j_{2}}$ is either a hyperbolic piece or a Seifert piece with

a nonoreentable orbit-manifold, and the twist type of $f^{n}$ along $T$ is $(0,0)$ .
(2) One of $M_{1_{1},j_{1}}$ and $M_{1_{2},j_{2}}$ is a Seifert piece with an orientable orbit-manifold

which induces the fibration of $T$ of type $(p, q)$ , and the other $\dot{u}$ either a
hyperbolic piece or a Seifert piece unth a nonorientable orbit-manifold. The
twist type of $f^{n}$ along $T$ is $(kp, kq)$ where $k$ is an integer.

(3) Both $M_{:_{1},j_{1}}$ and $M_{i_{2},j_{2}}$ are Seifert pieces each having an orientable orbit-
manifold. These Seifert pieces induce the fibrations of $T$ of type $(p_{1}, q_{1})$ and
$(p_{2}, q_{2})$ respectively, and the twist type of $f^{n}$ along $T$ is $(k_{1}p_{1}+k_{2}p_{2},$ $k_{1}q_{1}+$

$k_{2}q_{2})$ where $k_{1}$ and $k_{2}$ are integers.

Proof. Let us fix a base point $x_{1}\in M;_{1},j_{1}$ for $\pi_{1}M$ . Recall $f^{n}\simeq id_{M}$ . It
follows from [27, Corollary 7.5] that $f^{n}$ induces an inner automorphism of $\pi_{1}M$

by $\xi\in\pi_{1}M$ .
Let $l_{1}\subset M_{:_{1},j_{1}}$ be an arbitrary nontrivial closed path with the base point
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Figure 21

$x_{1}$ as illustrated in Figure 21. Since $f^{n}|_{M}:_{1}.j_{1}=id_{M_{1^{j}1}}..$ ’ we have $[\xi, [l_{1}]]=1$ .
Assume $\xi\neq 1$ . It follows from [13, Lemma VI.1.5] that we can homotope $l_{1}$ and
any loop representing $\xi$ into the same Seifert piece. Therefore by Proposition
5.4 $M_{:_{1},j_{1}}$ is a Seifert piece with an orientable orbit-manifold and $\xi$ lies in the
subgroup generated by any regular fiber of $M_{:_{1},j_{1}}$ .

Let $l_{2}^{\prime}\subset M_{i_{2},j_{2}}$ be an arbitrary nontrivial closed path with a base point $ x_{2}\in$

$M_{i_{2},j_{2}}$ . Ihke a path $\alpha$ from $x_{1}$ to $x_{2}intersecting\cup \mathcal{T}$ in a point $y$ on $T$ . Then
the product $l_{2}=\alpha l_{2}^{\prime}\alpha^{-1}$ is a closed path with the base point $x_{1}$ as illustrated
in Figure 21. Suppose that the twist type of $f^{n}$ along $T$ is $(p^{\prime}, q^{\prime})$ . Let $\lambda$ be a
closed path on $T$ with the base point $y$ homotopic to a link on $T$ of type $(p^{\prime}, q^{\prime})$ .
We put $\eta=[\alpha_{1}\lambda\alpha_{1}^{-1}]$ where $\alpha_{1}=\alpha\cap N_{1}$ . Then $[f^{n}(l_{2})]=\xi[l_{2}]\xi^{-1}=\eta[l_{2}]\eta^{-1}$ .
Therefore $[\xi^{-1}\eta, [l_{2}]]=1$ . Assume $\xi^{-1}\eta\neq 1$ . It follows $hom$ [ $13$ , Lemma VI.1.5]
that we can homotope $l_{2}$ and any loop representing $\xi^{-1}\eta$ into the same Seifert
piece. Therefore by Proposition 5.4 $M_{i_{2},j_{2}}$ is a Seifert piece with the orientable
orbit-manifold and $\xi^{-1}\eta$ lies in the subgroup generated by any regular fiber of
$M_{:_{2},j_{2}}$ . Thus we have the following four possibilities:

(A) $\eta=1$ .
(B) $\eta=\xi\neq 1,$ $M_{:_{1},j_{1}}$ is a Seifert piece with an orientable orbit-manifold, and

$\eta=\xi$ lies in the subgroup generated by any regular fiber of $M_{:_{1},j_{1}}$ .
(C) $\eta\neq\xi=1,$ $M_{1_{2},j_{2}}$ is a Seifert piece with an orientable orbit-manifold, and

$\eta$ lies in the subgroup generated by any regular fiber of $M_{1_{2},j_{2}}$ .
(D) $\eta\neq\xi,$ $\eta\neq 1,$ $\xi\neq 1$ , both $M_{1_{1},j_{1}}$ and $M_{i_{2},j_{2}}$ are Seifert pieces each having

an orientable orbit-manifold and $\xi$ and $\xi^{-1}\eta$ lie in the subgroup generated
by any regular fiber of $M_{1_{1},j_{1}}$ and $M_{1_{2},j_{2}}$ respectively.

Let us study these cases in turn. If $M_{:_{1},j_{1}}$ is a Seifert piece, we denote by
$(p_{1}, q_{1})$ the fibration type of $T$ induced from the Seifert fibration of $M_{1_{1},j_{1}}$ and
by $\gamma_{1}$ the homotopy class represented by a regular fiber passing $x_{1}$ . Similarly if
$M_{1_{2},j_{2}}$ is a Seifert piece, we denote by $(p_{2}, q_{2})$ the fibration type of $T$ induced
$hom$ the Seifert fibration of $M_{:_{2},j_{2}}$ and by $\gamma_{2}$ the homotopy class represented by
$\alpha\rho\alpha^{-1}$ where $\rho$ is a regular fiber passing $x_{2}$ .

Case (A) obviously implies that the twist type of $f^{n}$ along $T$ is $(0,0)$ , and



168 T. IKEDA

therefore corresponds to either Case (1), (2) with $k=0$ , or (3) with $k_{1}=k_{2}=0$ .
In Case (B), the twist type of $f^{n}$ along $T$ is a multiple of $(p_{1}, q_{1})$ . If $M_{i_{2},j_{2}}$ also is
a Seifert piece with an orientable orbit-manifold, the present case corresponds to
Case (3) with $k_{2}=0$ , and otherwise Case (2). Case (C) is similar to Case (B).
If $M_{i_{1},j_{1}}$ also is a Seifert piece with an orientable orbit-manifold, the present
case corresponds to Case (3) with $k_{1}=0$ , and otherwise Case (2). In Case
(D), suppose $\xi=\gamma_{1^{1}}^{r}$ and $\xi^{-1}\eta=\gamma_{2^{2}}^{r}$ where $r_{1}$ and $r_{2}$ are nonzero integers. It
should be noted that we have $\xi\neq\xi^{-1}\gamma$ by the assumption of the canonical torus
decomposition of $M$ . Then the twist type of $f^{n}$ along $T$ is $r_{1}(p_{1}, q_{1})+r_{2}(p_{2}, q_{2})$ ,
and the present case results to be in Case (3). This completes the proof. $\square $

REMARK 5.8. In the case $M_{i_{1},j_{1}}=M_{i_{2},j_{2}}$ for Lemma 5.7, we have only two
possibilities (1) and (3). Although $T$ is placed between the same Seifert piece,
the fibration types $(p_{1}, q_{1})$ and $(p_{2}, q_{2})$ of $T$ induced from the Seifert fibration
of the piece from mutually oposite sides are different. In other words, we have
$\gamma_{1}\neq\gamma_{2}$ , though $\gamma_{1}$ is conjugate to $\gamma_{2}$ .

Lemma 5.7 implies that $f^{n}$ may cause twists only around the Seifert pieces
in $\mathcal{P}$ each having an orientable orbit-manifold along their fibers. So we will
investigate the relation between the twists caused by $f^{n}$ along distinct tori.

Let $M_{i,j}$ be a Seifert piece in $\mathcal{P}$ with an orientable orbit-manifold. Suppose
that $M_{i,j}$ is placed on a side $S$ of $T\in \mathcal{T}$ . We denote by $M_{i^{\prime},j^{\prime}}$ the piece in $\mathcal{P}$

placed on the side $S^{\prime}$ of $T$ other than $S$ . Suppose that the twist type of $f^{n}$ along
$T$ is $(p_{0}, q_{0})$ and that the fibration type of $T$ induced $hom$ the Seifert fibration
of $M_{i,j}$ from $S$ is $(p, q)$ . Let $v$ be a normal of $T$ consistent with the orientations
of $T$ and $M$ . We put $\epsilon=+1$ or-l according as $\nu$ points inwards to or outwards
$homS$ respectively. We define the twist number of $f^{n}$ for $(T, S)$ as follows:

(1) If $(p_{0}, q_{0})=k(p, q)$ for an integer $k$ , the twist number of $f^{n}$ for $(T, S)$ is
$\epsilon k$ .

(2) Otherwise $M_{i^{\prime},j^{\prime}}$ is also a Seifert piece with an orientable orbit-manifold,
and we have $(p_{0}, q_{0})=k(p, q)+k^{j}(p^{\prime}, q^{\prime})$ where $k$ and $k^{\prime}$ are integers and
$(p^{\prime}, q^{\prime})$ is the fibration type of $T$ induced from the Seifert fibration of $M_{i^{\prime},j^{\prime}}$

from $S^{\prime}$ . Then the twist number of $f^{n}$ for $(T, S)$ is $\epsilon k$ .
It should be noted that the twist number of $f^{n}$ for $(T, S)$ depends not on the

orientation of $T$ but on those of fibers of $N$ .

LEMMA 5.9. Let $M_{i,j}$ be any Seifert piece in $\mathcal{P}$ with an orientable orbit-manifold.
Suppose that $T_{1},T_{2},$ $\cdots T_{\sigma}$ are tori in $\mathcal{T}$ such that $M_{i,j}$ is placed on a side $S_{k}$

of $T_{k}$ for each $k$ . Then the $t$wbst numbers of $f^{n}$ for $(T_{k}, S_{k})$ for $ 1\leq k\leq\sigma$ are
the same.
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Figure 22

Proof. Let us fix $T_{k}$ . We denote by $M_{i^{\prime},j^{\prime}}$ the piece in $\mathcal{P}$ placed on the side $S_{k}^{\prime}$ of
$T_{k}$ other than $S_{k}$ . It should be noted that we have the possibility of $M_{i,j}=M_{i^{\prime},j^{\prime}}$ .
Let us fix a base point $x_{i,j}\in M_{i,j}$ for $\pi_{1}M$ so that any exceptional fiber of $M_{1,j}$

misses $x_{i,j}$ . Since $f^{n}\simeq id_{M}$ , it follows $hom$ [$27$ , Corollary 7.5] that $f^{n}$ induces
an inner automorphism of $\pi_{1}M$ by $\xi\in\pi_{1}M$ .

Let us take an arbitrary nontrivial closed path $l_{i,j}\subset M_{i,j}$ with the base point
$x_{i,j}$ , as illustrated in Figure 22. Since $f^{n}|_{M_{l.j}}=id_{M}:,j$

’ we have $[\xi, [l_{i,j}]]=1$ .
Assume $\xi\neq 1$ . It follows from [13, Lemma VI.1.5] that we can homotope $l_{i,j}$

and any loop representing $\xi$ into the same Seifert piece. Therefore it follows
from Proposition 5.4 that $\xi$ lies in the subgroup generated by any regular fiber
of $M_{:,j}$ . Thus we suppose $\xi=\gamma^{r}$ where $\gamma$ is a homotopy class of infinite order
represented by the regular fiber of $M_{i,j}$ passing $x_{i,j}$ .

Let us take an arbitrary nontrivial closed path $l_{i,j}^{\prime},$ $\subset M_{1^{\prime},j^{\prime}}$ with a base
point $x_{i^{\prime},j^{\prime}}\in M_{:^{\prime},j^{\prime}}$ . Take a path $\alpha$ from $x_{i,j}$ to $x_{i^{\prime},j^{\prime}}$ such that $\alpha intersects\cup \mathcal{T}$

in a point on $T_{k}$ . Then the product $l_{i^{\prime},j^{\prime}}=\alpha l_{i,j}^{\prime},\alpha^{-1}$ is a closed path with the
base point $x_{i,j}$ as illustrated in Figure 22. Let $t_{k}$ be the twist number of $f^{n}$ for
$(T_{k}, S_{k})$ .

First we assume that $M_{i^{\prime},j^{\prime}}$ is not a Seifert piece with an orientable orbit-
manifold. Then $[f^{n}(l_{i^{\prime},j^{\prime}})]=\gamma^{t_{k}}[l_{i^{\prime},j^{\prime}}]\gamma^{-t_{k}}=\gamma^{r}[l_{i^{\prime},j^{\prime}}]\gamma^{-r}$ . Therefore $[\gamma^{t_{k}-r}$ ,
$[l_{i^{\prime},j^{\prime}}]]=1$ . Hence $t_{k}=r$ for any $k$ follows $hom$ Proposition 5.4.

Next we assume that $M_{i^{\prime},j^{\prime}}$ is a Seifert piece with an orientable orbit-manifold.
Suppose that any exceptional fiber misses $x_{i^{\prime},j^{\prime}}$ . Let $\rho$ be the regular fiber passing
$x_{i^{\prime},j^{\prime}}$ . We denote by $\gamma_{k}$ the homotopy class represented by the product closed
path $\alpha\rho\alpha^{-1}$ , and by $t_{k}^{\prime}$ the twist number of $f^{n}$ for $(T_{k}, S_{k}^{\prime})$ . Then $[f^{n}(l_{i^{\prime},j^{\prime}})]=$

$\gamma^{t_{k}}\gamma_{k}^{-t_{k}^{\prime}}[l_{i^{\prime},j^{\prime}}]\gamma_{k}^{t_{k}^{\prime}}\gamma^{-t_{k}}=\gamma^{r}[l_{i^{\prime},j^{\prime}}]\gamma^{-r}$ . Therefore $[\gamma^{t_{k}-r}\gamma_{k}^{-t_{k}^{\prime}}, [l_{i^{\prime},j^{\prime}}]]=1$ . Hence
$t_{k}=r$ for any $k$ follows $hom$ Proposition 5.4. This completes the proof. $\square $

Let $M_{i,j}$ be a Seifert piece with an orientable orbit-manifold, $T_{i},$ $ 1\leq i\leq\sigma$ ,
tori in $\mathcal{T}$ such that $M_{l,j}$ is placed on a side $S_{i}$ of $T_{i}$ . In view of Lemma 5.9 the
twist number of $f^{n}$ for $(T_{i}, S_{i})$ may be regarded as independent of $(T_{i}, S_{i})$ . This
justifies us to call it simply the twist number of $f^{n}$ for $M_{i,j}$ .
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5.4 Proof of Theorem 1.4

Let $O_{i}$ be an orbit of $f$ which consists of Seifert pieces each having an ori-
entable orbit-manifold. Assume that $f$ preserves both the Seifert fibration $S_{i}$

and a dual foliation $\mathcal{F}_{i}$ of $O_{i}$ . We denote by $\mathcal{E}_{i}$ the set of all exceptional fibers
in $O_{i}$ . Suppose that $O_{1}^{\prime}=O_{i}-int\mathcal{N}(\cup \mathcal{E}_{1}, O_{i})$ is saturated. Then $O_{1}^{\prime}$ has an
$S^{1}$-bundle structure induced from $S_{1}$ . Let us isotope $f$ by an isotopy on $O_{i}$

whose restriction on $O_{i}^{\prime}$ is s-translation. We further modify $f$ on $\mathcal{N}(\cup \mathcal{E}_{i}, O_{i})$

as we constructed $g_{i}$ in the proof of Theorem 4.8 so that afterwards $f$ preserves
both $S_{i}$ and $\mathcal{F}_{i}$ . Lemma 2.1 enables us to realize these modifications of $f$ by an
isotopy on $O_{i}$ , which we call s-translation of $f$ on $O_{i}$ .

Suppose that, for $1\leq i\leq\kappa,$ $f|0_{:}$ represents a mapping class in $\mathcal{M}(O_{i})$ of
order $n_{i}$ . Then each $n_{i}$ is a divisor of $n$ . We may assume by Lemma 5.6 that $f|0$.
has period $n_{i}$ for $ 1\leq i\leq\kappa$ . If $O_{i}$ consists of Seifert pieces $M_{i,1},$ $M_{i,2},$ $\ldots M_{i,v:}$

each having an orientable orbit-manifold, we denote by $k_{i}$ the common twist
number of $f^{n}$ for them. Otherwise we put $k_{i}=0$ . We consider an isotopy of
$f$ whose restriction on $O_{i}$ is invariant if $k_{i}=0$ and $(-k_{i})$-translation otherwise.
Then this isotopy cancels the twists along tori in $\mathcal{T}$ caused by $f^{n}$ .

It suffices to isotope $f$ on $\mathcal{N}(\cup \mathcal{T}, M)$ so as to produce the required periodic
homeomorphism $g:M\rightarrow M$ .

We regard any torus $T$ in $\mathcal{T}$ as a quotient of $\mathbb{R}^{2}$ by the integer lattice $\mathbb{Z}^{2}$ . Let
$Pr$ \ddagger $\mathbb{R}^{2}\times I\rightarrow \mathcal{N}(T, M)$ be a universal covering map and $\tilde{f}_{T}$ : $\mathbb{R}^{2}\times I\rightarrow \mathbb{R}^{2}\times I$ a
lift of $f|_{\mathcal{N}\langle T,M)}$ as the following commutative diagram shows:

$\mathbb{R}^{2}\times I$

$\rightarrow^{f^{\tilde}\tau}$

$\mathbb{R}^{2}\times I$

$ p\tau\downarrow$ $\downarrow p_{f(T)}$

$\mathcal{N}(T, M)\rightarrow^{f}\mathcal{N}(f(T), M)$

Suppose $\Gamma_{T}^{\langle 0)}$ : $\mathbb{R}^{2}\rightarrow \mathbb{R}^{2}$ and $\Gamma_{T}^{(1)}$ : $\mathbb{R}^{2}\rightarrow \mathbb{R}^{2}$ be homeomorphisms satisfying

$\left\{\begin{array}{l}\tilde{f}_{T}(x, y, 0)=(\Gamma_{T}^{(0)}(x, y), \epsilon)\\\tilde{f}_{T}(x, y, 1)=(\Gamma_{T}^{\langle 1)}(x, y), 1-\epsilon)\end{array}\right.$

where $\epsilon=0$ or 1 according as $\tilde{f}_{T}$ preserves the boundary component of $R^{2}\times I$

or not. Define a homeomorphism $\tilde{g}\tau$ \ddagger $\mathbb{R}^{2}\times I\rightarrow \mathbb{R}^{2}\times I$ by

$\tilde{g}_{T}(x, y,t)=((1-t)\Gamma_{T}^{(0)}(x, y)+t\Gamma_{T}^{\langle 1)}(x, y),$ $(1-t)\epsilon+t(1-\epsilon))$ .

Let $g_{T}$ : $\mathcal{N}(T, M)\rightarrow \mathcal{N}(f(T), M)$ be a homeomorphism induced $hom\tilde{g}_{T},$ $\alpha$ a
proper arc in $\mathcal{N}(T, M)$ joining the distinct boundary components. Since the
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twist type of $f^{n}$ along $T$ is $(0,0)$ , we can modify $f$ on $\mathcal{N}(T, M)$ by an isotopy
relative to $\partial \mathcal{N}(T, M)$ so that $f(\alpha)=g_{T}(\alpha)$ . It follows from Lemma 2.1 that
there is an isotopy on $\mathcal{N}(T, M)$ from $f$ to $g_{T}$ relative to $\partial \mathcal{N}(T, M)\cup\alpha$ , and
hence the twist type of $g_{T}^{n}$ along $T$ is $(0,0)$ . Moreover $f^{n}|_{\partial N(T,M)}=id_{\partial N(T,M)}$

implies $g_{T}^{n}=id_{\mathcal{N}(T,M)}$ . Define an auto-homeomorphism $g$ of $M$ as follows:

$g=\begin{array}{ll}f & on M-int\mathcal{N}(\cup \mathcal{T}, M),\\g_{T} & on \mathcal{N}(T, M) for any T\in \mathcal{T}.\end{array}$

Then $g$ is isotopic to $f$ and we have $g^{n}=id_{M}$ . Since $g$ represents a mapping
class of order $n$, the period of $g$ is exactly $n$ . Hence $g$ has the required property.
This completes the proof of Theorem 1.4. $\square $
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