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Abstract. In this paper, we consider transformations for posets with the same
upper bound graph. Those $poset_{8}$ can be $tran8formed$ into each other by a finite
sequence of two kinds of transformations, called addition and deletion of an order
relation. This result induces a characterization on unique upper bound graphs.
We deal with the distance of those posets that have the same upper bound graph.

Introduction

In this paper, we consider finite undirected simple graphs. Let $P=(X, \leq)$

be a poset. The upper bound graph (UB-graph) of $P$ is the graph $UB(P)$ over
$X$ obatined by joining a pair of distinct elements $u$ and $v$ in $X$ whenever there
exists $m\in X$ such that $u,$ $v\leq m$ . We say that a graph $G$ is a UB-graph if there
exists a poset whose upper bound graph is isomorphic to $G$ . These concepts
were introduced by F.R. McMorris and T. Zaslavsky [2].

The total ordered set with $n$ elements is not isomorphic to the height-one
poset with a unique maximal element and $n-1$ minimal elements if $n\geq 3$ , but
their UB-graphs are isomorphic. Thus a natural question arises; how are those
two posets that have the same UB-graphs related. In this paper, we shall answer
this quetion, introducing two kinds of transformations of such posets.

1. Upper bound graphs

In this section, we introduce two kinds of transformations for those posets
that have the same UB-graph.

A characterization of upper bound graphs can be found in [2] as follows:
A clique in a graph $G$ is a maximal set of vertices which induces a complete
subgraph in $G$ . A family $C$ of complete subgraphs is said to edge-cover $G$ if for
each edge $uv\in E(G)$ , there exists $C\in C$ such that $u,$ $v\in C$ .
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THEOREM 1. (F.R. McMorris and T. Zaslavsky [2]) A graph $G$ is a UB-graph
if and only if there exists a family $C=\{C_{1}, \ldots, C_{n}\}$ of complete subgraphs of $G$

such that

(i) $C$ edge-covers $G$ , and
(ii) for each $c_{:}$ , there is a vertex $v_{i}\in C_{i}-(\bigcup_{j\neq i}C_{j})$ .

Furthermore, such a family $C$ must consist of cliques of $G$ and is the only
such family if $G$ has no isolated vertices. $\blacksquare$

For a UB-graph $G$ and a clique edge cover $C=\{C_{1}, C_{2}, \ldots, C_{n}\}$ satisfying the
conditions of Theorem 1, a kernel $K_{UB}(G)$ of $G$ is a vertex subset $\{v_{1}, v_{2}, \ldots, v_{n}\}$

such that $v_{i}\in C_{i}-(\bigcup_{j\neq i}C_{j})$ for each $i=1,$ $\ldots,$
$n$ . In this paper, we consider a

fixed labeled UB-graph $G$ with a fixed kernel $K_{UB}(G)$ .
Let $P=(X, \leq)$ be a poset and $x\in X$ an element of $P$ . We put $L_{P}(x)=$

$\{y\in X ; y<x\}$ and $U_{P}(x)=\{y\in X ; y>x\}$ , and denote by ${\rm Max}(P)$ the
set of all maximal elements of $P$ . For a UB-graph $G,$ $\mathcal{P}_{UB}(G)=\{P$ ; $UB(P)=$
$G,$ ${\rm Max}(P)=K_{UB}(G)$ }. Each poset $P$ in $\mathcal{P}_{UB}(G)$ is identffied with the set of
relations in $P$ and hence $\mathcal{P}_{UB}(G)$ can be regared as a poset by set inclusion.
For a poset $P=(X, \leq p)$ , the canonical poset of $P$ is the height-one poset
can $(P)=(X, \leq_{can(P)})$ , where $x\leq_{can(P)}y$ if and only if (1) $x\not\in{\rm Max}(P),$ $ y\in$

${\rm Max}(P)$ and $x\leq py$ , or (2) $x=y$ .
Observe that if $G$ is a UB-graph, then all posets in $\mathcal{P}_{UB}(G)$ have the same

canonical poset by Theorem 1. For a UB-graph $G$ , the canonicd poset of $G$

is the poset can$(G)=(V(G), \leq_{can(G)})$ , where $x\leq_{can(G)}y$ if and only if (1)
$y\in K_{UB}(G)$ and $xy\in E(G)$ , or (2) $x=y$ . Then for a UB-graph $G$ and any poset
$P\in \mathcal{P}_{UB}(G),$ $can(G)=can(P)$ , and can $(G)$ is the minimum poset of $\mathcal{P}_{UB}(G)$ .

Let $x$ and $y$ be two distinct elements of a poset $P$ . Suppose that $y\not\in{\rm Max}(P)$

and $x<y$ . Then, another poset $P_{x<y}^{-}$ is obtained from $P$ by subtracting the
relation $x\leq y$ from $P$ . We call this transformation the deletion of $x<y(x<y-$
deleteion). Now let $x$ and $y$ be an incomparable pair of elements in $P$ such
that $y\not\in{\rm Max}(P),$ $U_{P}(y)\subseteq U_{P}(x)$ and $L_{P}(y)\supseteq L_{P}(x)$ . Then, a poset $P_{x<y}^{+}$ is
obtained from $P$ by adding the relation $x\leq y$ to $P$ . We call this transformation
the addition of $x<y$ ($x<y$-addition).

We easily obtain the following facts on these transformations. Any poset
$P$ and $P_{x<y}^{-}$ have the $s$ame UB-graph, and $P$ and $P_{x<y}^{+}$ also have the $s$ame
UB-graph. Moreover the $x<$ y-addition and the $x<$ y-deletion are inverse
transformations to each other.

The following lemma follows immediately from the above facts:

LEMMA 2. For a UB-graph $G$ , every poset in $\mathcal{P}_{UB}(G)$ is obtained from can $(G)$

by additions of order relations only. $\blacksquare$
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The following is one of our main theorem:

THEOREM 3. Let $G$ be a UB-graph and let $P$ and $Q$ be two posets in $\mathcal{P}_{UB}(G)$ .
Then $P$ can be transformed into $Q$ by a sequence of deletions and additions of
order relations.

Prvof Both $P$ and $Q$ have the $s$ame canonical poset can$(P)=can(Q)=$
$can(G)$ . Thus, it is easy to see that they can be transformed intoe each other via
can $(G)$ . Fir$st$ , delete order relations among $P-{\rm Max}(P)$ in order untill can $(G)$

is obtaiend. Next, add order relations to can $(G)$ to get Q. $\blacksquare$

Lemma 2 implies the following result, which is Theorem 2 in F.R. McMorris
and G.T. Myers [1]. For a UB-graph $G$ with a kernel $K_{UB}(G),$ $G$ is a unique
UB-graph if it has only one realizing poset.

COROLLARY 4. (F.R. McMorris and G.T. Myers [1]) Let $G$ be a UB-graph
with a kernel $K_{UB}(G)$ . Then the followings are equivalent:

(1) $G$ is a unique UB-graph.

(2) can $(G)$ is only one poset whose UB-graph is $G$ .
(3) {Ma(v) ; $v\in V(G)-K_{UB}(G)$ } is an antichain with respect to set inclu-

sions, where Ma$(v)=\{m_{i}\in K_{UB}(G) ; vm_{i}\in E(G)\}$ . $\blacksquare$

2. The distance of posets

In this section, we introduce the distance of those posets that have the same
upper bound graphs. Given a UB-graph $G$ with a kernel $K_{UB}(G)$ , the dis-
tanoe between two posets $P$ and $Q$ in $\mathcal{P}_{UB}(G)$ , denoted by $d_{UB}(P, Q)$ , is the
shortest length of a sequence of deletions and additions of order relations from
$P$ to $Q$ . Let $X$ be a subset in $\mathcal{P}_{UB}(G)$ . The diameter $d(X)$ is defined as
$\max\{d_{UB}(P, Q) ; P, Q\in X\}$ . The distance $d_{UB}(P, Q)$ satisfies the axioms of
a distance. We shall consider the following two problems:

PROBLEM 1. Let $G$ be a UB-graph with a kernel $K_{UB}(G)$ , and $P_{\max}$ be a mani-
mal poset in $\mathcal{P}_{UB}(G)$ . Estimate the value $d([can(G), P_{\max}])$ , where [can $(G),$ $P_{\max}$ ]
$=$ { $Q$ ; can $(G)\leq \mathcal{P}_{U}\epsilon(G)Q\leq \mathcal{P}_{UB}(G)P_{\max}$ }.

PROBLEM 2. Let $G$ be a UB-graph with a kern$elK_{UB}(G)$ . Estimate the value
$d(\mathcal{P}_{UB}(G))$ .

The poset can $(G)$ has two types of binary relations. One is the set of reflexive
relations. The number of reflexive relations of cm $(G)$ is $|V(G)|$ . Tthe other is
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the set of relations between maximal element $s$ and minimal elements. Note that
${\rm Max}(can(G))=K_{UB}(G)$ . Let $N_{G}(v)$ be the neighborhood of a vertex $v$ in $G$ , that
is, the set of vertices adjacent to $v$ in $G$ . A maximal element $m\in K_{UB}(G)$ covers
all elements of $L_{can(G)}(m)$ , and $N_{G}(m)=L_{can(G)}(m)-\{m\}$ for $m\in K_{UB}(G)$ .
Thus we have the following result:

LEMMA 5. Let $G$ be a UB-graph with a kernel $K_{UB}(G)$ . The number of binary
relations in $Ct(G)$ is equal to $|ct(G)|=\sum_{m\in K_{UB}(G)}|N_{G}(m)|+|V(G)|$ . $\blacksquare$

For a UB-graph $G$ with a kernel $K_{UB}(G)=\{m_{1}, \ldots, m_{n}\}$ , we have

$|\mathcal{P}_{UB}(G)|\leq\prod_{i=1}^{n}3^{(}2|N_{G}(n:)|)$ .

We also have results on maximal posets in $\mathcal{P}_{UB}(G)$ .

THEORBM 6. Let $G$ be a UB-graph with a kernel $K_{UB}(G)$ , and $P$ a maximal
poset in $\mathcal{P}_{UB}(G)$ . Then for all $x,$ $y\in V(G)-\dot{K}_{UB}(G)$ such that Ma$(x)\neq Ma(y)$ ,
$x\leq py$ if and only if Ma$(x)\supset Ma(y)$ , where Ma$(x)=\{m;\in K_{UB}(G)=$
${\rm Max}(P)$ ; $x\leq pm_{i}$ }.

Proof. The necessity is obvious. To prove the sufficiency, we assume that there
exist incomparable elements $x,$ $y\in V(G)-K_{UB}(G)$ such that Ma$(x)\supseteq Ma(y)$ .
We fix $x$ and select a maximal element satisfying the conditions as $y$ . That is,
every element $z\in U_{P}(y)$ is comparable with $x$ . If $z\leq Px$ , then $y\leq pz\leq Px$ ,
which is a contradiction. Hence $x\leq pz$ for every element $z\in U_{P}(y)$ , and
$U_{P}(x)\supseteq U_{P}(y)$ . Furthermore $y\not\in{\rm Max}(P)=K_{UB}(G)$ . Next we choose a
minimal element $x$ for this $y$ under the conditions and $y$ is maximal. Thus every
element $w\in L_{P}(x)$ is comparable with $y$ . If $y\leq Pw$ , then $y\leq P^{W}\leq P^{X}$ , which
is a contradiction. So $w\leq Py$ for every element $w\in L_{P}(x)$ , and $L_{P}(x)\subseteq L_{P}(y)$ .
Therefore we can perform the $x<y$-addition for these $x$ and $y$ . This contradicts
the maximality of P. $\blacksquare$

By Theorem 6, we obtain the following result immediately:

COROLLARY 7. Let $G$ be a UB-graph with a kernel $K_{UB}(G)$ , and $P$ be a
maximal poset on $\mathcal{P}_{UB}(G)$ . Then for all $x,$ $y\in V(G)-K_{UB}(G)$ , if Ma$(x)=$
$Ma(y)$ , then $x\leq Py$ or $ y\leq P^{X}\cdot\blacksquare$

Theorem 6 means that relations on a maximal poset in $\mathcal{P}_{UB}(G)$ are deter-
mined by the set inclusions on Ma $(x)$ . Let $G$ be a UB-graph with a kernel
$K_{UB}(G)$ and put

$N_{G}[S]=\bigcap_{m\in S}N_{G}(m)-\bigcup_{m\in K_{CJB}(G)-S}N_{G}(m)$
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for $S\subseteq K_{UB}(G)$ . We decompose $V(G)$ as follows:

$V(G)=K_{UB}(G)$
$\cup\bigcup_{\emptyset\neq s\subseteq K_{UB}(G)}N_{G}[S]$

.

In addition, for a maximal poset $P$ in $\mathcal{P}_{UB}(G),$ $x\in N_{G}[S]$ and $y\in N_{G}[T]$ ,
$x\leq py$ if and only if $S\supset T$ . The elements in $N_{G}[S]$ form a total order in $P$ , and
$K_{UB}(G)={\rm Max}(P)$ . Therefore we have the following result, which is Theorem
2.2.12 in G.T. Myers [3]:

THEOREM 8. (G.T. Myers [3]) Let $G$ be a UB-graph with a kemel $K_{UB}(G)$ .
Then two maximal posets on $\mathcal{P}_{UB}(G)$ are isomorphic. Furthermore, the differ-
ences of two maximal posets on $\mathcal{P}_{UB}(G)$ are only total ordenngs of the elements
in $N_{G}[S]$ for each nonempty set $S\subseteq K_{UB}(G),$ $\blacksquare$

Fr$om$ Theorem 8 and the descomposition of $V(G)$ on Ma$(x)$ , we have the
following result:

LEMMA 9. Let $G$ be a UB-graph with a kemel $K_{UB}(G)$ , and $P_{\max}$ be a maxzmal
poset in $\mathcal{P}_{UB}(G)$ . The number of binary relations in $P_{\max}$ can be obtainde by:

$|P_{\max}|=\sum_{\emptyset\neq s\subseteq K_{OB}(G)}\left(\begin{array}{l}|N_{G}[S]|\\2\end{array}\right)+\sum_{\emptyset\neq S\subset T\subseteq K_{UB}(G)}|N_{G}[S]|\times|N_{G}[T]|+|can(G)|$

$\blacksquare$

Let $\Sigma_{1}$ and $\Sigma_{2}$ denote the following:

$\Sigma_{1}=\sum_{\emptyset\neq s\subseteq K_{UB}(G)}\left(\begin{array}{l}|N_{G}[S]|\\2\end{array}\right)$ ,
$\Sigma_{2}=\sum_{\emptyset\neq S\subset T\subseteq K_{UB}(G)}|N_{G}[S]|\times|N_{G}[\eta|$

For two posets $Q,$ $R\in[can(G), P_{\max}],$ $R$ is obtained from $Q$ by adding relations
in $R\backslash Q$ and deleting relations in $Q\backslash R$ . Thus we obtain the following result by
above results.

THEOREM 10. Let $G$ be a UB-graph with a kemel $K_{UB}(G)$ , and $P_{\max}$ be a
maxzmal poset in $\mathcal{P}_{UB}(G)$ . Then $d([can(G), P_{\max}])=\sum_{1}+\sum_{2}$ .

Proof. For a poset $Q\in[can(G), P_{\max}],$ $d_{UB}(Q, P_{\max})=|P_{\max}|-|Q|$ , and
$d_{UB}(can(G), Q)=|Q|-|can(G)|$ , where $|Q|$ is the number of binary relations on
$Q$ . Thus,

$d_{UB}(can(G), Q)+d_{UB}(Q, P_{\max})=|P_{\max}|-|can(G)|=d_{UB}(can(G), P_{\max})$ .
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For any two posets $Q,$ $R\in[can(G), P_{\max}]$ , we have

$d_{UB}(Q, R)\leq n\dot{u}n\{d_{UB}(Q,can(G))+d_{UB}(can(G))R)$ ,
$d_{UB}(Q, P_{\max})+d_{UB}(P_{\max}, R)\}$

$\leq d_{UB}(can(G), P_{\max})$ ,

since

$d_{UB}(can(G), P_{\max})=d_{UB}(can(G), Q)+d_{UB}(Q, P_{\max})$

$=d_{UB}(can(G), R)+d_{UB}(R, P_{\max})$ .

Thus
$d([cm(G), P_{\max}])=d_{UB}(can(G), P_{\max})=\Sigma_{1}+\Sigma_{2}$ .

$\blacksquare$

Next we consider the diameter of $\mathcal{P}_{UB}(G)$ . For two posets $P,$ $Q$ in $\mathcal{P}_{UB}(G),$ $P$

can be obtained from $Q$ by the following operations: (1) delete a relation from $Q$ ,
(2) add a relation to $Q,$ (3) delete a relation from $Q$ and add its reverse relation
to $Q$ . We define two special posets related to a maximal poset $P$ in $\mathcal{P}_{UB}(G)$ . A
maximal poset $Q$ in $\mathcal{P}_{UB}(G)$ is a quasi-dual maximal poset of $P$ , when $x\leq Qy$ if
and only if:

(1) $x\leq py$ if Ma$(x)\neq Ma(y)$ , or
(2) $y\leq pX$ if Ma$(x)=Ma(y)$ .

A poset $R$ in $\mathcal{P}_{UB}(G)$ is a submaximal poset of $P$ , when $x\leq Ry$ if and only if:

(1) $y\in K_{UB}(G)$ and $x\leq py$ , or
(2) $x=y$ , or
(3) $x,$ $y\in V(G)-K_{UB}(G),$ $Ma(x)=Ma(y)$ and $x\leq Py$ .

LEMMA 11. Let $G$ be a UB-graph with a kern$elK_{UB}(G),$ $P$ a maximal poset
in $\mathcal{P}_{UB}(G)$ , and $Q$ a quasi-dual maximal poset $ofP$ . Then $d_{UB}(P, Q)=2\Sigma_{1}$ . $\blacksquare$

LEMMA 12. Let $G$ be a UB-graph with a kern$elK_{UB}(G),$ $P$ a maximal poset
in $\mathcal{P}_{UB}(G)$ , and $R$ a submaximal poset of P. Then $d_{UB}(P, R)=\Sigma_{2}$ . $\blacksquare$

LEMMA 13. Let $G$ be a UB-graph with a kernel $K_{UB}(G),$ $P$ a maximal poset
in $\mathcal{P}_{UB}(G),$ $Q$ a quasi-dual maximal poset of $P$ , and $R$ a submaximal poset of
P. Then $d_{UB}(Q, R)=2\Sigma_{1}+\Sigma_{2}$ . $\blacksquare$

By these lemmas we have the following result.
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THEOREM 14. For a UB-graph $G$ with a kernel $K_{UB}(G)$ , we have

$d(\mathcal{P}_{UB}(G))=2\Sigma_{1}+\Sigma_{2}$ .

Proof. For two posets $A,$ $B\in P_{UB}(G)$ , the number of relations in $A\cap B$ is
greater than or equal to $|can(G)|$ . For $x,$ $y\in V(G)$ , if $x\leq Ay$ and $y\leq B^{X}$ , then
Ma$(x)=Ma(y)$ . Thus,

$d_{UB}(A, B)\leq 2|\{\{x, y\};Ma(x)=Ma(y)\}|$

$+|\{(x, y);Ma(x)\subset Ma(y)$ , and
(($x||y$ in $A$ and $x\leq By$) or $(x\leq Ay$ and $x||y$ in $B)$ )} $|$

$\leq 2\Sigma_{1}+\Sigma_{2}$ ,

where $x||y$ means that $x$ and $y$ are incompatible. By lemma13, this bound is
sharp. Therefore $d(\mathcal{P}_{UB}(G))=2\Sigma_{1}+\Sigma_{2}$ . $\blacksquare$
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