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Abstract. The achromatic number of a graph $G$ is the maximum number $k$

such that $G$ has a k-coloring each pair of whose colors appear at the ends of an
edge. We shall show that a triangulation $G$ of a closed surface has achromatic
number 3 if and only if $G$ is isomorphic to $K_{n,n,n}$ for some $n$ .

Introduction

We consider only finite, simple, undirected graphs in this paper. We denote
the vertex set and edge set of a graph $G$ by $V(G)$ and $E(G)$ , respectively. A k-
coloring of $G$ is a map $c:V(G)\rightarrow\{0,1, \ldots, k-1\}$ such that adjacent vertices of
$G$ get different colors. A complete k-coloring of $G$ is a k-coloring such that each
pair of colors appears on at least one edge. If $G$ has a k-coloring (resp., a complete
k-coloring), then $G$ is said to be k-colorable (resp., complete k-colorable). The
chromatic number of a graph $G$ , denoted by $\chi(G)$ , is the minimum number $k$ such
that $G$ is k-colorable. On the other hand, the achrvmatic number of $G$ , denoted
by $\psi(G)$ , is the maximum number $k$ such that $G$ is complete k-colorable. They
are introduced by Harary et al [1].

By definition, we have $\chi(G)\leq\psi(G)$ . Moreover, a $\chi(G)$-coloring of $G$ is
always a complete coloring of G. (For otherwise, there is a pair of colors, say
$i$ and $j$ , which are not adjacent in $G$ . Here we can give the same color to the
vertices colored $i$ and $j$ . Now we could decrease the number of colors, contrary
to $G$ being colored by $\chi(G)$ colors.)

A complete k-coloring of a graph $G$ can be regarded as a subjective homo-
morphism $h:G\rightarrow K_{k}$ . That is, $h$ satisfies that:

(i) if $xy\in E(G)$ , then $h(x)\neq h(y)$ , and

(ii) for any $x^{\prime}y^{\prime}\in E(K_{k})$ , there exists $xy\in E(G)$ such that $x^{\prime}=h(x)$ and
$y^{\prime}=h(y)$ .
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We call such $h$ simply a homomorphism.
Harary, Hedetniemi and Prins [2] have studied homomorphisms from given

graphs to complete graphs, and showed that if a graph $G$ admits two homomor-
phisms to $K_{t}$ and $K_{t}/(t\leq t^{\prime})$ , then $G$ also has a homomorphism to $K_{s}$ for any
$s$ with $t\leq s\leq i^{\prime}$ . Equivalently, $G$ has a complete k-coloring for any $k$ with
$\chi(G)\leq k\leq\psi(G)$ .

It is clear that $\psi(G)=1$ if and only if $G$ has no edges. It is however so
difficult to characterize those graphs that have a given achromatic number $k\geq 2$

in general. So, we restrict graphs to be triangulations on closed surfaces, which
are typical objects in topological graph theory, and shall show the following
theorem. (A simple graph $G$ is called a $tri$angulation of a closed surface if $G$

is embedded in the surface so that each face is triangular. The complete graph
$K_{3}$ embedded on the sphere is usually excluded from the triangulations, but we
regard it as a triangulation.)

THEOREM 1. Let $G$ be a triangulation of a closed surface. Then $\psi(G)=3$ if
and only if $G$ is isomorphic to $K_{n,n,n}$ for some $n\geq 1$ .

In Section 1, we shall determine the achromatic number of complete multipar-
tite graphs and give a characterization for a connected graph to have achromatic
number 2. In Section 2, we shall prove our main theorem.

1. The achromatic number of complete multipartite graphs

First, we consider the achromatic numer of complete k-partite graphs.

THEOREM 2. The achromatic number of a complete $k$ -parti $te$ graph is equal to
$k$ for any positive integer $k$ .

Proof. Let $G$ be a complete k-partite graph with partite sets $A_{1},$
$\ldots,$

$A_{k}$ and
consider any complete coloring $c$ : $V(G)\rightarrow\{1,2, \ldots\}$ of $G$ . Since any two
vertices in different partite sets are adjacent, $c^{-1}(i)$ must be contained in only
one of $A_{1},$

$\ldots,$
$A_{k}$ for any color $i$ . If $c^{-1}(i)$ and $c^{-1}(j)$ were contained together

in some $A_{h}$ , there would be no edge between two colors $i$ and $j$ . Thus, we may
assume that $c^{-1}(i)=A;$ . This implies that any complete coloring of $G$ uses
precisely $k$ colors and hence $\psi(G)=k$ . $\blacksquare$

Applying the above theorem, we can prove the following theorem:

THEOREM 3. Let $G$ be a connected graph. Then $\psi(G)=2$ if and only if $G$ is
isomorphic to a complete bipartite graph.
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Proof. By Theorem 2, the sufficiency is obvious. We shall prove the necessity.
Since $\psi(G)=2$ , there is a bipartition $V(G)=A_{1}\cup A_{2}$ such that $ A_{1}\cap A_{2}=\emptyset$ and
each of $A_{1}$ and $A_{2}$ is independent set of $G$ . We may suppose that for $i=1,2,$ $A_{i}$

is colored by $i$ in the complete 2-coloring of $G$ . Suppose that there are $u\in A_{1}$

and $v\in A_{2}$ such that $uv\not\in E(G)$ . Then color $\{u, v\}$ by 3. Since $G$ is connected,
$u$ is adjacent with vertices in $A_{2}$ and $v$ is adjacent with vertices in $A_{1}$ . Therefore,
the resulting 3-coloring of $G$ is complete, contrary to $\psi(G)=2$ . Thus, for any
$u\in A_{1}$ and $v\in A_{2},$ $uv\in E(G)$ , and hence $G$ is a complete bipartite graph. $\blacksquare$

Note that if we omit the connectedness of $G$ in Theorem 3, the theorem does
not hold. Consider the disjoint union of several isolated vertices and a complete
bipartite graph. Clearly, the achromatic number of this is 2.

2. Triangulations with achromatic number 3

In this section, we shall prove our main theorem and discuss the existense of
triangulations of closed surfaces with achromatic number 3.

Proof of Theorem 1. By Theorem 2, the sufficiency is obvious. We shall prove
the necessity. Since $G$ is a triangulation, we have $\chi(G)\geq 3$ . On the other hand,
since $\psi(G)=3$ , we have $\chi(G)\leq 3$ , and hence $\chi(G)=3$ . Thus, we characterize
triangulations $G$ such that $\chi(G)=3$ .

It is easy to see that for a triangulation $G$ on a closed surface, either $G\cong K_{3}$

or each vertex of $G$ has degree at least 3. In the former case, we have $ G\cong K_{3}\cong$

$K_{1,1,1}$ , and hence the theorem follows.
Now we consider the latter case. Let $v$ be any vertex of $G$ and let $v_{1},$

$\ldots,$
$v_{m}$ be

the neighbors of $v$ lying around $v$ in this cyclic order. Since $G$ is a triangulation,
$v$ is surrounded by the cycle $v_{1}\cdots v_{m}$ . We call this cycle the link of $G$ and denote
it by lk(v).

CLAIM 1. For each vertex $v$ of $G$ , the link of $v$ has an even length.

Prvof. Suppose that $G$ is colored by {1, 2, 3}, and a vertex $v$ is colored by 1.
Then the vertices on lk(v) must be colored by {2, 3}. Thus, the length of lk(v)
must be even. $\blacksquare$

According to the 3-coloring of $G$ , we decompose $V(G)=A_{1}\cup A_{2}\cup A_{3}$ such
that for $i\neq j,$ $ A_{i}\cap A_{j}=\emptyset$ and for each $i,$ $A_{i}$ is independent.

CLAIM 2. For each $i\in\{1,2,3\},$ $|A_{i}|\geq 2$ .

Proof. Observe that for $v\in A_{1}$ , the length of lk(v) is even and at least 4, by
Claim 1. Since the vertices colored by 2 and those colored by 3 appear on lk(v)
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alternately, and since lk(v) is a cycle, the vertices on lk(v) are all distinct. Thus,
we have $|A_{2}|\geq 2$ and $|A_{3}|\geq 2$ . Focusing on $u\in A_{2}$ and $1k(u)$ , we also have
$|A_{1}|\geq 2$ . $\blacksquare$

Now we show that $G$ is a complete tripartite graph with partite sets $A_{1},$ $A_{2}$

and $A_{3}$ . Suppose that there are $u\in A_{1}$ and $v\in A_{2}$ such that $uv\not\in E(G)$ .
Consider the new partition $V(G)=A_{1}^{\prime}\cup A_{2}^{\prime}\cup A_{3}^{\prime}\cup A_{4}^{\prime}$ such that $A_{4}^{\prime}=\{u, v\}$ .
$A_{1}^{\prime}=A_{1}-\{u\},$ $A_{2}^{\prime}=A_{2}-\{v\}$ and $A_{3}^{\prime}=A_{3}$ . Clearly, this satisfies that for
$i\neq j,$ $ A^{\prime}|\cap A_{j}^{\prime}=\emptyset$ and that $A^{\prime}|$ is independent for each $i$ . We define

$e(X, Y)=|\{xy\in E(G) : x\in X, y\in Y\}|$

for two disjoint sets $X,$ $Y\subset V(G)$ .
Since vertices in $A_{2}$ and those in $A_{3}$ appear alternately on the link $1k(u)$ of

$u$ , we have $e(A_{2}^{\prime},A_{4}^{\prime})\geq 2$ and $e(A_{3}^{\prime},A_{4}^{\prime})\geq 2$ , by Claim 2. Similarly, focusing
on $v$ , we have $e(A_{1}^{\prime}, A_{4}^{\prime})\geq 2$ , and focusing on $w\in A_{3}$ , we have $e(A_{1},A_{3})\geq 2$

and $e(A_{2},A_{3})\geq 2$ , and hence $e(A_{1}^{\prime}, A_{3}^{\prime})\geq 1$ and $e(A_{2}^{\prime}, A_{3}^{\prime})\geq 1$ . It is clear that
$G-A_{3}$ is a 2-cell embedding each of whose faces contains a vertex in $A_{3}$ at its
center, and hence it is connected. Thus, we have $e(A_{1}^{\prime}, A_{2}^{\prime})\geq 1$ . Therefore, the
partition $V(G)=A_{1}^{\prime}\cup A_{2}^{\prime}\cup A_{3}^{\prime}\cup A_{4}^{\prime}$ gives a complete 4-coloring, a contradiction.
Thus, $G$ is a complete tripartite graph.

Now we show that $|A_{1}|=|A_{2}|=|A_{3}|$ . For $u\in A_{1}$ , all the vertices in $A_{2}$ and
all the vertices in $A_{3}$ appear on lk(v) alternately. Thus, we have $|A_{2}|=|A_{3}|$ .
Similarly, focusing on $v\in A_{2}$ , we have $|A_{1}|=|A_{3}|$ . Hence, $|A_{1}|=|A_{2}|=$ I $A_{3}|$ .
Therefore, $G$ is isomorphic to $K_{n,n,n}$ with $n=|A_{1}|=|A_{1}|=|A_{2}|$ . $\blacksquare$

The orientable genus of $K_{n,n,n}$ has been already determined as in the follow-
ing theorem [3], [5], [4].

THEOREM 4. (A. White et al) The complete $tr\dot{i}partite$ graph $K_{n,n,n}$ has a
triangular embedding in the onentable closed surface of genus $g$ if and only if

$g=\frac{(n-1)(n-2)}{2}$ .

The following is an immediate consequence of Theorems 1 and 4.

COROLLARY 5. For the ortentable closed surface of genus $g$ , there exists a
tnangulation $G$ on it such that $\psi(G)=3$ if and only if there exists a natural
number $n$ satisfying

$g=\frac{(n-1)(n-2)}{2}$
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If we have a formula for the nonorientable genus of $K_{n,n,n}$ , then we can obtain
the fact corresponding to Corollary 5. We don’t however know it now.
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