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Abstract. A pseudo-triangulation on a closed surface without loops is a graph
embedded on the surface so that each face is triangular and may have multiple
edges, but no lo $0$ps. We shall establish a theory of diagonal flips in those pseudo-
triangulations. Our theory will work in parallel to that for simple triangulations
basically, but it will present more concrete theorems than the latter.

Introduction

A $tr\cdot\dot{\iota}angulation$ on a closed surface is a simple graph embedded on the surface
so that each face is triangular and that any two faces share at most one edge. A
diagonal flip of an edge $ac$ in such a triangulation is to replace the diagonal $ac$

with $bd$ in the quadrilateral abcd consisting of the two faces sharing $ac$ . We do
not perform a diagonal flip if it results in a nonsimple graph.

After Negami [13] proved the following theorem, many studies have appeared
to establish a theory on diagonal flips in triangulations; [2], [4], [5], [9], [10], [14]
and so on.

THEOREM 1. For any closed surface $F^{2}$ , there exists a natural number $N=$

$N(F^{2})$ such that two tnangulations $G_{1}$ and $G_{2}$ on $F^{2}$ can be transformed into
each other, up to homeomorhpism, by a sequence of diagonal flips $if|V(G_{1})|=$

$|V(G_{2})|\geq N$ .

Let $N(F^{2})$ denote its minimum value which makes the theorem valid. For
example, the results given by Wanger [18], Dewdney [3], Negami and Watanabe
[11] imply that $N(S^{2})=4,$ $N(T^{2})=7,$ $N(P^{2})=6$ and $N(K^{2})=8$ for the sphere
$S^{2}$ , the projective plane $P^{2}$ , the torus $T^{2}$ and the Klein bottle $K^{2}$ in order. These
values coincide with the minimum number of vertices of triangulations on these
surfaces, but it does not hold in general. It is so difficult to determine the precise
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value of $N(F^{2})$ for a given closed surface $F^{2}$ . Also Negami [15] has already shown
that

$N(F^{2})\leq 19V_{irr}(F^{2})-18\chi(F^{2})$

where $\chi(F^{2})$ denotes the Euler characteristic of $F^{2}$ . However, this bound in-
cludes an unknown quantity $V_{irr}(F^{2})$ , which is the maximum order of irreducible
triangulations of $F^{2}$ . We have $V_{irr}(S^{2})=4,$ $V_{irr}(P^{2})=7,$ $V_{irr}(T^{2})=10$ and
$V_{irr}(K^{2})=11$ (see [17], [1], [6] and [7], for irreducible triangulations of these
surface in order) but it has been known only $|V(F^{2})|\leq 171(2-\chi(F^{2}))-72$ for
other surfaces [8], which implies the above upper bound for $N(F^{2})$ is of linear
order with respect to the genus of $F^{2}$ .

One of points in the difficulty is that we have to keep the simpleness of
graphs during flipping edges in triangulations. What happens if we neglect the
simpleness of graphs? For example, Negami [15] has already given an answer to
this question, which we shall present as Theorem 10 in Section 3, and has shown
the previous upper bound for $N(F^{2})$ , as an application of his answer. We shall
show another answer in this paper, establishing a theory which is more concrete
than that for simple triangulations.

A pseudo-tnangulation on a closed surface $F^{2}$ is a triangular embedding of
a graph on $F^{2}$ which may have loops and multiple edges, according to Negami’s
definition in [15]. However, we shall exclude the loops and show the following
theorem in the same style as Theorem 1:

THEOREM 2. Given a closed surface $F_{f}^{2}$ there exists a natural number $n(F^{2})$

such that two pseudo-triangulations $G_{1}$ and $G_{2}$ on $F^{2}$ without loops can be trans-
formed into each other, up to homeomorphism, by a sequence of diagonal flips
through those pseudo-tnangulations $if|V(G_{1})|=|V(G_{2})|\geq n(F^{2})$ .

Let $n(F^{2})$ denote its minimum value hereafter, as well as $N(F^{2})$ . We shall
give the following upper bound for $n(F^{2})$ , which does not include any unknown
quantity.

THEOREM 3. If a closed surface $F^{2}$ is one of the sphere, the projective plane,
the torus and the Klein botde, then $n(F^{2})=3$ . Otherwise, we have:

$4\leq n(F^{2})\leq 18-5\chi(F^{2})$

For convenience, we say that two pseudo-triangulations without loops are
equivalent under diagonal flips if they can be transformed into each other, up
to homeomorphism, by a sequence of diagonal flips through those pseudo-trian-
gulations without loops, and often call a pseudo-triangulation without loops
simply a pseudo-triangulation hereafter, omitting “without loops”.
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In the next section, we shall define the notions of minimal, pseudo-minimal
and frvzen pseudo-triangulations to carry out the same arguments as for sim-
ple triangulations developed in [13] and [16]. Distinguishing these notions is
important in the theory for simple triangulations, but they are the same $for*$

pseudo-triangulations without loops, which enables us to establish the above
concrete bound for $n(F^{2})$ .

1. Minimal pseudo-triangulations

A pseudo-triangulation on a closed surface without loops is said to be minimal
if it has the fewest vertices among those. Since it has no loop, the three corners
of each face consist of three distinct vertices. Thus, it is clear that any minimal
pseudo-triangulation without loops has at least three vertices and also it is easy to
construct pseudo-triangulations with precisely three vertices under the following
conditions.

LEMMA 4. Let $G$ be a minimal pseudo-triangulation on a closed surface $F^{2}$

with $V$ vertices, $E$ edges and $F$ faces and without loops. Then we have

$V=3$ , $E=9-3\chi(F^{2})$ , $F=6-2\chi(F^{2})$

and $G$ is an F-regular graph such that all faces are incident to each vertex. Thus,
$G$ can be obtained frvm a wheel $W_{2n}$ by identihing the vertices and edges along
its rim of length $2n$ suitably.

Proof. It is easy to show that

$E=3(V-\chi(F^{2}))$ , $F=2(V-\chi(F^{2}))$

for a pseudo-triangulation $G$ on a closed surfcae $F^{2}$ in general, using Euler’s
formula. Since we can construct a minimal pseudo-triangulation with precisely
three vertices actually, we obtain the three equalities in the lemma, assigning 3
to $V$ in the above.

Let $V(G)=\{u, v, w\}$ . Then each face of $G$ has to have these three vertices $u$ ,
$v$ and $w$ at its corners. This implies all of $F$ faces are incident to $v$ (and also to
$u$ and w) and they form a wheel with $v$ at its center. The rim of this wheel $W_{2n}$

is a closed walk of length $F=2n$ representing the link of $v$ , denoted by lk(v).
and includes only $u$ and $w$ . So we need to identify the vertices which come from
the same vertex, $u$ or $w$ , to obtain the actual form of G. $\blacksquare$

LEMMA 5. A minimal pseudo-tnangulation without loops is unique for each of
the sphere, the projective plane, the torus and the Klein bottle.
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Proof. By Lemma 4, it is clear that the only minimal pseudo-triangulation of
the sphere is $K_{3}$ , the cycle of length 3, which has two faces. Also, the unique
minimal pseudo-triangulation of the projective plane can be obtained from the
wheel $W_{4}$ by identifying each pair of antipodal points on its boundary.

Those of the torus and the Klein bottle can be obtained from $W_{6}$ by suitable
identification along its boundary. For the torus, the identification is clear; each
parallel pair of edges should be identified. To represent it we give each egde a
label so that two edges which should be identffied have the same label. In this
case, we have xyzxyz. Since the vertiecs has been labeled with $u$ and $w$ , the
labeling on edges determines the identffication uniquely.

On the other hand, we need a $s$light argument on the identification of $W_{6}$ for
the Klein bottle. To obtain a nonorientable surface, we have to identify at least
one pair of edges so that the surface includes a M\"obius band. To do this, the
identffication should be represent with labeling $ x\bullet$ $ x\bullet\bullet\bullet$

” or its cyclic shift,
where each “

$\bullet$

” stands for one label. It is not diMcult to determine the unknown
labels and it will be xyxzyz uniquely up to symmetry. Otherwise, the resulting
pseudo-triangulation would have more than three vertices. $\blacksquare$

LEMMA 6. Any closed surface $F^{2}$ with $\chi(F^{2})<0$ admits two or more minimal
pseudo-tnangulations without loops.

Proof. First, consider minimal pseudo-triangulations on the orientable closed
surface of genus $g\geq 2$ . By Lemma 4, they can be constructed from $W_{F}$ with
$F=4g+2$ by identifying vertices and edges on its rim. For example, the two
identffication with labeling

$x_{1}x_{2}\cdots x_{F}x_{1}x_{2}\cdots x_{F}$ ; $x_{1}x_{2}\cdots x_{F-2}x_{F-1}x_{F}x_{1}x_{F-1}x_{F}x_{2}\cdots x_{F-2}$

yield two pseduo-triangulations with three vertices. They are not homeomorphic
to each other since their duals are not isomorphic as abstract 3-regular graphs.

Similarly, we can give two identifications on the boundary of $W_{F}$ with $F=$
$2q+2$ for the nonorientable closed surface of genus $q\geq 3$ :

$x_{1}x_{2}\cdots x_{F}x_{1}x_{F}\cdots x_{2}$ ; $x_{1}x_{2}\cdots x_{F-1}x_{F}x_{1}x_{F}x_{2}\cdots x_{F-1}$

They also yield non-homeomorphic pseudotriangulations with three vertices
whose duals are not isomorphic. $\blacksquare$

Here, we shall show an easy way to construct a series of minimal pseudo-
triangulations inductively. Let $G_{1}$ and $G_{2}$ be pseudo-triangulations on two dis-
joint closed surfaces $F_{1}^{2}$ and $F_{2}^{2}$ , respectively. Choose one face of $G_{1}$ and of $G_{2}$ ,
say $A_{1}$ and $A_{2}$ . Paste $F_{1}^{2}$ and $F_{2}^{2}$ along $A_{1}$ and $A_{2}$ , and remove the open 2-cell
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$A_{1}=A_{2}$ . Then we obtain a pseudo-triangulation on the connected sum $F_{1}^{2}\# F_{2}^{2}$

of the two surfaces $F_{1}^{2}$ and $F_{2}^{2}$ . The resulting pseudo-triangulation also is called
a connected sum of $G_{1}$ and $G_{2}$ and is denoted by $G_{1}\# G_{2}$ . If each of $G_{1}$ and $G_{2}$

has precisely three vertices, then $G_{1}\# G_{2}$ also has precisely three vertices. By
Lemma 4, $G_{1}\# G_{2}$ is a minimal pseudo-triangulation of $F_{1}^{2}\# F_{2}^{2}$ .

For example, a series of minimal pseudo-triangulations of the orientable closed
surfaces of genus 2, 3, 4, ... can be constructed from many copies of the unique
minimal pseudo-triangulation of the torus by joining them repeatedly in the
above way. Each of their duals has a nontrivial 3-edge-cut, that is, a set of three
edges whose removal disconnects it into nontrivial components. Thus, we cannot
construct the first type given in the proof of Lemma 6 in this way since its dual
does not have such a 3-edge-cut.

2. Pseudo-minimal pseudo-triangulations

Let $G$ be a pseudo-triangulation on a closed surface $F^{2}$ without loops and $ac$

an edge in $G$ with two faces abc and adc incident to it. The contraction of $ac$ is
to shrink $ac$ to a point and to replace the resulting two digonal faces with edges
$ab=cb$ and $ad=cd$ , respectively. We perform the contraction of an edge only
when it results in another pseudo-triangulation on $F^{2}$ without loops, denoted by
$G/ac$ , and call such an edge a contra ctible edge.

A pseudo-triangulation is said to be contractible if it has a contractible edge
and to be irreducible otherwise. For example, any minimal pseudo-triangulation
is irreducible since an edge contraction decreases the number of vertices. A
pseudo-triangulation is said to be pseudo-minimal if it cannot be transformed
into any contractible pseudo-triangulation by diagonal flips. Any pseudo-trian-
gulation equivalent to a pseudo-minimal one is $pseudc\succ minimal$ .

Let $G$ be a pseudo-triangulation on a closed surface $F^{2}$ without loops and let
$\delta(G)$ denote the minimum degree of $G$ . In general, we have $\delta(G)\geq 2$ ; otherwise,
we could find a loop around a vertex of degree 1. Suppose that $\delta(G)=2$ and let
$v$ be a vertex of degree 2 in $G$ . Then $v$ has two distinct neighbors $u$ and $w$ and
there are multiple edges between $u$ and $w$ which bound a digonal region including
the path uvw of length 2. Replace this digonal part with a single edge $uw$ to
obtain another pseudo-triangulation without loops. We call this deformation the
elimination of a vertex $v$ of degree 2. Note that each of the two edges incident to
a vertex $v$ of degree 2 is contractible and its contraction realizes the elimination
of $v$ .

LEMMA 7. A pseudo-tnangulations on a closed surface without loops, except
$K_{3}$ , is pseudo-minimal if and only if it is equivalent to no pseudo-triangulation
with a vertex of degree 2 under diagonal flips.
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Proof. The necessity is clear since a pseduo-triangulation is contractible if it
has a vertex of degree 2. To prove the sufficiency, it suffices to show that a
contractible pseudo-triangulation is equivalent to one with a vertex of degree 2
under diagonal flips.

Let $v$ be a vertex and $u_{1},$ $\ldots$ , $u_{n}$ its neighbors lying on lk(v) around $v$ in this
cyclic order. Suppose that $vu_{n}$ is a contractible edge in $G$ . Since $G/vu_{n}$ has no
loops, each of $u_{1},$

$\ldots,$ $u_{n-1}$ is distinct from $u_{n}$ . Thus, we can flip $vu_{1}$ to $u_{n}u_{2}$ ,
$vu_{2}$ to $u_{n}u_{3},$

$\ldots,$ $vu_{n-2}$ to $u_{n}u_{n-1}$ . The vertex $v$ will have degree 2 finally. $\blacksquare$

The next lemma follows from the above immediately:

LEMMA 8. Any pseudo-triangulation on a closed surface without loops can
be transformed into a pseudo-minimal one by a sequence of diagonal flips and
elimination of vertices of degree 2. $\blacksquare$

Negami [13] has defined the pseudo-minimal triangulations in a similar style,
related to contraction of edges. They also play an important role to determine the
value of $N(F^{2})$ . However, they are just theoretical objects and we know nothing
about their concrete forms. (We can find several examples of pseudo-minimal
triangulations in [16].) On the other hand, we can give a good characterization
of the pseudo-minimal pseudo-triangulations, as follows, which suggests how to
construct them.

Recall that we must not flip an edge in a pseudo-triangulation without loops
if it yields a loop. A pseudo-triangulation is said to be frvzen if any diagonal flip
is not applicable to it. That is, any frozen pseudo-triangulation is not equivalent
to any other pseudutriangulation under diagonal flips.

LEMMA 9. For a pseudo-tnangulation $G$ on a closed surface without loops, the
following four are equivalent to one another:

(i) $G$ is frvzen.
(ii) $G$ is pseudo-minimal.

(iii) $G$ is minimal.
(iv) $G$ has precisely three vertices.

Proof. By Lemma 4, the equivalence between (iii) and (iv) is obvious. So we
shall show the equivalence among (i), (ii) and (iv) below.

(i) implies (ii): Suppose that there is a vertex $v$ of degree 2. Then it has
two distinct neighbors $u$ and $w$ and they are joined by multiple edges. Each of
the multiple edges between $u$ and $w$ is flippable in $G$ . Thus, any frozen pseudo-
triangulatioin has minimum degree at least 3. Since it is not equivalent to any
other pseudo-triangulation, it is pseudo-minimal by Lemma 7.
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(ii) implies (iv): Let $G$ be a pseudo-minimal pseudo-triangulation. We
may suppose that $\delta(G)$ is the smallest among those pseudotriangulations that
are equivalent to $G$ under diagonal flips. Let $v$ be a vertex of $G$ with deg $v=$

$\delta(G)\geq 3$ . By the minimality of $\delta(G)$ , each edge incident to $v$ is $not$ flippable;
otherwise, flipping it would decrease deg $v$ by one. This implies that deg $v$ is an
even number $\geq 4$ and that two distinct vertices $u$ and $w$ lie alternately along
lk(v). Each face incident to $v$ consists of the three vertices $\{u, v, w\}$ .

Consider the link $1k(w)$ of $w(=w_{1})$ and suppose that there is a fourth vertex
$x$ on $1k(w)$ , different from $u,$ $v$ and $w$ . Then we can find a segment xuvu along
$1k(w)$ . To distinguish two $u’ s$ in the segment, we donte it by $xu_{1}vu_{2}$ and let
$ u_{1}w_{1}u_{2}w_{2}\cdots$ be the walk along lk(v) starting at $u_{1}$ . Flip $w_{1}u_{1}$ to $vx,$ $vw_{1}$ to
$u_{2}x$ and $vu_{2}$ to $w_{2}x$ . This sequence of diagonal flips decreases deg $v$ finally by
one, contrary to the minimality of $\delta(G)$ . Therefore, $1k(w)$ consists of only $v$

and $u$ , and $1k(u)$ also consists of only $v$ and $w$ , similarly. This implies $\{u, v, w\}$

induces a connected component of $G$ . Since $G$ is connected, $G$ has only these
three vertices $u,$ $v$ and $w$ .

(iv) implies (i): If $V(G)=\{u, v, w\}$ , then flippying any edge, say $uv$ , yields
a loop at $w$ . Thus, no diagonal flip is applicable to G. $\blacksquare$

Any pseudo-minimal pseudo-triangulation is irreducible. However, we can
make those irreducible pseudo-triangulations that are not pseudQminimal, for
each closed surface $F^{2}$ except the sphere and the projective plane, as follows.

Prepare the wheel $W_{4g}$ which subdivides a $4g$-gonal disk, for the orientable
closed surface of genus $g\geq 1$ and identify the boundary of the disk to obtain the
surface so that all of the $4g$ vertices of $W_{4g}$ except its center $v$ become a single
vertex, say $u$ . The resulting graph has two vertices and $2g$ loops, which come
$ffomedgesontherimofW_{4g}$ , and the4gspokes form mu1tip1eedges between v
and $u$ . Subdivide each loop into a pair of multiple edges with its middle point
as a vertex and join the new vertex to the center $v$ with an edge.

Now we obtain a pseudo-triangulation without loops which has precisely $2g+2$

vertices, and hence it is not minimal or equivalently not pseudo-minimal by
Lemmas 4 and 9. Each of its edges lies on a cycle of length 2 and hence it is
irreducible. Similarly, we can construct those with $q+2$ vertices from $W_{2q}$ for
the nonorientable closed surface of genus $q\geq 2$ . It is not difficult to see that the
irreducible pseudo-triangulations of the sphere and of the projective plane are
the unique minimal ones given in Lemma 5.

3. Proof of theorems

Negami [15] has shown the following theorem for pseudo-triangulations pos-
sibly with loops. In such pseudo-triangulations, there is no restriction to flip
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edges. His proof of this theorem suggests an algorithm to transform $G_{1}$ into $G_{2}$ ,
which is greedy in a sense, and gives an upper bound for the length of a sequence
of diagonal flips from $G_{1}$ to $G_{2}$ . The quantity $cr_{\nabla}(G_{1}, G_{2})$ is called the crvssing
number of $G_{1}$ and $G_{2}$ under vertex coincidence and is the minimum number of
crossing points in $G_{1}\cup G_{2}$ when we embed $G_{1}$ and $G_{2}$ together on the same
surface $F^{2}$ with $V(G_{1})=V(G_{2})$ .

THEOREM 10. Let $G_{1}$ and $G_{2}$ be two labeled pseudo-triangulations on a closed
surface $F^{2}$ with the same number of vertices. Then they can be transformed into
each other, up to homeomorphism, by a sequence of diagonal flips of length at
most $cr_{\nabla}(G_{1},G_{2})$ .

As an application of this theorem, we shall prove Theorems 2 and 3 for
pseudo-triangulations without loops, as follows.

Let $G$ be a pseudo-triangulation on a closed surface $F^{2}$ without loops and
$uv$ an edge in $G$ . Replace $uv$ with a pair of multiple edges between $u$ and $v$

bounding a digonal region which includes a path uxv of length 2. Then we
obtain another pseudo-triangulation $G^{\prime}$ with a new vertex $x$ of degree 2. We
call this local deformation of $G$ into $G^{\prime}$ the insertion of a vertex $x$ of degree 2
along an edge $uv$ and denote $G^{\prime}$ by $G+\Theta_{1}$ . Furthermore, let $G+\Theta_{m}$ denote a
pseudo-triangulation without loops obtained from $G$ by inserting $m$ vertices of
degree 2 along edges in order. The insertion of a vertex of degree 2 is the inverse
operation of the elimination of a vertex of degree 2.

Let uvw be a face of a pseudo-triangulation $G$ and insert a vertex $x$ of degree
2 along an edge $uv$ with multiple edges $e_{1}$ and $e_{2}$ so that $e_{1}$ lies in the face $uvw$ .
Flip $e_{1}$ to $xw$ and $xu$ to $vw$ . The resulting pseudo-triangulation can be regarded
as the one obtained from $G$ by inserting $x$ along $wv$ . Repeating this deformation,
we can move a vertex of degree 2 freely to anywhere. This fact implies that any
two pseudo-triangulations with the same notation $G+\Theta_{1}$ are equivalent to each
other under diagonal flips and hence it is the same for $G+\Theta_{m}$ with any natural
number $m$ .

The following theorem will give an essense of our proof of Theorems 2 and 3:

THEOREM 11. Let $G_{1}$ and $G_{2}$ be two pseudo-triangulations on a closed surface
$F^{2}$ without loops which have the same number of vertices. Then $G_{1}+\Theta_{m}$ can
be transformed into $G_{2}+\Theta_{m}$ , up to homeomorphism, by a sequence of diagonal
flips through pseudo-tnangulations without loops if $m\geq 5(|V(G)|-\chi(F^{2}))$ .

Proof. By Theorem 10, $G_{1}$ can be transformed into $G_{2}$ by a sequence ofdiagonal
flips, but this $s$equence $T_{0},$ $T_{1},$

$\ldots$ , $T_{n}$ might include pseudo-triangulations with
many loops although $G_{1}=T_{0}$ and $G_{2}=T_{n}$ have no loops. We shall translate
this sequence into that from $G_{1}+\Theta_{m}$ to $G_{2}+\Theta_{m}$ , as follows.
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Consider the barycentric subdivision $G_{1}^{\prime}$ of $G_{1}$ . That is, $G_{1}^{\prime}$ can be obtained
from $G_{1}$ by putting a new vertex at the middle point of each edge and adding
the barycenter of each face as a vertex adjacent to all of six vertiecs along its
boundary. The number of vertices added to $G_{1}$ , say $m0$ , is equal to $|E(G)|+$

$|F(G)|=5(|V(G)|-\chi(F^{2}))$ . Flipping edges in faces of $G_{1}$ , we can make the
additional vertices have degree 2. This implies that $G_{1}^{\prime}$ is equivalent to $G_{1}+\Theta_{m_{0}}$

under diagonal flips.

$DF\downarrow$ $\downarrow homeomorphism$

Figure 1. Diagonal flips in barycentric subdivisions

Similarly, consider the barycentric subdivision $T_{i}^{\prime}$ of each $T_{1}$ in the sequence.
Then the diagonal flip from $T_{1}$ to $\tau_{:+1}$ can be translated into a sequence of
eight diagonal flips, as shown in Figure 1. Thu$s,$ $G_{1}+\Theta_{m_{0}}$ is equivalent to
the barycentric subdivision $G_{2}^{\prime}$ of $G_{2}$ , which is equivalent to $G_{2}+\Theta_{m_{0}}$ under
diagonal flips. Since any vertex of degree 2 can be moved to anywhere, it is easy
to see that $G_{1}+\Theta_{m}$ is equivalent to $G_{2}+\Theta_{m}$ with $m\geq m_{0}$ under diagonal flips;
move a vertex of degree 2 far away if it disturbs a diagonal flip. $\blacksquare$

Prvof of Theorems 2 and 3. Let $G_{1}$ be a pseudo-triangulation on $F^{2}$ without
loops. If $G_{1}$ is not pseudo-minimal, then $G_{1}$ can be transformed into a pseudo-
minimal one, say $Q_{1}$ , by a sequence of diagonal flips and elimination of vertices
of degree 2, by Lemma 8, and hence $G_{1}$ is equivalent to $Q_{1}+\Theta_{m}$ under diagonal
flips, where $m=|V(G_{1})|-|V(Q_{1})|$ .

Similarly, let $G_{2}$ be a pseudo-triangulation on $F^{2}$ with the same number of
vertices as $G_{1}$ and let $Q_{2}$ be the pseudo-minimal one such that $G_{2}$ is equivalent to
$Q_{2}+\Theta_{m}$ under diagcnal flips. By Lemma 9, both $Q_{1}$ and $Q_{2}$ has precisely three



222 T. WATANABE AND S. NEGAMI

vertices. By Theorem 11, if $m\geq 5(3-\chi(F^{2}))=15-5\chi(F^{2}))$ then $Q_{1}+\Theta_{m}$ and
$Q_{2}+\Theta_{m}$ are equivalent under diagonal flips. This implies that $G_{1}$ is equivalent
to $G_{2}$ via $Q_{1}+\Theta_{m}$ and $Q_{2}+\Theta_{m}$ under diagonal flips if $|V(G_{1})|=|V(G_{2})|\geq$

$18-5\chi(F^{2})$ . That is, $n(F^{2})\leq 18-5\chi(F^{2})$ .
By Lemma 5, if $F^{2}$ is one of the sphere, the projective plane, the torus and the

Klein bottle, then $Q_{1}$ and $Q_{2}$ are identical. Thus, there is no restriction on the
number of vertices to transform two pseudo-triangulations into each other and
hence $n(F^{2})=3$ . Otherwise, there are two or more frozen pseudo-triangulations
on $F^{2}$ which have precisely three vertices and no two of which are equivalent
under diagonal flips. Thus, we have $n(F^{2})\geq 4$ . $\blacksquare$

It is not difficult to see that there are precisely two minimal pseudo-triangu-
lations of the orientable closed surface $S_{2}$ of genus 2, up to homeomorphism.
They are the ones obtained in the proof of Lemma 6, denoted by $T_{1}$ and $T_{2}$

here. We have already observed that $T_{1}+\Theta_{1}$ and $T_{2}+\Theta_{1}$ are equivalent under
diagonal flips, which implies that $n(S_{2})=4$ . We conjecture that $n(F^{2})=4$ for
any closed surface $F^{2}$ with $\chi(F^{2})<0$ , orientable or nonorientable.
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