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Abstract. A triangulation $G$ on a closed surface is called $k- loo\ell ely$ tight if
any color assignment to vertices with $k+3$ colors yields a face whose corners are
assigned three distinct colors. We shall show that a triangulation $G$ of the sphere,
the projective plane, the torus or the Klein bottle is l-loosely tight if and only if
both the independence number and the diameter of $G$ do not exceed 2. Using this
result, we shall classify all l-loosely tight triangulations of the projective plane.

Introduction

Let $G$ be a triangulation of a closed surface, that is, a simple graph embedded
in the surface so that any face of $G$ is bounded by a cycle of length 3 and any pair
of faces share at most one edge in common. (The latter condition is added only
to exclude $K_{3}$ embedded in the sphere.) We denote the sets of vertices, edges
and faces of $G$ by $V(G),$ $E(G)$ and $F(G)$ respectively, and identify each face with
the set of three vertices $\{x, y, z\}$ which lie on its boundary. A face $\{x, y, z\}$ of
$G$ is said to be hetervchromatic for a color assignment $f$ : $V(G)\rightarrow\{1,2,3, \ldots\}$

if the three vertices $x,$ $y$ and $z$ have distinct colors, $f(x),$ $f(y)$ and $f(z)$ . A
triangulation $G$ is said to be tight if there is a heterochromatic face for any
surjective color assignment $f$ : $V(G)\rightarrow\{1,2,3\}$ . A color assignment $f$ is called

hetero-free if there is no heterochromatic face for $f$ .
Suppose that $G$ has two vertices $u$ and $v$ which are not adjacent. Then we

can define a hetero-free assignment $f$ : $V(G)\rightarrow\{1,2,3\}$ by $f(u)=1,$ $f(v)=2$

and $f(x)=3$ for any other vertex $x$ of $G$ . This implies that $G$ is a complete
graph if it is tight. Thus, the notion of tightness works only for triangulations
on closed surfaces with complete graphs.

For example, Arocha, Bracho and Neumann-Lara [1], [2] have discussed those
and given a method to construct a series of untight triangulations with complete
graphs and a series of tight ones. In particular, they have shown that any untight
triangulation with a complete graph has at least 16 vertices and that there are
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three non-isomorphic triangulations of the nonorientable closed surface of genus
26 with $K_{16}$ , one of which is tight and the other two are untight. Lawrencenko,
Negami and White [4] have found three non-isomorphic triangulations of the
orientable closed surface of genus 20 with $K_{19}$ , which are all tight.

Negami and Midorikawa [5] extended the concept of the tightnes $s$ as follows’
in order to discuss the tightness of non-complete triangulations. A triangulation
$G$ is said to be k-loosely tight if there is a heterochromatic face for any surjective
color assignment $f$ : $V(G)\rightarrow\{1,2, \ldots, 3+k\}$ . It is obvious that all faces are
heterochromatic for any $f$ if $|V(G)|=3+k$ . Hence any triangulation $G$ of a
closed surface is k-loosely tight for some $k\leq|V(G)|-3$ . The looseness of $G$

is defined as the minimum value of $k$ for which $G$ is k-loosely tight, and it is
denoted by $\xi(G)$ .

A set of vertices of a graph $G$ is said to be independent if any two vertices in
it are not adjacent to each other. The independence number of $G$ , denoted by
$\alpha(G)$ , is the maximum size of independent sets of vertices in $G$ . The distance
between two vertices $u$ and $v$ in $G$ , denoted by $d(u, v)$ , is defined as the length of
a shortest path between $u$ and $v$ in $G$ . The diameter of $G$ , denoted by diam$(G)$ ,
is defined as the maximum value of the distances taken over all pairs of vertices
in $G$ . Negami and Midorikawa [5] have shown that if $G$ is a k-loosely tight
triangulation, then $\alpha(G)\leq k+1$ and diam$(G)\leq k+1$ .

The converse of their result does not hold in general since the looseness
depends on the embeddings. We shall however prove the following theorem.

THEOREM 1. A triangulation $G$ of the sphere, the prvjective plane, the torus
or the Klein bottle is l-loosely tight if and only if $\alpha(G)\leq 2$ and diam$(G)\leq 2$ .

This characterization of l-loosely tight triangulations of these surfaces will
enable us to classify them. Negami and Midorikawa [5] have already classffied the
l-loosely tight triangulations of the sphere; they are precisely eight in number,
up to isomorphism. In this paper, we shall classify those of the projective plane.

THEOREM 2. There are precisely twenty l-loosely tight triangulations of the
projective plane, up to isomorphism, as shown in Figure 4.

In Section 1, we shall give some general observations about the looseness and
prove Theorem 1. In Section 2, we shall show how to construct the complete list
of l-loosely tight triangulations of the projective plane and prove Theorem 2.

1. Characterization of 1-loosely tight triangulations

Negami and Midorikawa [5] have already given a characterization of k-loosely
tight triangulations, in terms of cycles in $G^{*}$ , as follows:
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THEOREM 3. (Negami and Midorikawa [5]) A triangulation $G$ of a closed sur-
face is k-loosely tight if and only if $G^{*}$ does not contain a union of disjoint cycles
which separate the surface into $k+3$ regions.

Let $G$ be a triangulation on a closed surface $F^{2}$ and $G^{*}$ its dual and let
$f$ : $V(G)\rightarrow\{1,2, \ldots, 3+k\}$ be a surjective color assignment. We define $H^{*}$

as the subgraph in $G^{*}$ induced by all the edges dual to the edges whose ends
are assigned two different colors by $f$ . It is clear that each vertex of $H^{*}$ has
degree 2 or 3 in $H^{*}$ and that $f$ is hetero-free if and only if $H^{*}$ has no vertex of
degree 3. In this case, $H^{*}$ consists of a union of disjoint cycles in $G^{*}$ and those
cycles separate $F^{2}$ into at least $k+3$ regions. Each of those regions contains
only vertices of $G$ with the same color. Conversely, if there is a union of cycles in
$G^{*}$ which separates $F^{2}$ into $k+3$ regions, then we can define a hetero-free color
assignment $f$ : $V(G)\rightarrow\{1,2, \ldots, 3+k\}$ so that $H^{*}$ can be obtained as above.
This is the meaning of Theorem 3.

Proof of Theorem 1. The necessity of the theorem follows from Negami and
Midorikawa’s result in [5]. So we shall show only the sufficiency, using Theorem
3 with $k=1$ .

Let $G$ be a triangulation on a closed surface $F^{2}$ which is homeomorphic to one
of the sphere, the projective plane, the torus and the Klein bottle. Suppose that
$G$ is not l-loosely tight. By Theorem 3, its dual $G^{*}$ contains a union of disjoint
cycles $C=\{C_{1}, C_{2}, C_{3}, \ldots\}$ which separates $F^{2}$ into four regions. We may assume
that each cycle $c_{:}$ is a common boundary cycle of two distinct regions, and hence
it is 2-sided, that is, $C_{i}$ has a neighborhood in $F^{2}$ homeomorphic to an annulus.
We shall discuss the configurations of such cycles on $F^{2}$ and find either an
independent set of three vertices or a pair of vertices with distance 3.

First, consider the projective plane as $F^{2}$ . Any 2-sided simple closed curve
in the projective plane is trivial and bounds a 2-cell region there. Thus, it is
easy to see that the configulation of $C$ is homeomorphic to one of those given
as (i) to (iv) in Figure 1. To obtain their real form, each square in the figure
should be identified along its the boundary so that each pair of antipodal points
becomes a single point in the projective plane. We can choose three vertices of
$G$ from three non-adjacent regions in cases of (i) and (ii), so that they form an
independent set. On the other hand, we can find a pair of vertices with distance
3 in cases of (iii) and (iv).

When $F^{2}$ is homeomorphic to the sphere, both (i) and (ii) represent the same
configuration on the sphere, and so (iii) and (iv) do. We also obtain the same
conclusion as in the previous case.

Now we shall consider the torus and the Klein bottle. To do it, we should
explain about essential simple closed curves on these surfaces. Each of them
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Figure 1. Disjoint cycles on a surface I

includes a 2-sided simple closed curve which cuts open it into an annulus. We
call such a curve a meridian. Furthermore, there is another simple closed curve
which cross a given meridian at a point transversely. This is called a longitude.
A longitude on the torus is 2-sided while that on the Klein bottle is l-sided, that
is, it runs along the center line of a M\"obius band.

To present a configuration on the torus or the Klein bottle, we cut the surface
along a fixed pair of a meridian and a logitude into a rectangle and the vertical
pair of its sides corresponds to the meridian and the horizontal one to the lon-
gitude in our figures. There is the third type of an essential simple closed curve
on the Klein bottle, called an equator. An equator cross a meridian twice and
splits into two horizontal segments in a rectangle presenting the Klein bottle.

If $C$ consists of only trivial cycles, then the same pictures in Figure 1 present
all the cases and we obtain the same conclusion. Thus, we may assume that $C$

contains at least one essential cycle. It must be a meridian in case of the torus
while the essentail cycles in $C$ are either all meridians or all equators in case of
the Klein bottle.

O $O$

(i) (ii) (iii)

$O$

(iv) (v)

Figure 2. Disjoint cycles on a surface II
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Assume that $C$ includes at least one meridian, which is the case when $F^{2}$ is
the torus. Its configuration is homeomorphic to one of (i) to (v) in Figure 2. It
is easy to find an independent set of three vertices in case of (i) and a pair of
vertices with distance 3 in (ii) and (iii). We need $mo$re arguments on (iv) and
(v).

Let $S_{1},$ $S_{2},$ $S_{3}$ and $S_{4}$ be the four regions into which $C$ divides $F^{2}$ and let $H_{i}$

be the subgraph in $G$ induced by the vertices inside $s_{:}$ . If $S_{i}$ is not a disk, then
$H_{:}$ should include a cycle and should have at least three vertics.

Consider Case (iv) and assume that $S_{1}$ and $S_{2}$ are the two annuli while $S_{4}$

is the disk. Since $S_{1}\cup S_{2}$ contains at least six vertices of $G$ , there is a pair of
non-adjacent vertices among them, say $u$ and $v$ ; otherwise, the annulus would
include $K_{6}$ , which is not planar. Then, $\{u, v, w\}$ will be an independent set for
any vertex $w$ inside $S_{4}$ .

Consider Case (v). In this case, all $S;s$ are annuli. We may assume that
they are labeled cyclically modulo 4 with $S_{4}=S_{0}$ and that $s_{:}$ and $s_{:+1}$ have a
common boundary cycle. If $H_{i}$ includes a pair of non-adjacent vertices, say $u$

and $v$ , then $\{u, v, w\}$ will be an independent set for any vertex $w$ inside $S_{i+2}$ .
Thus, may we assume that each $H_{i}$ is a complete graph.

If there is a vertex $v\in V(H_{2})$ which is not adjacent to some vertex $ u\in$

$V(H_{1})$ and is not adjacent to some vertex $w\in V(H_{3})$ , then $\{u, v, w\}$ will be an
indenpendent set. Otherwise, each vertex $v\in V(H_{2})$ is adjacent to all vertices of
$H_{1}$ or to all of vertices of $H_{3}$ . Since $V(H_{2})$ consists of at least three vertices, we
may assume that at least two vertices $v_{1},$ $v_{2}\in V(H_{2})$ are adjacent to all vertices
of $H_{1}$ . Then $V(H_{1})\cup\{v_{1}, v_{2}\}$ induces a complete subgraph in $G$ . This subgraph
is embedded in the annulus $S_{1}\cup S_{2}$ , but it would be non-planar since it has at
least five vertices. Thus, this is not the case.

Assume that $C$ includes an equator. Then its configuration is homeomorphic
to one of (i) to (vi) in Figure 3. We can find an independent set of three vertices
in cases of (ii) and (v) and a pair of vertices with distance 3 in the other cases.

Now we have discussed all of the possible cases and the theorem follows. $\blacksquare$

Note that Theorem 1 deos not hold for other surface in general. For example,
we can construct a triangulation $G$ of a suitable closed surface such that $\alpha(G)\leq 2$

and diam$(G)\leq 2$ , but $\xi(G)\geq 2$ , as follows.
Let $G_{1}$ and $G_{2}$ be two untight triangulations with complete graphs embedded

separately on two closed surfaces. Since they are not tight, they have hetero-free
color assignments with three colors, say $f_{1}$ : $V(G_{1})\rightarrow\{1,2,3\}$ and $f_{2}$ : $ V(G_{2})\rightarrow$

$\{1,2,4\}$ . We may assume that each $G_{i}$ has a face $\{x_{i}, y_{i}, z_{i}\}$ with $f(x_{i})=1$ and
$f(y_{i})=f(z_{j})=2$ . Identify $x_{1}$ with $x_{2},$ $y_{1}$ with $y_{2}$ and $z_{1}$ with $z_{2}$ , and omit the
face $\{x_{1}, y_{1}, z_{1}\}=\{x_{2}, y_{2}, z_{2}\}$ to form a triangulation $G$ on the connected sum
of two surfaces where $G_{1}$ and $G_{2}$ are embedded. This construction induces a
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Figure 3. Disjoint cycles on a surface III

hetero-free color assignment $f:V(G)\rightarrow\{1,2,3,4\}$ and hence $G$ is not l-loosely
tight. It is clear that $\alpha(G)=diam(G)=2$ .

2. The 1-loosely tight triangulations on the projective plane

Let $G$ be a triangulation of a closed surface and $U$ a set of vertices of $G$ . The
closed neighborhood of $U$ in $G$ is the set which consists of $U$ and the neighbors
of vertices in $U$ .

$N[U]=U\cup\{v\in V(G) : \exists u\in U, uv\in E(G)\}$

The following lemma has been given in [5]:

LEMMA 4. Let $G$ be a k-loosely tight tnangulation of a closed surface. If $G$ has
an independence set $U=\{v_{1}, \ldots, v_{k}\}$ , then the following two conditions hold.

(i) $G-N[U]$ is a complete graph.

(ii) Any vertex $v\in V(G-N[U])$ is adjacent to some vertex $u\in N[U]-U$ .

Let $G$ be a l-loosely tight triangulation on a closed surface and $v$ any vertex
of $G$ . Then, the neighbors of $v$ form a cycle, each of whose edges, say $uw$ ,
shares a face uvw with $v$ . This cycle is called the link of $v$ and is denoted by
lk(v). The wheel neighborhood is often defined as the subgraph which consists of
$1k(v)\cup\{v\}$ with all edges incident to $v$ and is denoted by $W(v)$ in this paper.
The subgraph $\langle N[v]\rangle$ induced by the closed neighborhood $N[v]$ of $v$ consists of
$W(v)$ and possibly some edges joining vertices on lk(v). By Lemma 4, $G-N[v]$

is a complete graph.
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LEMMA 5. Let $G$ be a l-loosely tight triangulation of the projective plane and
$v$ any vertex of G. Then one of $\langle N[v]\rangle$ and $G-N[v]$ includes an essential cycle
of length 3 and the other does not.

Prvof. Since any two essential closed curves in the projective plane must
intersect each other, it does not happen that both $\langle N[v]\rangle$ and $G-N[v]$ include
essential cycles. So, we suppose that none of them does. Then they are contained
in two disjoint disks separately. Shrinking each of these disks to a point, we
obtain an embedding of a graph with only two vertices such that each face is
bounded by a pair of multiple edges. If there are $X$ edges between these two
vertices, then there are $X$ faces and we have $2-X+X=2$ . This is contrary to
Euler’s formula for the projective plane. Thus, either $\langle N[v]\rangle$ or $G-N[v]$ includes
an essential cycle.

If $\langle N[v]\rangle$ includes an essential cycle, then such a cycle must pass through an
edge which joins two vertices $u$ and $w$ on lk(v) and which deos not lie in $W(v)$

It is obvious that the cycle uvw is essential, too.
Now suppose that $G-N[v]$ includes an essential cycle. If there is a cycle

of length 3 in $G-N[v]$ which bounds no face of $G$ , then it must be essential;
otherwise, Condition (ii) in Lemma 5 would not hold. Thus, this cycle is the
required one. If there is no such cycle, then all cycles of length 3 in $G-N[v]$
bound faces. From this and Condition (ii), it follows that the complete graph
$G-N[v]$ consists of at most three vertices, but any essentail cycle could not
exist in $G-N[v]$ .

Therefore, we have found an essential cycle in either $\langle N[v]\rangle$ or $G-N[v]$ , and
the lemma follows. $\blacksquare$

Proof of Theorem 2. Let $G$ be a l-loosely tight triangulation on the projective
plane and choose a vertex $v$ so that it attains the minimum degree of $G$ . Since
any graph embedded in the projective plane has a vertex of degree at most 5 by
Euler’s formula, we have deg $v=3,4$ or 5.

By Lemma 5, either $\langle N[v]\rangle$ or $G-N[v]$ includes an essential cycles of length
3. By Lemma 4, $G-N[v]$ is isomorphic to $K_{n}$ with $n\leq 5$ and all of its vertices
lie together along the boundary of a face of $G-N[v]$ . Under these conditions,
we can construct and classify those triangulations systematically; if it includes
either an independent set of three vertices or a pair of vertices with distance 3,
we must omit it by Theorem 1. Finally we obtain the twenty triangulations Pl
to P20 given in Figure 4, which can be distinguished by their degree sequences
added to their names. Table 2 presents the pair of deg $v$ and $K_{n}$ for each of the
triangulations.

Note that Pl is isomorphic to $K_{6}$ and $\xi(P1)=0$ while $\xi(G)=1$ for the
others. For P2 to P16, $G-N[v]$ includes an essential cycle of length 3, which
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PI(5,5,5,5,5,5) P2(7,6,6,6,5,5,5,5,3) P3(7,7,6,6,5,5,5,4,3) P4(8,7,6,5,5,5,5,4,3)

P5(6,6,6,6,6,5,5,5,3) P6(7,6,6,5,5,5,5,3) P7(6,6,6,6,6,5,4,3) P8(7,7,6,5,5,5,4,3)

P9(7,6,6,5,5,5,5,5,4) P10(7,6,6,6,5,5,5,4,4) P11(7,7,6,5,5,5,5,4,4) P12(6,6,6,6,5,5,5,5,4)

P13(7,7,7,6,6,6,4,4,4) P14(6,6,6,5,5,5,3) P15(6,6,6,5,5,5,5,4) P16(6,6,6,6,5,5,4,4)

$P17(7,7,5,5,5,5,4,4)$ $P18(7,6,6,5,5,5,4,4)$ $P19(6,6,5,5,5,5,4)$ $P20(7,5,5,5,5,5,5,5)$

Figure 4. The l-loosely tight triangulation of the projective plane
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corresponds to the boundary of each hexagon, and $v$ lies inside the hexagon in
each figure. For P17 to P20, $\langle N[v]\rangle$ includes an essential cycle of length 3 and
the two vertices at the top and bottom of each hexagon correspond to $v$ . $\blacksquare$

References

[1] J.L. Arocha, J. Bracho and V. Neumann-Lara, On the minimum size of tight hypergraphs,
J. Grap h Theory, 16 (1992), 319-326.

[2] J.L. Arocha, J. Bracho and V. Neumann-Lara, Tight and untight triangulated surfaces,
J. Combin. Theory, Ser. B, 63 (1995), 185-199.

[3] D. Bamette, Generating the triangulations of the projective plane, J. Combin. Theory
Ser. B, 33 (1982), 222-230.

[4] S. Lawrencenko, S. Negami and A.T. White, Three nonisomorphic triangulations of an
orientable surface with the same complete graph, Discrete Math., 135 (1994), 367-369.

[5] S. Negami and T. Midorikawa, Loosely-tightness of triangulations of closed surfaces, Sci.
Rep. Yokohama Nat. Univ., Sec. I, 43 (1996), $25\triangleleft 1$ .

Department of Mathematics,
Faculty of Science and Technology,
Keio University,
Hiyoshi &14-1, Kohoku-Ku,
Yokohama 223-8522,
JAPAN
E-mail: tanu-a\bullet co\bullet b.\bullet ath. keio. ac. jp


	Introduction
	THEOREM 1. ...
	THEOREM 2. ...

	1. Characterization of ...
	THEOREM 3. ...

	2. The 1-loosely tight ...
	References

