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Abstract. In this note, we introduce the notions of frozen triangulations on
closed surfaces, as ones to which any diagonal flip is not applicable and consider
the relationship between those and other concepts for triangulations on closed
surfaces. Those arguments will lead us to estimate alower bound for the minimum
number $N=N(F^{2})$ such that two triangulations on a closed surface $F^{2}$ with
the same number of vertices can be transformed into each other by a sequence of
diagonal flips whenever they have at least $N$ vertices.

Introduction

A tnangulation on a closed surface is a simple graph embedded on the surface
so that each face is triangular and any two faces share at most one edge. Two
triangulations $G_{1}$ and $G_{2}$ on a closed surface $F^{2}$ are said to be equivalent or
homeomorphic if there is a homeomorphism $h$ : $F^{2}\rightarrow F^{2}$ with $h(G_{1})=G_{2}$ .
Such a homeomorphism induces a graph isomorphism between $G_{1}$ and $G_{2}$ which
induces a bijection between their face sets.

Figure 1. Diagonal flip

A diagonal flip is a local transformation in a triangulation which flip an edge
in the quadrilateral with the edge as a diagonal, as shown in Figure 1. We have
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to keep the simpleness of triangulations and hence do not perform the diagonal
flip if it yields multiple edges.

There have been many studies on the diagonal flips in triangulations on
closed surfaces. The origin of this topic is the theorem proved by Wagner [33]
which states that any two triangulations on the sphere with the same number
of vertices can be transformed into each other, up to homeomorphism, by a
sequence of diagonal flips. Also Dewdney [10] proved the same fact for the torus
while Negami and Watanabe [24] did it for the projective plane and the Klein
bottle.

The same statement as their theorems does not hold in general, as we shall
show later. However, the following theorem proved by Negami [26] shows that it
also holds for other surfaces if we restrict the number of vertices of triangulations
to exceed some constant. This theorem gives us a “breakthrough” toward a
general theory of diagonal flips and is the starting point of a serise of recent
studies on diagonal flips in triangulations; [9], [15], [16], [21], [22], [25], [26], [28],
[29] and so on.

THEOREM 1. (Negami [26]) For any $c$losed surface $F^{2}$ , there exists a natu-
ral number $N=N(F^{2})$ such that two triangulations $G_{1}$ and $G_{2}$ can be trans-
formed into each other, up to homeomorphism, by a sequence of diagonal flips if
$|V(G_{1})|=|V(G_{2})|\geq N$ .

An edge contrctction is to shrink an edge to a point and replace each pair of
the resulting multiple edges with a single edge to make another triangulation on
the same surface, as shown in Figure 2. An edge is said to be contractible if its
contraction does not yield multiple edges. We perform only the contraction of
contractible edges.

Figure 2. Edge contraction

One of the key ideas in Negami’s proof of the above theorem is to connect
the notion of diagonal flips to the edge contraction. (See [26] for the details.)
This connection leads us to some notions on triangulations to give the theoretical
value of $N(F^{2})$ . The “pseudo-minimal triangulation” is one of those notions and
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will be defined in the next section. Negami has asked in [26] whether or not every
pseud-minimal triangulation might be minimal, but we shall show the negative
answer to his question.

Let $N(F^{2})$ denote its minimum value which makes Theorem 1 valid. We have
$N(F^{2})=4,6,7$ and 8 if $F^{2}$ is the sphere, the projective plane, the torus and the
Klein bottle, and these values coincide with the minimum number of vertices of
triangulations for these surfaces. However, it does not hold in general and hence
the bound $N(F^{2})$ for the number of vertices is needed actually for the theorem.
Negami [29] has already given an upper bound for $N(F^{2})$ by a linear function
of the genus of $F^{2}$ . So, we would like to estimate a lower bound for $N(F^{2})$ and
to know when $N(F^{2})$ does not coincide with the number of vertices of minimal
triangulations.

To do it, we shall introduce several notions on triangulations and discuss
the relationship among them in Section 1. The “frozen triangulation” in the
title is one of them and the point in our arguments below is how to construct
frozen triangulations with non-complete graphs. By the existence of such frozen
triangulations and that of inequivalent triangulations with complete graphs, we
shall specify some cases that $N(F^{2})$ has a non-trivial lower bound, in Section 2.

1. Properties of triangulations

First, we shall define several properties of triangulations related to diagonal
flips and edge contraction and give some comments for them. In particular, a
pseudo-minimal triangulation has been defined in [26] to describe the value of
$N(F^{2})$ theoretically, while a frozen triangulation has been defined in [23] with
an additional point related to the minimum degrees.

1 Complete triangulations: Ones that are isomorphic to complete graphs
as graphs. The complete graph $K_{n}$ triangulates an orientable closed surface
if and only if $n\equiv 0,3,4$ or 7 mod 12, while it triangulates a non-orientable
one if and only if $n\equiv 0$ or 1 mod 3 and $n\neq 7$ . These facts are well-known
as consequences of the solution of “Map Color Theorem” [30].

$\bullet$ Minimal triangulations: Ones with fewest vertices among all triangu-
lations on a closed surface. If the surface admits a complete triangulation,
then the triangulation becomes necessarily minimal. The number of ver-
tices of a minimal triangulation has been determined in [14] and [31] as
follows:

$ V_{\min}(F^{2})=r\frac{7+\sqrt{49-24\chi(F^{2})}}{2}\rceil$
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where $F^{2}$ is neither the orientable closed surface of genus 2, the non-
orientable one of genus 3, nor the Klein bottle. The values of $V_{\min}(F^{2})$

are 10, 9 and 8 for these exceptional surfaces, respectively.
$\bullet$ liYozen triangulations: Ones to which no diagonal flip is applicable.

That is, any diagonal flip in a frozen triangulation yields a pair of multiple
edges. Thus, a triangulation is frozen if and only if the four vertices lying on
the quadrilateral with $e$ as its diagonal induces $K_{4}$ for any edge $e\in E(G)$ .
This implies that any complete triangulation is frozen. So, our question
is whether or not there is a non-complete frozen triangulation. We shall
show later the affirmative answer to this question.

$\bullet$ Pseudo-minimal triangulations: Ones from which no sequence of di-
agonal flips results in a triangulation including a contractible edge. Es-
pecially, any pseudo-minimal triangulation has no contractible edge and
hence is irreducible. By Negami’s arguments in [26], a triangulation is
pseudo-minimal if and only if no sequence of diagonal flips results in a
triangulation having a vertex of degree 3. We do not know any other
reasonable characterization of pseudo-minimal triangulations.

$\bullet$ Irreducible triangulations: Ones which have no contractible edge.
There exit only finitely many irreducible triangulations of each closed sur-
face. Let $V_{irr}(F^{2})$ denote the maximum number of vertices of irreducible
triangulations of a closed surface $F^{2}$ . The following bound for $V_{irr}(F^{2})$ is
the best one at present, and is given in [20]:

$V_{irr}(F^{2})\leq 171\gamma(F^{2})-72$

where $\gamma(F^{2})$ stands for the Euler genus of $F^{2}$ and is defined by $\gamma(F^{2})=$

$2-\chi(F^{2})$ with the Euler characteristic $\chi(F^{2})$ of $F^{2}$ . However, this is far
from the truth. We have $V_{irr}(F^{2})=4,7,10$ and 11 for the sphere [32],
the projective plane [3], the torus [17] and the Klein bottle [18], by the
classification of irreducible triangulations of these surfaces.

We would like to investigate the implications among these notions. To denote
the statement for each of them, we shall use the ordered pair of initial letters of
two notions. For example, “CM” means that if a triangulation is complete, then
it is minimal. From the above comments, we can conclude easily CM, CF, FP,
MP and PI, which the thick arrows present in Figure 3. We shall show below
that the other implications do not hold in general.

MC does not hold: As is shown in the comment on minimal triangula-
tions, if a closed surface admits a complete triangulation, then the triangulation
is minimal. Furthermore, it is well-known that a closed surface $F^{2}$ , except the
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Figure 3. Properties of triangulations

Klein bottle, admits a complete triangulation if and only if $\frac{7+\sqrt{49-24\chi(F^{2})}}{2}$ is
an integer, which becomes the number of vertices in the complete triangulation.
Thus, any minimal triangulation is not complete for each closed surface which
does not satisfy this condition. The Klein bottle also does not admit any com-
plete triangulation and has precisely six minimal triangulations with 8 $ve$rtices.

$\blacksquare$

FC does not hold: Let $K_{n(m)}$ denote the complete n-partitle graph with
partite sets of the same size $m$ , that is, $K_{m,\ldots,m}$ with $nm’ s$ . The following
theorem is one of corollaries of Theorem 7.5 in [1], and is useful to construct a
frozen triangulation which is not complete.

THEOREM 2. (Archdeacon [1]) If the complete graph $K_{n}$ triangulates a closed
surface $F^{2}$ and if each prime factor of $m$ is at least $n-1$ except the case of
$n=4,$ $m=3$ , then $K_{n(m)}$ tnangulates another surface.

Following Archdeacon’s method in [1], we can construct the triangulation
with $K_{n(m)}$ on a closed surface $\tilde{F}^{2}$ as a wrapped covering of $K_{n}$ embedded on
$F^{2}$ . That is, there is an $m^{2}$-fold branched covering $p:\tilde{F}^{2}\rightarrow F^{2}$ , only branched
over $V(K_{n})$ , such that the neighborhood of each vertex $v\in V(K_{n(m)})$ wraps
that of $p(v)\in V(K_{n})$ cyclically. (See [1] and [13] for the precise definition of a
wrapped covering.) If $F^{2}$ is non-orientable, then $\tilde{F}^{2}$ is non-orientable, too, since
any feasible $m$ in the theorem is odd for $n\geq 4$ .
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This structure guarantees that if abcd is a quadrilateral with $ac$ its diagonal
in $K_{n(m)}$ , then $b$ and $d$ belong to two different partite sets of $K_{n(m)}$ for $n\geq 4$ .
Thus, $b$ and $d$ are joined with an edge and hence $ac$ cannot be flipped. This
implies that $K_{n(m)}$ is a frozen triangulation of $\tilde{F}^{2}$ .

For example, since $K_{4}$ triangulates the sphere, $K_{4(m)}$ triangulates an ori-
entable closed surface with any odd integer $m\neq 3$ and $e$ach of the triangulations
with $K_{4(m)}$ is frozen. To construct a non-complete frozen triangulations on non-
orientable closed surfaces, we can use $K_{6(m)}$ with $m$ not divisible by 2 and 3
since $K_{6}$ triangulates the projective plane. (We can find other constructions of
triangulations with $K_{n(m)}$ in [5], [6] and [7].) $\blacksquare$

PM and FM do not hold: The triangulation with $K_{4(m)}$ in the previous
is pseudo-minimal since it is frozen. We can show that this is not minimal,
comparing the number of its vertices with that of minimal ones. Suppose that
$K_{4(m)}$ triangulates the orientable closed surface $F^{2}$ of genus $g>0$ and let $V$

and $E$ denote the number of vertices and of edges in it. Then we have $V=4m$ ,
$E=6m^{2}$ and $E=3(V-(2-2g))$ by Euler’s formula. From these, we obtain the
quadratic equation $\frac{3}{8}V^{2}=3(V+2g-2)$ for $V$ . Solving this, we have $V=4+4\sqrt{g}$,

which is strictly larger than $ V_{\min}(F^{2})=\lceil\frac{7+\sqrt{+g}}{2}\rceil$ .
Similarly, suppose that $K_{6(m)}$ triangulates the non-orientable closed surface

$F^{2}$ of genus $q>1$ . Then the number of its vertices is equal to $18+6\sqrt{5q-1}$ ,
which is greater than $ V_{\min}(F^{2})=r\frac{7+\sqrt{1+4q}}{2}\rceil$ . Thus, $K_{6(m)}$ is pseudo-minimal,
but not minimal. $\blacksquare$

PF and MF do not hold: The six minimal triangulations of the Klein
bottle, which are pseudo-minimal, can bejoined to one another by diagonal flips.
Thus, they are not frozen.

For other surfaces, we can use a triangular embedding of $K_{n}-K_{2}$ , which is the
complete graph $K_{n}$ with an edge deleted. For example, if $n\equiv 5$ mod 12, then
$K_{n}-K_{2}$ admits a triangular embedding of a closed surface, orientable or non-
orientable. Such a triangulation must be minimal and hence pseudo-minimal.

Let $G$ be any triangulation on a closed surface $F^{2}$ with $K_{n}-K_{2}$ and let $x$

and $y$ be the $uniqu\overline{e}$ pair of non-adjacent vertices in $G$ . That is, the edge deleted
from $K_{n}$ is $xy$ . It is clear that an edge $ac$ is flippable in $G$ if and only if the
two faces incident to $ac$ are acx and $acy$ , and that flipping $ac$ results in another
triangulation $G^{\prime}$ with $K_{n}-K_{2}$ , which is obtained from $K_{n}$ by deleting the edge
$ac$ .

According to Ringel’s construction of “Orientable Case 5” in [30], the rota-
tions of some vertices, say $a$ , in $K_{n}-K_{2}$ contain a segment $\cdots xcy\cdots$ for some
vertex $c$ . This implies that such a rotation scheme exhibits a minimal triangula-
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tion with $K_{n}-K_{2}$ which is not frozen and has a flippable edge $ac$ . (On the other
hand, Ringel’s solution of “Non-Orientable Case 5” presents a frozen minimal
triangulation with $K_{n}-K_{2}$ . The surface admitting such a triangulation may be
orientable or non-orientable.) $\blacksquare$

IP does not hold: One of the two irreducible triangulations of the pro-
jective plane, not isomotphic to $K_{6}$ , is isomorphic to $K_{4}+\overline{K}_{3}$ and is not pseudo-
minimal. The 20 irreducible triangulations of the torus, other than $K_{7}$ , are not
pseudo-minimal. The 19 irreducible triangulations of the Klein bottle, other than
the six minimal ones, are not pseuduminimal. Many examples for other closed
surfaces can be constructed easily by pasting these irreducible triangulations
along their faces. $\blacksquare$

Irreducible

Pseudo-minimal

Figure 4. Classes of triangulations

Each pseudominimal triangulation in the above examples is either frozen or
minimal. Does there exist a pseudominimal triangulation on a closed surface
which is not minimal and is not frozen? Also, does there exist a hozen minimal
triangulation which is not complete? Figure 4 will make the meaning of these
questions clearer. The answer to the second question is affirmative and we have
already shown an example for such a triangulation with $K_{n}-K_{2}$ , corresponding
to the $re$gion with “!”. Thus, we want examples for the region with “?” in the
figure. Examples corresponding to the other regions have been $pr$esent$ed$ in the
previous arguments. Is the unknown region empty or not?

We can define another interesting class of triangulations on closed surfaces
formally, as follows. A triangulation is said to be isolated if any diagonal flip in it
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results in itself, up to homeomorphsim. Thus, an isolated triangulation cannot
be transformed into any other triangulation by a sequence of diagonal flips.
For example, a frozen triangulation is isolated while an isolated triangulation is
pseudo-minimal. Does there exist an isolated triangulation which is not frozen?
The minimal triangulations with $K_{n}-K_{2}$ in the previous are candidates for this.

A triangulation is said to be self-flippable if it has an edge $e$ such that flipping
$e$ does not change the homeomorphism type of the triangulation. A non-frozen
isolated triangulation is self-flippable.

It is easy to construct a self-flippable triangulation on the sphere, as fol-
lows. Prepare two wheels $W_{n}$ and $W_{n+1}$ which triangulate two disks with rims
$u_{0}u_{1}\cdots u_{n-1}$ and $v_{0}v_{1}\cdots v_{n}$ respectively along their boundary cycles. Join these
rims with a cylinder (or an annulus) to make the sphere and place edges $u;v_{i}$

$(i=0,1, \ldots, n-1),$ $u_{j}v_{j-1}(j=1, \ldots, n-1),$ $u_{0}v_{n-1}$ and $u_{0}v_{n}$ across the cylin-
der. Then the resulting triangulation on the sphere is self-flippable. Flipping
$u_{0}v_{0}$ to $u_{1}v_{n}$ (or $u_{0}v_{n-1}$ to $u_{n-1}v_{n}$ ) results in the same triangulation.

Replacing the wheel parts with suitable objects, we can make another self-
flippable triangulation on another closed surface, but those objects have to have
cyclic symmetry of order $n$ and of order $n+1$ , which will restrict the genus of
the whole surface. Characteriz $e$ or classify those self-flippable triangulations on
each closed surfac $e$ .

2. Lower bounds for $N(F^{2})$

Now we shall discuss when $N(F^{2})$ does not coincide with $V_{\min}(F^{2})$ , applying
the previous arguments on frozen triangulations. Th $e$ next two theorems will
follow from the existense of frozen triangulations which are not minimal.

THEOREM 3. Let $F^{2}$ be the orientable closed surface of genus $g$ , If $g$ is an
even square number more than 4, then we have:

$V_{\min}(F^{2})<4+4\sqrt{g}<N(F^{2})$

Prvof If $g$ is an even square number, then we can put $g=4x^{2}$ with a positive
integer $x\geq 2$ and $m=1+\sqrt{g}=1+2x$ is an odd integer, different from 3.
By Theorem 2, we can construct a frozen triangulation with $K_{4(m)}$ for this $m$ .
This triangulation is not minimal and there is a triangulation, obtained from a
minimal one by subdividing it suitably, which cannot be transformed into $K_{4(m)}$

by diagonal flips. Thus, $N(F^{2})$ must be larger than $4m$ , the number of vertices
of $K_{4(m)}$ . $\blacksquare$
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THEOREM 4. Let $F^{2}$ be the non-orientable closed surface of genus $q$ . If $5q-1$
is an even square number and if $q\not\equiv 2$ mod 3, then we have:

$V_{\min}(F^{2})<18+6\sqrt{5q-1}<N(F^{2})$

Proof. If $5q-1$ is an even square number, then $m=3+\sqrt{5q-1}$ is an odd
integer. If $m\equiv 0$ mod 3, then $5q-1\equiv-q-1\equiv 0$ mod 3. This implies that
$q\equiv 2$ mod 3, which is excluded by our assumption in the lemma. Thus, this $m$

is divisible by neither 2 nor 3, and we can construct a frozen triangulation with
$K_{6(m)}$ by Theorem 2. $\blacksquare$

Since any complete triangulation is minimal and frozen, if there are two or
more inequivalent complete triangulations on a closed surfac$eF^{2}$ , then they
cannot be transformed into one another by diagonal flips and hence $V_{\min}(F^{2})<$

$N(F^{2})$ . So we would like to know when $K_{n}$ triangulates a closed surface in two
or more ways.

Construction of complete triangulations has been studied well, related to Map
Color Theorem, and can be found in Ringel’s book [30]. However, attempting
to construct inequivalent complete triangulations has just begun very recently.

For example, Archa, Bracho and Neumann-Lara [2] have constructed pairs
of inequivalent triangulations with the $s$ame complete graphs on a series of non-
orientable closed surfaces under some conditions. The smallest example is $K_{16}$ ,
which triangulates the non-orientble closed surface of genus 26 in three inequiv-
alent ways. To recognize their inequivalence, they have develop $ed$ a theory of
tight and untight triangulations. A triangulation $G$ on a closed surface is said to
be tight if there is a face with three distinct colors at its corners for any surjec-
tive color assignment $f$ : $G\rightarrow\{1,2,3\}$ , and is untight otherwise. (It is easy to
see that any tight triangulation is complete. Negami and Midorikawa [27] have
defined and discussed the tightness adapted for general triangulations, called the
looseness.)

Lowrencenko, Negami and White [19] also have found three inequivalent com-
plete triangulations with $K_{19}$ on the orientable closed surfac$e$ of genus 20, but
they are all tight. Arocha, Bracho and Neumann-Lara’s construction in [2] yields
only complete triangulations on non-orientable closed surfaces and cannot be ap-
pli$ed$ to those on orientable closed surfaces. There might be no untight compelete
triangulation on any orientable closed surface. Bracho and Strausz [8] have al-
ready determined the smallest $n$ for which $K_{n}$ admits two or more inequivalent
triangulations on the same clos$ed$ surface; $n=12$ for the orientable surfaces
while $n=9$ for the non-orientable ones.

More successful results can be found in [11] and [12]. Grannell, Griggs and
\v{S}ir\’a\v{n} have discussed Steiner triple systems derived from complete triangulations
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which have bipartite duals, in these papers. Furthermore, Bonnington, Grannell,
Griggs and \v{S}ir\’a\v{n} [4] have shown that $K_{n}$ has exponentially many inequivalent
triangular $e$mbeddings for $n\equiv 7$ or 9 mod 36 and for $n\equiv 19$ or 55 mod 108.
The following facts are consequences of their results in [11]:

THEOREM 5. (Grannell, Griggs and \v{S}ir\’a\v{n} [11])

(i) If $n\equiv 7$ mod 12 and $n\neq 7$ , then $K_{n}$ triangulates an orientable closed
surface in at least two inequivalent ways.

(ii) If $n\equiv 1$ mod 6 and $n\neq 7$ , then $K_{n}$ triangulates a non-orientable closed
surface in at least two inequivalent ways.

The next two theorems follow immediately from the above theorem with the
well-known formulas of the genus and the non-orientable genus of $K_{n}$ :

THEOREM 6. Let $F^{2}$ be the orientable closed surface of genus $g$ . If $g=$

$\blacksquare(3k+1)(4k+1)$ for a positive integer $k\geq 1$ , then we have $V_{\min}(F^{2})<N(F^{2})$ .

THEOREM 7. Let $F^{2}$ be the non-orientable closed surface of genus $q$ . If
$\blacksquare q=(2k-1)(3k-1)$ for a positive integer $k\geq 2$ , then we have $V_{\min}(F^{2})<N(F^{2})$ .

Here are the genera of closed surfaces $F^{2}$ , up to 1000, such that $V_{\min}(F^{2})<$

$N(F^{2})$ , recognized by the theorems in this section.

Table 1. Genera with non-trivial lower bounds for $N(F^{2})$
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