
YOKOHAMA MATHEMATICAL
JOURNAL VOL. 47, 1999
SPECIAL ISSUE

THE $ Y\Delta$-EQUIVALENCE OF KERNELS
ON THE TORUS WITHOUT TAKING DUALS

By

ATSUHIRO NAKAMOTO

(Received January 19, 1999)

Abstract. Let $G$ be an embedding on the torus and let $\ell$ be an essential closed
curve on the torus. Let $f_{G}(\ell)$ be the minimum number of intersections of $G$

and a $c1_{08}ed$ curve $\ell^{\prime}$ , where $\ell^{\prime}$ ranges over all closed curves homotopic to $\ell$ . An
embedding $G$ on the torus is said to be akernel if for any proper minor $T$ of $G$ ,
$f_{G}(\ell)>f_{T}(\ell)$ for some $\ell$ . In this paper, we show that any two kernels $G$ and $G^{\prime}$

on the torus with $f_{G}=f_{G}$ , can be transformed into each other by a sequence of
$Y\Delta-e$xchanges.

1. Introduction

In this paper, we suppose that a graph is always 2-cell embedded in some
closed surface $F^{2}$ other than the sphere. We denote the vertex set, the edge-
set and the face-set of a graph $G$ by $V(G),$ $E(G)$ and $F(G)$ , respectively. An
isotopy over $F^{2}$ is a continuous map $\Psi$ : $[0,1]\times F^{2}\rightarrow F^{2}$ such that the map
$\Psi_{t}$ : $F^{2}\rightarrow F^{2}$ , defined by $\Psi_{t}(x)=\Psi(t, x)$ , is a homeomorphism over $F^{2}$ for
each $t\in[0,1]$ with $\Psi_{0}$ the identity map of $F^{2}$ . In this paper, we regard two
graphs $G$ and $G^{\prime}$ on $F^{2}$ as the same one if there is an isotopy V over $F^{2}$ such
that $\Psi_{1}(G)=G^{\prime}$ .

Let $G$ and $G^{\prime}$ be graphs on a closed surface $F^{2}$ . We say that $G^{\prime}$ is a minor
of $G$ if $G^{j}$ can be obtained from $G$ by a sequence of edge-contractions and edge-
deletions on the surface. In particular, if $G\neq G^{\prime}$ , then $G^{\prime}$ is called a prvper
minor of $G$ .

Let $D$ be a closed curve on a closed surface $F^{2}$ , that is, a continuous map $D$ :
$S^{1}\rightarrow F^{2}$ or its image, where $S^{1}$ is the unit circle in the complex plane. We say
that $D$ is tnvial if $D(S^{1})$ bounds a 2-cell on $F^{2}$ , while $D$ is essential otherwise.
Two closed curves (or loops) $D_{1}$ and $D_{2}$ on $F^{2}$ are said to be homotopic if
there is a continuous map $\Psi$ : $[0,1]\times S^{1}\rightarrow F^{2}$ such that $\Psi_{0}(x)=D_{1}(x)$ and
$\Psi_{1}(x)=D_{2}(x)$ for each $x\in S^{1}$ .

Let $G$ be a graph on a closed surface $F^{2}$ . The representativity of $G$ , denoted
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by $r(G)$ , is the minimum number of intersections of $G$ and an essential closed
curve on $F^{2}$ . In particular, $G$ is called minor-minimal k-representative or simply
k-minimal if

(i) $r(G)=k$ , and
(ii) for any proper minor $G^{\prime}$ of $G,$ $r(G^{\prime})<k$ .

Let $G$ be a graph on a closed surface $F^{2}$ . Suppose that $G$ has a vertex $v$ of
degree 3 with neighbors $x,$ $y$ and $z$ . The $Y\Delta$ -exchange at $v$ is to delete $v$ and
add three edges $xy,$ $yz$ and $xz$ , or its inverse operation. See Figure 1.

Figure 1. $Y\Delta$-exchange

The k-minimality can be preserved by (i) a $Y\Delta$-exchange and (ii) taking the
dual. When $G$ and $G^{\prime}$ are transformed into each other by a sequence of (i) and
(ii), they are $s$aid to be $Y\Delta$-equivalent.

For the projective plane, Vitray determined the complete list of 2- and 3-
minimal graphs, and showed that for $k=2$ and 3, any two of k-minimal graphs
can be transformed into each other by a sequence of only $Y\Delta$-exchanges [8].
Moreover, Randby showed that this fact holds for any natural number $k[4]$ .

How about k-minimal graphs on the torus or other closed surfaces? The
torus however admits 4-regular quadrangulations, to which no $Y\Delta$-exchange can
be applied. (A quadrangulation of a closed surface $F^{2}$ is a graph on $F^{2}$ whose
faces are all quadrilateral.) For example, consider the 4-regular quadrangulation
on the torus isomorphic to the Cartesian product $C_{k}\times C_{k}$ , where $C_{k}$ is a cycle
of length $k$ . Clearly, the quadrangulation $C_{k}\times C_{k}$ is k-minimal, but this is not
$Y\Delta$-equivalent to other k-minimal graphs. In case of $k=2$ , the author verified
that any two k-minimal graphs on the torus, not 4-regular quadrangulations, are
transformed into each other by a sequence of $Y\Delta$-exchanges.

Shrijver gave a nice characterization of two graphs on the same non-spherical
orientable closed surface being $Y\Delta$-equivalent, as follows.

For a graph $G$ on a closed surface $F^{2}$ and an essential closed curve $\ell$ on $F^{2}$ ,
let $f_{G}(\ell)$ be the minimum number of intersections of $G$ and a closed curves $\ell^{\prime}$ ,
where $\ell^{\prime}$ ranges over all closed curves homotopic to $\ell$ . We call the function $f_{G}$



$Y\Delta$-EQUIVALENCE OF KERNELS ON THE TORUS 185

the width of $G$ . This is a generalization of the representativity. We say that $G$ is
a kernel if for any proper minor $G^{\prime}$ of $G,$ $f_{G}(l)>f_{G^{\prime}}(\ell)$ for some closed curve $\ell$ .
The minimum value of $f_{G}(l)$ coincides with the representativity of $G$ . Clearly, if
$G$ is k-minimal, then $G$ is a kernel.

Clearly, if two graphs $G$ and $G^{\prime}$ are $Y\Delta$-equivalent, then $f_{G}=f_{G^{\prime}}$ . Moreover,
if $G$ is a kernel, then $G^{\prime}$ is also a kernel in this case.

THEOREM 1. (A. Schrijver [6]) Two kernels on the same non-spherical ori-
entable closed surface are $Y\Delta$ -equivalent if and only if they have the same width.

He also determined the number of $Y\Delta$-equivalence classes of k-minimal
graphs on the torus for every natural number $k[5]$ . Theorem 1 seems to hold
for non-orientable closed surface.

As mentioned before, for any fixed $k$ , any two k-minimal graphs on the pro-
jective plane can be transformed into each other only by $Y\Delta$-exchanges (i.e.,
$Y\Delta$-equivalent without taking duals). The author $[2, 3]$ verffied that any two
2-minimal graphs on the torus or the Klein bottle with the same width are
$Y\Delta$-equivalent without taking duals, related to the irreducible bipartite quad-
rangulations. Moreover, Hirachi [1] checked that any two 3-minimal graphs on
the torus with the same width can be transformed into each other by a $s$equence
of only $Y\Delta$ exchanges.

In this paper, we would like to discuss whether or not taking duals is actually
needed to transform two kernels on the torus with the $s$ame width, and show the
following theorem.

THEOREM 2. Any two kernels on the torus with the same width can be
transformed into each other by a sequence of only $Y\Delta$-exchanges.

Our theorem describes only toroidal case, but we conjecture the following.

CONJECTURE 3. Any two kernels on the same non-spherical orientable closed
surface with the same width can be transformed into each other by a sequence of
only $Y\Delta$ -exchanges.

2. Preliminaries

For a graph $G$ on a closed surface, the medial graph $M(G)$ of $G$ is constructed,
as follows.

(i) Add a vertex $v_{e}$ to the middle point of each edge $e$ of $G$ ,

$(\ddot{u})$ for any two edges $e$ and $e$
‘ which are consecutive with respect to the rotation

of some vertex of $G$ , add an edge $v_{e}v_{\epsilon^{\prime}}$ , and
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(iii) delete all the original vertices of $G$ .

It is obvious that $M(G)$ is 4-regular, and it has a 2-face-coloring with black and
white so that each black region contains a vertex of $G$ .

Let $G^{*}$ denote the dual of $G$ . Note that $M(G)=M(G^{*})$ and their 2-face-
colorings are opposite, that is, each black (or white) region of $M(G)$ is a white
(or black) region of $M(G^{*})$ .

Schrijver gave a nice characterization of kernels on orientable closed surfaces,
using the medial graphs, as follows. The union of closed curves $D_{0},$

$\ldots,$
$D_{k-1}$ is

called a minimally crvssing system if for any $i$ and $j,$ $D$; and $D_{j}$ have a minimal
number of intersections among all closed curves $D_{1}^{\prime}$ and $D_{j}^{\prime}$ homotopic to $D_{i}$

and $D_{j}$ , respectively. (Thus, each intersection of two closed curves must be a
“crossing” and not a “touching”.)

Let $G$ be a graph on a closed surface $F^{2}$ such that each vertex of $G$ has even
degree. The straight decomposition of $G$ is the decomposition of $G$ into several
closed walks $C_{0},$

$\ldots,$
$C_{n-1}$ such that

1. $E(G)=E(C_{0})\cup\cdots\cup E(C_{n-1})$ ,

2. for any $i$ and $j$ with $i\neq j,$ $ E(C_{\dot{\iota}})\cap E(C_{j})=\emptyset$ , and
3. for each vertex $v$ of $G$ with neighbors $v_{0},$

$\ldots,$ $v_{2k-1}$ in this cyclic order, $vv_{i}$

and $vv_{t+k}$ belong to the same closed walk for each $i$ , where the subscripts
are taken modulo $2k$ .

Note that this decomposition is unique.

THEOREM 4. (A. Schrijver [7]) A graph $G$ on a non-spherical onentable closed
surface $S$ is a kernel if and only if the straight decomposition of the medial graph
$M(G)$ of $G$ is a minimally crossing system of essential closed curves. Moreover,
if $S$ is the torus, each closed curve can be taken to be simple ( $i.e.$ , without self-
intersections).

Figure 2. A $\Delta\nabla$-exchange

Let $G$ be a 4-regular graph on a closed surface $F^{2}$ . The operation shown in
Figure 2 is called a $\Delta\nabla$-exchange. Observe that if $D_{0}\cup\cdots\cup D_{k-1}$ is a minimally
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crossing system of closed curves, then the resulting system by a $\Delta\nabla$-exchange is
also a minimally crossing system.

It is obvious that a $Y\Delta$-exchange in a graph $G$ corresponds to a $\Delta\nabla$-exchamge
in its medial graph. Thus, in order to show Theorem 1, Schrijver showed that
the medial graphs of two kernels on the same orientable closed surface with the
$s$ame width can be transformed into each other by a sequence of $\Delta\nabla$-exchanges.
However, since $M(G)=M(G^{*})$ for any graph $G$ , his argument cannot deny the
necessity of taking duals.

3. Proof of theorems

This section is devoted to proving our main theorem. For our purpose, it
suffices to prove the following lemma.

LEMMA 5. If $G$ is a kernel on the torus, then $G$ can be transform $ed$ into the
dual $G^{*}$ of $G$ by a sequenoe of $ Y\Delta$-exchanges.

Pmof. To prove the lemma, we use the medial graphs $M(G)$ and $M(G^{*})$ of $G$

and $G^{*}$ , respectively. Since $M(G)=M(G^{*})$ , we distinguish $M(G)$ and $M(G^{*})$

with their $2- face- colorings$ . We shall show that the $2- face$-coloring of $M(G)$ can
be transformed into its opposite 2-face-coloring by a sequence of $\Delta\nabla$-exchanges.

By Theorem 4, $M(G)$ can be regarded as a minimally crossing system of
simple closed curves, denoted by $\mathcal{L}$ . Since two distinct homotopic simple closed
curves in a minimally crossing system must be disjoint on the torus, we can put
$\mathcal{L}=L_{0}\cup\cdots\cup L_{k-1}$ , where each $L$ ; is a maximal set of pairwise disjoint, homo-
topic, essential simple closed curves. We focus on $L_{0}$ and let $L_{0}=\{l_{0}, \ldots, l_{m-1}\}$ ,
where $m\geq 1$ and the subscript are taken modulo $m$ . Since each $l_{i}$ is an essential
simple closed curve, cutting the torus along $l_{0},$

$\ldots,$
$l_{m-1}$ yields $m$ annuli. We

suppose that $l_{0},$

$\ldots,$
$l_{m-1}$ appear on the torus to be parallel in this cyclic order.

For $i=0,$ $\ldots,$ $m-1$ , we denote by $A_{i}$ the annulus bounded by $l_{i}$ and $l_{i+1}$ , and
let Int $A_{i}=A_{i}-\{l_{i},l_{t+1}\}$ .

Consider an isotopy $\Psi$ over the torus such that $\Psi_{1}(l_{i})=l_{i+1}$ for $i=0,$ $\ldots,$ $m-$

1. We slide only $l_{0},$

$\ldots,$
$l_{m-1}$ by this isotopy $\Psi$ , fixing $L_{1}\cup\cdots\cup L_{k-1}$ , so that

the resulting 4-regular graph is isomorphic to $M(G)$ . We assume that each point
on the torus has the same color, black or white, as the region of $M(G)$ which
contains it The color of a point are switched when one of $l_{0},$

$\ldots,$
$l_{m-1}$ jumps

it during sliding them by $\Psi$ , and switching its color happens only once. Thus,
we obtain the opposite 2-face-coloring of $M(G),$ $thatis/$ , the 2-face-coloring of
$M(G^{*})$ .

Now we show that the deformation of $L_{0}$ by the isotopy $\Psi$ can be obtained by
a sequence of $\Delta\nabla$-exchanges. First, we move $l_{0}$ toward $l_{1}$ so that Int $A_{0}$ incudes
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no vertices afterward. Next, we move $l_{1}$ toward $l_{2}$ . Repeating them, we finally
move $l_{m-1}$ to the position where $l_{0}$ was.

If $\mathcal{L}=L_{0}\cup L_{1}$ , that is, $\mathcal{L}$ consists of only two homotopy classes of closed
curves, then each $A$; has no vertices inside, and hence the deformation of $\mathcal{L}$ can
be realized as an isotopy over the torus which moves the whole of $M(G)$ to itself.
In this case, $G$ is a 4-regular quadrangulation of the torus and is self-dual. That
is, $G$ and $G^{*}$ are the same one, up to isotopy.

Suppose that there are $n$ vertices in Int $A_{0}$ . We use induction on $n$ . If $n=0$ ,
then we have nothing to do. Suppose that $n>0$ and there is a vertex $v$ , which
is shared by two closed curves $x$ and $y$ . Note that $x,$ $y\not\in L_{0}$ and that each closed
curve in $L_{1}\cup\cdots\cup L_{k-1}$ appears in $A_{0}$ as a union of pairwise parallel and disjoint
simple arcs each of whose ends are in $l_{0}$ and $l_{1}$ respectively. Let $p$ and $q$ be the
intersections of $x$ and $l_{0}$ , and $y$ and $l_{0}$ , respectively. Then, there is a triangular
region $\Delta$ bounded by $l_{0},$ $x$ and $y$ .

We may assume that $\Delta$ is the innermost one among those triangular regions,
after reselecting $v$ if we need. Under this assumption, there is no vertex, except
$v,$ $p$ and $q$ , inside $\Delta$ and also on the boundary of $\Delta$ . Thus, we can apply a $\Delta\nabla-$

exchange around $v$ and can make $v$ be outside $A_{0}$ . Now there are $n-1$ vertices
inside $A_{0}$ . By induction hypothesis, we can transform $l_{0}$ into a simple closed
curve running near along $l_{1}$ , up to isotopy, by a sequence of $\Delta\nabla$-exchanges.

Similarly, we can generate a sequence of $\Delta\nabla$-exchanges which carries $l$; to
where $l_{t+1}$ was for all $i$ . This corresponds to a sequence of $ Y\Delta$-exchanges which
transforms $G$ into $G^{*}$ . $\blacksquare$

Now we prove our main theorem.

Proof of Theorem 2. Let $G$ and $G^{\prime}$ be two kernels on the torus with $f_{G}=f_{G^{\prime}}$ .
By Theorem 1, there exists a sequence $G=G_{1},$ $\ldots$ , $G_{t}=G^{\prime}$ such that for each $i$ ,
$G$; is a kernel, and for $i=1,$ $\ldots,$

$t-1,$ $G$; can be transformed into $G_{t+1}$ by either
a $Y\Delta$-exchange or taking a dual. When $G_{i}^{*}=G_{i+1}$ , they can be transformed
into each other by a sequence of $ Y\Delta$-exchanges, by Lemma 5. Thus, $G$ and $G^{\prime}$

can be connected only by $ Y\Delta$-exchanges. $\blacksquare$
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