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Abstract. Let D be a connected symmetric digraph, Zp a cyclic group of prime
order p (> 2) and I a group of automorphisms of D. We enumerate the number of
I'-isomorphism classes of g-cycic Zp x Zp-covers of D for any nonunit g € Zp X Zp.

1. Introduction

Graphs and digraphs treated here are finite and simple.

Let D be a symmetric digraph and A a finite group. A functiona : A(D) = A
is called alternating if a(y, z) = a(z,y)~! for each (z,y) € A(D). Forg€ A, a
g-cyclic A-cover (or g-cyclic cover) Dy(a) of D is the digraph as follows:

V(Dg4(a)) = V(D) x A, and ((u,h), (v, k)) € A(Dg4(a)) if and only if
(u,v) € A(D) and k~1ha(u,v) = g.
The natural projection m : Dy(a) = D is a function from V(Dgy(a)) onto V(D)

which erases the second coordinates. A digraph D’ is called a cyclic A-cover of
D if D’ is a g-cyclic A-cover of D for some g € A. In the case that A is abelian,

- then Dy(a) is simply called a cyclic abelian cover.

Let a and 8 be two alternating functions from A(D) into A, and let T' be
a subgroup of the automorphism group Aut D of D, denoted I' < Aut D. Let
g,h € A. Then two cyclic A-covers Dy(c) and Dx(B) are called I'-isomorphic,
denoted Dy(a)=rDx(B), if there exist an isomorphism & : Dy(a) — Dy (p) and
a vy € I' such that 7® = v, i.e., the diagram

Dgia) Dhiﬂ)
m } ; ) D1r
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commutes. Let I = {1} be the trivial subgroup of automorphisms.

Cheng and Wells [1] discussed isomorphism classes of cyclic triple covers (1-
cyclic Z3z-covers) of a complete symmetric digraph. Mizuno and Sato gave
a formula for the characteristic polynomial of a cyclic A-cover of a symmetric
digraph D, for any finite group A. Mizuno and Sato [15,17] enumerated the
number of I-isomorphism classes of g-cyclic Z;—covers and g-cyclic Zp»-covers,
and I-isomorphism classes of g-cyclic Z,-covers of D for any prime p (> 2).
Furthermore, Mizuno, Lee and Sato gave a formula for the the number of
I-isomorphism classes of connected g-cyclic Z;-covers and connected g-cyclic
Z pn-covers of D for any prime p (> 2).

A graph H is called a covering of a graph G with projection 7 : H — G if
there is a surjection 7 : V(H) — V(G) such that T|nwy : N(V') = N(v) is a
bijection for all vertices v € V(G) and v/ € #~1(v). The projection 7 : H — G
is an n-fold covering of G if 7 is n-to-one. A covering 7 : H — G is said to be
regular if there is a subgroup B of the automorphism group Aut H of H acting
freely on H such that the quotient graph H/B is isomorphic to G.

Let G be a graph and A a finite group. Let D(G) be the arc set of the
symmetric digraph corresponding to G. Then a mapping a : D(G) — A is called
an ordinary voltage assignment if a(v,u) = a(u,v)”" for each (u,v) € D(G).
The (ordinary) derived graph G* derived from an ordinary voltage assignment
a is defined as follows:

V(G*) = V(G) x A, and ((u, k), (v,k)) € D(G*) if and only if
(u,v) € D(G) and k = ha(u,v).

The graph G is called an A-covering of G . The A-covering G° is an |A|-fold
regular covering of G. Every regular covering of G is an A-covering of G for
some group A (see [3]). Furthermore the 1-cyclic A-cover Dy(a) of a symmetric
digraph D can be considered as the A-covering D® of the underlying graph D
of D.

A general theory of graph coverings is developed in [4]. Z,-coverings (dou-
ble coverings) of graphs were dealed in [5] and [19]. Hofmeister [6] and, inde-
pendently, Kwak and Lee enumerated the I-isomorphism classes of n-fold
coverings of a graph, for any n € N. Dresbach @ obtained a formula for the
number of strong isomorphism classes of regular coverings of graphs with voltages
in finite fields. The I-isomorphism classes of regular coverings of graphs with
voltages in finite dimensional vector spaces over finite fields were enumerated
by Hofmeister [7]. Hong, Kwak and Lee [9] gave the number of I-isomorphism
classes of Z,-coverings, Z, @ Z,-coverings and D,,-coverings, n: odd, of graphs,
respectively.

In the case of connected coverings, Kwak and Lee enumerated the I-
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isomorphism classes of connected n-fold coverings of a graph G. Furthermore,
Kwak, Chun and Lee gave some formulas for the number of I-isomorphism
classes of connected A-coverings of a graph G when A is a finite abelian group
or D,.

We present the number of I'-isomorphism classes of g-cycic Z, x Z,-covers
of connected symmetric digraphs for any element g # 0 € Z, x Z,, where 0 is
the unit of Z, x Z,.

2. Isomorphisms of cyclic Z, x Z,-covres

Let D be a connected symmetric digraph and A a finite abelian group. The
group I' of automorphisms of D acts on the set C(D) of alternating functions
from A(D) into A as follows:

a’(z,y) = a(y(z),7(y)) for all (z,y) € A(D),

where a € C(D) and v €T.

Let G be the underlying graph of D. The set of ordinary voltage assignments
of G with voltages in A is denoted by C*(G; A). Note that C(D) = C}(G; A).
Furthremore, let C%(G; A) be the set of functions from V(G) into A. We consider
C°(G; A) and C(G; A) as additive groups. The homomorphism é : C°(G; A) —
C'(G; A) is defined by (ds)(z,y) = s(z) — s(y) for s € C°(G; A) and (z,y) €
A(D). The 1-cohomology group H'(G;A) with coefficients in A is defined by
HY(G; A) = C}(G; A)/Imé. For each a € C'(G;A), let [a] be the element of
H'(G; A) which contains a.

The automorphism group Aut A acts on C°(G; A) and C*(G; A) as follows:

(o5)(z) = o(s(z)) for z € V(D),

(ca)(z,y) = o(a(z,y)) for (z,y) € A(D),

where s € C°(G; A), a € C*(G; A) and o € Aut A. A finite group B is said to
have the isomorphism extension property (IEP), if every isomorphism between
any two isomorphic subgroups £; and &, of B can be extened to an automorphism
of B (see [9]). For example, the cyclic group Z, for n € N, the dihedral group
D,, for odd n > 3, and the direct sum of m copies of Z,(p: prime) have the IEP.

Mizuno and Sato gave a characterization for two cyclic A-covers of D to
be I'-isomorphic.

THEOREM 1. (17, Corollary 3) Let D be a connected symmetric digraph, G the
underlying graph of D, A a finite abelian group with the IEP, g € A, a, 8 € C(D)
and I' < Aut D. Assume that the order of g is odd. Then the following are
equivalent:
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1. D,(a)=rD,(8).
2. There exist y €T, 0 € Aut A and s € C°(G; A) such that

B =ca" +8s and o(g) = 9.

Let Iso(D, A, g,T) denote the number of I'-isomorphism classes of g-cyclic
A-covers of D. The following result holds.

THEOREM 2. (17, Let D be a connected symmetric digraph, A a
finite abelian group with the IEP, g.h € A and T < AutD. Assume that the
orders of g and h are equal and odd, and p(g) = h for some p € Aut A. Then

Iso(D,A,9,T) =1Iso(D,A,h,T).

Let p be odd prime and Z, the cyclic group of order p. Then Zg =2Zyx2Z,
has the IEP. Since Z, is the 2-dimensional vector space over Z,, the general
linear group GL3(Z)) is the automorphism group of Z;. 2. Furthermore, GL2(Z,)
acts transively on 22 \ {0}. Set e=e; =*(10) € 22 By Theorem 2, we have
Iso(D,A,g,T) =Iso (D A,e,T) for any element g € Z2 \ {0}. Thus we consider
the number of I'-isomorphism classes of e-cyclic Zz-covers of D.

Let I' < Aut D and I = GL4(Z,). Furthermore, set

e ={c€ll|o(e) =e}.
An action of Il x T on H!(G; Z2) is defined as follows:
(A,7)[e] =[Aa"] = {Aa” + 85 | s € C°(G; Z3)},

where A € Il, v € T and a € CY(G; Z2). By [Theorem 1, the number of I-
isomorphism classes of e-cyclic Z 2-covers of D is equal to that of IIe x I'-orbits
on H'(G; Z2).

Let D be a connected symmetric digraph, G the underlying graph of D,
I'<AutD, vy €T and A € Z;. A (7)-orbit o of length k on E(G) is called
diagonal if o = (v){z,v*(z)} for some z € V(G). The vertex orbit (y)z and the
arc orbit (y)(z,v*(z)) are also called diagonal. A diagonal arc orbit of length 2k
(the corresponding edge orbit of length k and the corresponding vertex orbit of
length 2k) is called type-1 if A* = —1 (or m = 2k), and type-2 otherwise, where
m is the order ord (A) of A.

For v € T, let G() be a simple graph whose vertices are the (vy)-orbits on
V(G), with two vertices adjacent in G(v) if and only if some two of their repre-
sentatives are adjacent in G. The kth p-level of G(«) is the induced subgraph
of G(v) on the vertices w such that (|w|) = p*, where (i) is the largest power
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of p dividing i. A p-level component H of G(v) is a connected component of
some p-level of G(v), where H is considered as a subset of V(G(y)). A p-level
component H is called minimal if there exists no vertex o of H which is adjacent
in G(v) to a vertex w such that 8(|o|) > 0(|w]) (see [12]).

Let k € N. Then a (v)-orbit ¢ on V(G), E(G) or A(D) is called k-divisible if
o] =0 (mod k). A vertex orbit o is called edge-induced if there exists a orbit
(v){z,y} on E(G) with z,y € 0. A k-divisible (y)-orbit o on V(G) ia called
strongly k-divisible if o is edge-induced and satisfies the following condition:

If Q = (v)(x,y) is any (y)-orbit on A(D), and
y=17(z), z,y €0, then j =0 (mod k).

For k > 1, let H be a k th p-level component of G(y). Then H is called
p-favorable if H is minimal and there exists a ¢ € H which is not strongly p-
divisible. Furthermore, H is called p-defective if H is minimal and each vertex
o of H is strongly p-divisible.

Let A € Z; and ord(\) = m. Then, let Gx(7) be the subgraph of G(v)
induced by the set of m-divisible ()-orbits on V(G). The kth p-level and p-level
components of G () are defined similarly to the case of G(v). A p-level compo-
nent H of G, (7) is called defective if each vertex o of H is strongly m-divisible,
not type-1 diagonal, and H is minimal. Note that, if ¢ = (y) = is strongly m-
divisible, |o| = t and there exists a diagonal (y)-orbit @ = (v) (z,7'/%(z)) on
A(D), then Q is type-2.

THEOREM 3. Let D be a connected symmetric digraph, G its underlying graph,
p odd prime, g € Z;‘: \ {0}, and T < AutG. For vy € T, let €(v), p(v) and
€1(y) be the number of (vy)-orbits, diagonal (v)-orbits and, not diagonal and
p-divisible (vy)-orbits on E(G), respectively. Let v(v) and vo(vy) be the num-
ber of (y)-orbits and not p-divisible (v)-orbits on V(G), respectively. Moreover,
let c(v), &(v), d(y) and di(y) be the number of p-level components, minimal
p-level components, p-defective p-level components and not minimal p-level com-
ponents with p-divisible orbits in G(v), respectively. For v € T and X € Z,,
let vo(v,A), p(v,A) and d(y,A) be the number of not m-divisible (vy)-orbits on
V(G), type-2 diagonal (v)-orbits on E(G) and defective p-level components in
Gx(7), respectively, where m = ord ()\). Furthermore, let k(y, ) be the number
of not m-divisible (vy)-orbits on E(G) which are not diagonal. Then the number
of I'-isomorphism classes of g-cyclic Z;‘;-covers of D 1s

2 = 1 N —p()

o (D:Z5,0.1) = oo =y 2,7 |

+ (p — 1)ps -2 +vo(M=p(v)+e (M) +e(v)=di (1) +d(7)
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+p Z p2EM =Y H) =N +ro (1) =k (1A =s(1:A)+d(1:A) ),
AeZ:\{1}

Proof. By the preceding remark and Burnside’ Lemma, the number of TI-
isomorphism classes of e-cyclic Z;‘:-covers of Dis

En PR CE
— H(G;Zp) Y |,

where U(4) is the set consisting of the elements of U fixed by (A, 7).'
Now, we have

— 1 p - e p—1: u= e p—
He—{[o A]l’\—l’zy ' P 1,}1—0,1, » P 1}

Then there exist p + 1 conjugacy classes of Ile:

(R BRI e}
R R R

Let A, B € Ile be conjugate. Then there exists an element C € Il such that
CAC™! = B. Thus [a] € HI(G;Fﬁ)(A’“’) if and only if Aa” = a + és for some
s € C°(G; Zf,). But Aa” = a + Js if and only if B(Ca)Y = Ca + §(Cs), ie.,
[Ca] € HY(G; 22)(B). By the fact that a mapping [a] — [Ca] is bijective,
we have

|HY(G; 22)AM| = |HY(G; Z22)BM)|.

Therefore the number of I'-isomorphism classes of e-cyclic Zf,-covers of Dis

1

|1'Ie| . II"I E{lHl(G, Zﬁ)(l,"l)' + (P _ 1)’H1(G, Zg)(AI,’Y)I

~er
p—-1
+p) |HY(G; Z5) A},
A=2

1 0 1 1 1 0
'“[0 1]"‘“[0 1]"‘*‘[0 A]'
Let (A,y) € Ie x I.
Casel: A=1.

where
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Then [a] € H!(G; Zz)(I"') if and only if @ = Ia” = a + ds for some
s € C(G; Zf,).

Now, let a = ae; + bey, a,b € C*(G; Z,), where e; = (1 0) and e; = ¥(0 1)
. Furthermore, let s = we; + ze;, w,z € C°(G; Z,). Then a” = a + s if and
only if a¥ = a+ dw and 7 = b + 4z, i.e., [a]” = [a] and [b]” = [b]. Note that
[a],[b] € HY(G; Z,)". Since [ae; + bes] = [a]e; + [b]es, we have

2
|HY(G; 22)I| = |HY(G; Z,)|".
By of [8], it follows that
|H1 (G; Zﬁ)(lm)l = (pM v+ -r(1))2 = pAe(n)-v(NH()=p()),

Case 2: A= A,.

Then [a] € H(G; Zz)(“*’“') if and only if Aya” = a + ds for some s €
C°(G; Zz). Let a = ae;, + be,, a,b € C(G;Z,) and s = we; + ze;, w,z €
C%(G;Z,). Then Axa” = a + ds if and only if ave; + AbVe; = (a + dw)e; +

(b+dz)es, ie., a¥ = a+ dw and AbY = b+ 6z. Thus (Ax,v)[a] = [a] if and only
if [a]” = [a] and A[b]" = [b]. Therefore, we have

|HY(G; 22) 4| = |HY(G; Z,)"| - |HY(G; Z,) V.
By of [8] and Theorem 3.3 of [18], it follows that

|H1(G; zz)(AAn)l = p2eM =M+ =p(MN+ro(V.A)=£(7,2) = #(1,2)+d(7,A)

Case 3: A= A,;.
Then we have

IHI (G; zz)(dm)l = pfM=2v(M+vo(M)=p(V)+e1(N+e(¥)=di(M+d(7)

The detail is developed in Section 3.
By cases 1,2 and 3, the result follows. B

COROLLARY 1. (15, Corollary 4.6) Let D be a connected symmetric digraph and
p odd prime. Then the number of I-isomorphism classes of g-cyclic Zf,-covers
of D is

B(D)-1(,B(D) _ 1
Iso(D, 22,9,1) = pPP) + 2 p(’i 1 3

»
where B(D) = 1|A(D)| - |V(G)| + 1 is the Betti-number of D.

Proof.  Since I = {1}, we have (1) = «(1,A) = |E(G)|, p(1) = (1) =
u(L,2) = 0, ¥(1) = vo(1) = wo(L,A) = [V(G)], e(1) = £(1) = 1 and dy(1) =
d(1) =d(1,A\)=0. m
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3. The elements of H!(G; Z2) fixed by (A1,7)

Let D be a connected symmetric digraph, G its underlying graph and ' <
Aut G. We present the number of elements on H'(G; Z2) fixed by (A, ) for
each ¥ € I'. The argument is an analogue of Hofmeister’s method [5].

Let
11
A=A = [ 0 1 ] .
Note that the order ord (A) of A is p and

) —
A”hl]

for any j. Set C° = C°(G; Z}), C* = C}(G;Z2), and H' = HY(G; Z2). We
consider the following exact sequence:

80 § &1
Ker 6 .~ C° -~ C! - H! - 0,

0

where 4° is the canonical monomorphism and 4! is the canonical epimorphism.
For 4 € T, two endomorphisms g, : C* - C! and v, : H! — H! are defined as
follows: p,(a) = Aa” — a and v,([e]) = [Aa” — a], where a € C!. Then, note
that v,8! = éu, and Kerv, = (H})(A"),

Now, let C3 = §~!(Imp,) and C} = p~(Im$4).

Let (z,y) be any arc of A(D), v € T and t = |(y)(z, y)| the length of the arc
()-orbit containing (z,y). Furthermore, let s = *(u,v) = ue; +ve; € C°, u,v €
C%G; 2,).

LEMMA 1. Let Y €T, s € C°. Then s € CJ if and only if
o(@) +07(2) + 0T (@) = 0@) + W)+ H 0T () (e
for each (z,y) € A(D). Specially, if p | t, then

Y A7) =3 AW (e
3=0

j=0

Proof. Set t = [(1)(z,9)|.
Suppose that s € Cg. Then there exists o € C! such that Aa” — a = §s.
Thus

Ala" —a = ¢§'(A"'loz'yi_1 +- -+ Aa" +5), i>1.
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Let (z,y) € A(D). Then we have
t—1 _ t—1 , 0 1
Jg7 () — J¢V () = At - = .
;}A s (x) ;A sV (y) = A" (z,y) — a(z,y) [ 0 0 ] a(z,y)

For the (2, 1)-array of the above equation, we have
v(z) +07(2) + -+ 07 (@) = (@) + 0T W) 4+ 0T (W)} =0.
Specially, if p | ¢, then we have
t=1 t-1
Y A (z) - > A (y) = 0.
Jj=0 Jj=0

Conversely, assume that s = (u,v) satisfies (x); and (x), for each (z,y) €
A(D). Let Q be any (y)-orbit on A(D), || = t and (z,y) € Q. If Q is not
diagonal, then let a(z,y) = 0 e1 + b(z,y)es, b € C(G;Z,) be defined as

follows: - -
0 t 0 — i —~ i
= A" 2 - ‘4‘7.‘3’y .
[0 6L sewm ] AT (@) -2 AT

If p | t, then we may set b(z,y) = 0. Furthermore, if  is diagonal, then let

1-1 , .y
a(z,y) = —(A'+ )71 Y (4757 (z) — A75™ (y)),

j=0
where | = £.
Now, let
. : ”—1 . y . N
Ald"(z,y) = a(z,y) + ) (A7 (z) - APs7 ' (y), i=1 - ().
j=0

If Q is not diagonal and ¢ # 0 (mod p), then we have

APta™ (z,9)
pt—-1

=a(z,y) + Y _ (4757 (z) — AT57 (1))
j=0
t_l . ,
= a(@,y) + (T+ A"+ + AP 3 (457 () - 4757 (y)) = a(=,v).
j=0

Furthermore, let Q is not diagonal and p | t. Then we have

t—1 , .y
Ao (z,9) = a(z,y) + Y_(ATs7 (2) - ATs7 (y)) = a(z,v).
j=0
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Next, let Q be diagonal. Then we have

t—1 . . -1 s 5 .5
Y (AT (2) — ATsT (y)) = (T — A) ) _(A7s7 (2) — A757(v))
J=0 j=0

= —(I- AT + A)a(z,y)
= [ g (t) ]a(x’y):

where t = 21. If p | ¢, then A*a” (z,y) = a(z, y) similarly to the case that Q is
not diagonal. Otherwise,

AP (2,y)
-1 _ o
= ofz,y) + (I - A+ A% 4. — Az(p—l)H'l) Z(Aj:ﬂJ (z) — Al ()

j=0
= a(z,y).
Therefore it follows that (1) is well-defined.
By (1), we have
" ) r—1 e o
AT (z,y) = o7 (z,9) + (AT (¥ (z)) — AT (v'(9))), mi > 1.
j=0

If Q is not diagonal, then we define a(v,u) = —a(u,v), (u,v) € Q.
In the case that Q is diagonal, we have

a(y,z) = a” (z,y)

1-1 , ‘
= A a(z,y) + Z §ATsY (z,y))
Jj=0

= A a(z,y) — A7 A + Do(z,y)
= —a(z,y).
Furthermore, we have

A (y,5) = A AT (2,9))
= A (2,0) 4+ 3 (7 (4 () — 557 (V)
i=o |
i—-1
= —Al{a(z,y) + Y (4757 (z) — 4757 (1))}
j=0

= —A'*a"(z,y),
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ie., ‘ _
o (y,z) = —a" (z,y),i > 1.

Therefore we obtain an o € C! such that Aa” — o = ds, ie., s € ny’. [ ]

LEMMA 2. Fory €T,

Icgl = p?r =2 (NHve(Mte(n)-di(M+d0) | = |V(G)].

Proof. We count the number of s € C3 which satisfy both (x); and (x); for
each (z,y) € A(D).

Let (z,y) € A(D), Q = (y)(z,y) and |Q] = 1.

Case 1: z,y are in the same (y)-orbit o on V(G).

Then Q is not diagonal and |o| =¢. Let y = 9/(z) (1 <j < t). By
1, we have

v(@) + v (@) 4+ + 07 (&) =u(y) + oY)+ 0T (Y).

This is an identical equation.
Case 1.1: ¢ is p-divisible.
Then A® = I. By [Lemma 1|, we have

s(z) + As"(z) + -+ AN T (2) = s(y) + A () + -+ AT (y),
ie.,

(A7 — I)(s(z) + As™(z) + -+ A'™'" () = 0.

0 O

If o is strongly p—divisible.or P | j, then there are p?* possible choices for the
s(w) with w € ¢. If o is not strongly p-divisible, then we have

[ 0 % ] (s(z) + AsV(z) + --- + A*™1s7(z)) = 0.

—i(v(z) +v(@) + - +97 (2)) = 0.

Since u(w) is any, there are p?*~! possible choices for the s(w) with w € o.

Case 1.2: ¢ is not p-divisible.

Since u(w) and v(w) are any, there p?* possible choices for the s(w) with
weo.

Case 2: z and y are in different vetex (y)-orbits oy, o, of length ¢, ¢,
respectively.

Then ¢ is the least common multiple [¢1,%,] of t; and t,. Let t; = p%y;,
(p,¢;) =1 (i = 1,2), and a = maz{a;,a;}. Then t = p%g;,q;]. Let t] =
l91,92)/4i(i = 1,2). By Lemma 1, we have

PN (0(2) + 7 (@) 4+ 07T (7)) = pP Nt (u(y) 40 (B) + o+ (9)
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If p|t, then we have

1

(I+ Atl +.“+At1(p”"°1t'1_l))(s(z)+As‘7(z)+,..+At1—ls‘yil‘ (17))
= T+ A% 4+ ARCTPED)(5(0) 4 AST (y) + -+ AT (y).

Case 2.1: o, is p-divisible and o2 is not p-divisible.
Since A" = I and A** # I, we have

I+ A% ... 4 AR50 — 0,

Thus ty -1
Pt (s(z) + AsY(z) + -+ A1 (2)) = 0.

Since a = ay,p?~%1t] =t] # 0, and so
s(z) + As"(z) +-- -+ At—1" (z) =0.
Case 2.2: Both o, and oy are p-divisible.
Then A'* = A'? = I. If a; = a;, then we have
i (s(x) +As"(2)+- -+ A" (@) =ty (s(u)+ A5 (v) 4+ AT

1

(v))-

If a; > a2, then we have
s(z) + As(z) + -+ A1 T (z) = 0.

Case 2.3: Both o; and o4 are not p-divisible.
Since t Z0 (mod p), we have

Lw(z) +07(@) + -+ 07T (@) =ty (0(y) F 0 @) + -+ 07T ().

Let H be a 0 th p-level component of G(y). Then some vertex o of H admits
p?le! choices according to Cases 1.2 and 2.1, while any other vertex w of H admits
p2l@l=1 choices by Case 2.3.

Let H be a k th p-level component of G(v) for k > 1. If H is not minimal,
then any vertex o of H admits p?l?1=2 choices for the s(w) with w € o by cases
1.1, 2.1 and 2.2. If H is pfavorable, then some vertex ¢ of H admits p?l9l-!
choices according to Case 1.1, while any other vertex w of H admits p?lvl-2
choices by Case 2.2. If H is p-defective, then some vertex o of H admits p?!°
choices according to Case 1.1, while any other vertex w of H admits p2l«l-2
choices by Case 2.2.

Therefore it follows that

Ic5l =TICIT ##e - TIC IT #7472

H, o,€H, H; o2€H3
x H( H p2|03|-2)p . H( H p2|a¢|—2)p2
Hy o3€Hs H, o04€H,

= pzn =2v(v)+va(y)+e(v)—di(v)+d(v) ,
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where H;,H,,Hs and H, runs over all Oth p-level components, nonzero th
not minimal p-level components, nonzero th p-favorable p-level components and
nonzero th p-defective p-level components of G(7), respectively. B

Each (7)-orbit Q' on E(G) corresponds to two (v)-orbits on A(D) if £’ is not
diagonal, and one (vy)-orbit on A(D) otherwise.

LEMMA 3. Fory €T,

]Ker MI = pf(M=p(Mt+er()

Proof. Let o € Ker pi,. Then we have o = Aa” = 422" = .. ..

Let Q = (y)(z,y) be any (y)-orbit on A(D) and |Q| = ¢.

Case 1: z and y are in the same (v)-orbit ¢ on V(G), and € is diagonal.

Let t = 2k. Then we have o (z,y) = A™'a(z,y) (i > 1), AFa(z,y) =
—a(z,y) and A%*a(z,y) = a(z,y). If Q is p-divisible, then, since A* = I,
a(z,y) =0, ie., a(u,v) =0 for each (u,v) € Q. Otherwise we have

k_[1 &
=l 7]

and so a(u,v) = 0 for each (u,v) € Q.

Case 2: z and y are not in the same (y)-orbit o on V(G), or 2 is not diagonal.

Then we have "' (z,y) = A™*a(z,y)(i > 1) and Aa(z,y) = a(z,y). Ifp | ¢,
then there are p? possible choices for a(z,y). Otherwise there are p possible
choices for a(z,y).

From the note preceding the lemma, it follows that

lKer #1' — pe(‘/)—p(’Y)"'sl(”’).

THEOREM 4. For 4 € T and odd prime p,

IHI (G; Z';’)(Am)l = pf M=) +re()-p(M+er(V+e(1)—di()+d(7)

Proof. Let v €T. Set € = €(7), v=v(y), vo=vo(v)," -

Let Cy = {(s,a) | 65 = py(a) = Aa? — a}, and consider the two epimor-
phisms 7° : C; = CJ and 4! : Cy — C}. By Lemmas 2 and 3 and the fact that
Kervy° = Ker 4, we have

|ICy| = |C3] - |Kery°| = pPr-2vivote-ditdte=pter
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Since Kery! = Keré and |Ker §| = p?, it follows that
IC‘H =|C‘Y|/|Ker71| - p2n—2u+uo+c—d1+d+e—p+el-2'

Set §* = 4! | C1. Since Imé C C1, we have Ker ! = Kerd! = Imé. Thus
Ker §'| = p?—2. Furthermore, since Im 4! = Ker v, it follows that
y

lKer V‘Tl = lC’H/IKer51| = pt-WHvo-ptate—ditd,

4. Cyclic Z, x Z,-covers of special symmetric digraphs

At first, we consider cyclic Z:-covers of a symmetric dipath and a symmet-
ric dicycle. Let PD,, and CD,, be the symmetric dipath and the symmetric
dicycle with n vertices, respectively. We enumerate the number of the isomor-
phism classes of g-cyclic Zz-covers of PD,, and CD,, with respect to its full
automorphism group, respectively.

THEOREM 5. For n > 3 and odd prime p,

p+3

Iso (CD,, Zz,g, AutCD,) = 2

and
Iso(PD,, 22,9, Aut PD,) = 1.

Proof. Let V(CD,) = {1,2,---,n}. Then the n-cycle is the underline graph of
CD,,. Let T' = Aut CD,,. Then we have I' = (a, 3), where a = (12---n) and

5= (1n)(2n—-1)--- (251 2£3)(2HL) ifnisodd,
"l @@n@2n-1)---(353+1) otherwise .

For each ¥ € T and A € Z;, all parameters €(7), - - -, k(7, A) are constant in each
conjugacy class of I'. The conjugacy classes of I' are given as follows:

{e'}(1<i<n), {Ba'|1<i<n} if nis odd,

{e'}(1 < i< n), {Ba¥ |j=1,2,...,%}’ {Bai+ |j=1,2,~-,%—1}

if n is even.
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Let 1 <i < n and d = (n,i) the greatest common divisor of n and i. Then
we have ord (a') = %. The cardinality of each (a‘)-orbit on V(Cy,) or E(C,) is
L. For each vy € T, v(v), p(7), vo(7) and €(vy) are given as follows:

[ d if y=a',
&t‘_]:. 3 M —- i
) ={ 2 %fn?sodd andy_ﬂa;.
2+1 ifniseven and vy = fo¥,
{2 if n is even and y = fa¥+!,
( d if‘yzai,
ntl 3 ] _- $
v(y) =4 .2 }fn?soddandy_ﬂa;.
Z if n is even and v = fa?,
{ 2+1 ifniseven and v = Ba?*!,

and

. . —_ 2'
2 if niseven and v = fa“,

1 ifnis odd and y = Ba?,
p(v) =
0 otherwise.

Since p > 3 and the cardinality of each (Ba‘)-orbit on V(Cy) or E(Cy) is at
most two,
d ify=cat p|nand (n) > 6(i),
0 otherwise,

a() = {

and _
0 if y = a',p| n and 6(n) > 6(i),
v(vy) otherwise.

vo(y) = {

There exists only one p-level component in C,(7), and so ¢(y) = £(y) = 1. Each
(y)-orbit on V(Cy,) which is not diagonal is not strongly p-divisible. Thus we
have d(y) = di(y) = 0.

Let A € Z, and m = ord()). Then m = 2 if A = —1, and m > 2 otherwise.
Thus we have

v(v) if‘y:a‘,ml%ornis odd, v = Baf, X # -1,
1 if n is odd and v = Ba*, A = -1,

2 if n is even and y = Ba@+ A\ = —1,

0 otherwise.

VO('Y’A) =

In the case of v = fBa’, each diagonal (y)-orbit on A(CD,) is type-1 if A = —1,
and type-2 otherwise. Thus

2 if niseven and v = Ba?, A # —1,
0 otherwise.

1 if nis odd and v = Ba’, A # —1,
p(v,A) =
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Furthermore,

0 ify=a', 220 (modm)ornisodd, v=p8aA=~-1,
K(y,A) = €(y)~1 ifnis odd and v = ﬂa’,{\ # -1,
’ €(y)—2 if nis even and v = fa¥ )\ # -1,
() otherwise.

Therefore the result follows.
Similarly to the above, the second formula is obtained. W

Finally, we shall give an example.

Let KD, be the complete symmetric digraph of order n, and T a subgroup
of the symmetric group S, on n elements. Set V(KD,) = {1,2,...,n}. For
v €T, let (t1,%3,...,1,) be the cycle type of . Then v(v), p(v), vo(v) and €(7)
are given as follows:

v =Dt P = Yt ()= Y,
k=1

k: even k30 (mod p)
and 1
«(v) = Z{tkl Sl HEG)Y+D D tti(k,D),
k=21=1

where (k,1) is the greatest common divisor of k and 1.
Since the graph K, () is complete, we have £(y) = 1. Moreover, since any
m-divisible vertex orbit is not strongly m-divisible, we have

d(7) = 0 and c(y) — di(y) = L.

Let A € Z; and m = ord (A). Then vo(7,)) and €;() are given as follows:
Vo (7; A) = Z 175
k#0 (mod m)
and

n

am= 3 ulsl+ ¥ wll5l-1) t2 EE)++ 305tk D),

k: odd k: even k=2 l=1

where k or [ in five _ runs over multiples of p. Moreover, we have
d(y,A) =0,1.

Specially, d(v,A) = 1 if and only if A = 1.
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Let A = (1 < i < p— 1), where ( is a generator of Z3;. Setd = (i,p—1).
Then we have m = (p — 1)/d. Furthermore, we have

d(y,\) = P(Y) = Xopik: k/m: oda te ifi/d is? odd and m is even,
p(v) otherwise.
It is clear that Iso (K Dy, 22,9,T1) = Iso(KD,Z2,9,T2) = 1, where I'; <
Si(i = 1,2). In Table 1, we give some values of the number Iso (K Dy, Zzz,, g,Sn)
of Sp-isomorphism classes of g-cyclic Zz-covers of KDy,(n > 3).

n\p 3 5 7 11 13 17
3 3 4 5 7 8 10
4 15 57 164 787 1477 4042
5 847 102785 2751778 237812932 1244683409 17850468927
6 812463 6623264490

7 |6811354482

Table 1.
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