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Abstract. For the magnetic Laplacian on an abelian covering graph, we show
the Bloch property. In addition, we investigate several spectral properties for the
maximal abelian covering graph of some finite graph.

1. Introduction

The concept of a discrete analogue of the magnetic Schr\"odinger operator was
originally introduced for the 2-dimensional lattice $Z^{2}$ ([6]) as the classical Harper
operator which is a discrete model with a uniform magnetic field in $R^{2}$ . After
that, many kinds of generalization of Harper operator have been introduced and
studied (cf.[13, 17]). We also studied the spectral properties of a kind of discrete
magnetic Schr\"odinger operators ([7, 8]). In this note, as a continuation of our
previous works $[7, 8]$ , we give some further results on the spectral properties in
terms of geometries of a graph.

Let $G=(V(G), A(G))$ be a connected, locally finite graph. Here $A(G)$ is the
set of oriented edges of $G$ . For a given l-form $\theta$ , we define a discrete magnetic
Schr\"odinger operators on $\ell^{2}(V(G))$ as follows:

$H_{\theta,G}f(x)=\sum_{\epsilon\in A_{x}(G)}p(e)$
exp $(\sqrt{-1}\theta(e))f(t(e))-f(x)$ , (1. 1)

where $p$ is assumed to be a transition probability that has a reversible measure
$m$ and $A_{x}(G)=\{e\in A(G)|o(e)=x\}$ . More precise description of our setting
and notation will be given in Appendix.
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Now, we put assumptions for periodicity as follows:

ASSUMPTION 1. (Periodicity for graphs) A graph $G$ has a group $\Gamma$ of auto-
morphisms which is finitely generated and acts on $G$ freely; $\sigma x\neq x$ and $\sigma e\neq\overline{e}$

for any $x\in V(G),$ $e\in A(G)$ and $\sigma(\neq 1)\in$ F. Moreover, the quotient graph
$M=\Gamma\backslash G$ is finite.

ASSUMPTION 2. (Periodicity for operators) The function $p,$ $m$ and $\theta$ on $G=$

$(V(G),A(G))$ are invariant under the $\Gamma$-action.

Under these assumptions, a graph $G$ can be considered as a normal covering
graph of a finite graph $M$ with the covering transformation group $\Gamma$ , and $H_{\theta,G}$

as the lift of $H_{\theta,M}$ by the natural projection $\pi$ : $G\rightarrow M$ . We call $G$ an abelian
covering graph of $M$ if $\Gamma$ is abelian. Then, we give the following theorem:

THEOREM A. Let $G$ be an abelian covering of a finite graph M. Then, the lift
$H_{\theta,G}$ has the Bloch property. Namely, the set of $\ell\infty$ -eigenvalues coincides with
the set $of\ell^{2}$ -spectrum.

This is a discrete analogue of a result for Laplacian on a manifold [10]. Also
we will give some informations about the bottom of the spectrum in Section 2
and Appendix.

If the transformation group $\Gamma$ is $H_{1}(M, Z)$ , a graph $G$ is called the maximal
abelian covering graph, or the homology universal covering graph, of a finite
graph $M$ ; we denote it by $M^{ab}$ . Maximality of coverings gives us various special
properties.

The first property is as follows:

THEOREM B. Let $G$ be $M^{ab}$ for a finite graph M. Then, for any l-form
$\theta\in C^{1}(M, R)$ , the lift $H_{\theta,G}$ of $H_{\theta,M}$ is unitarily equivalent to the Laplacian
$\Delta_{G}=H_{0,G}$ .

We will also remark on other properties coming from the maximality of
abelian coverings in Section 3.

The second one is concerned with the following problem which is a discrete
analogue of one of the problems raised in [10].

PROBLEM C. For $\Delta_{G}=H_{0,G}$ , we set $p(e)=(\deg_{G}o(e))^{-1}$ , that is,

$\Delta_{G}f(x)=(\deg_{G}x)^{-1}\sum_{e\in A_{x}(G)}f(t(e))-f(x)$ . (1.2)
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In general, Spe $c(-\Delta_{G})$ is contained the closed interval $[0,2]$ . Does it always
hold that Spec$(-\Delta_{G})=[0,2]$ when $G=M^{ab}$ for a finite graph $M$ ?

So far, we have not obtained complete answers but some affirmative results.
This note is organized as follows. We will prove Theorem A with reviewing

our results $[7, 8]$ in Section 2. The proof of Theorem $B$ and some topics concern-
ing about maximal abelian covering graphs, and some results for Problem $C$ will
be shown in Section 3. Our setting and some remarks will be given in Appendix.

Acknowledgements The authors would like to thank Prof. S. Negami for
his giving them a chance to talk in TGT10, and Prof. K. Ohta for his valuable
comments.

2. The Bloch property

In [7], we define a decomposition $D_{G}$ of $V(G)$ called a l-dim decomposition
and a growth function for $D_{G}$ called a boundary area growth:

DEFINITION 2.1. A decomposition $D_{G}$ is called a l-dim decomposition if it
satisfies the following:

a) suppose $V(G)=\bigcup_{k=0}^{\infty}V_{k}$ where $V_{k}$ is a non-empty finite set of vertices for
every $k$ ;

b) $V_{k}’ s$ are mutually disjoint;
c) for any $e\in A(G),$ $o(e)\in V_{k}$ implies $t(e)\in V_{k-1}\cup V_{k}\cup V_{k+1}$ .

For a l-dim decomposition $D_{G}$ , put

$\partial B_{n}=\{e\in A(G)|o(e)\in V_{n},t(e)\in V_{n+1}\}$ ,

Aruea
$(\partial B_{n})=\sum_{e\in\partial B_{n}}m(o(e))p(e)$

, (2. 1)

and define the boundary area growth for $D_{G}$ by

$\mu(D_{G})=\lim_{n\rightarrow}\inf_{\infty}\frac{1}{n}$ log Area $(\partial B_{n})$ . (2.2)

In terms of the boundary area growth, we showed a criterion for a weak
version of Bloch property.

THEOREM 2.2. ([7]) Suppose that an infinite graph $G$ has a l-dim decompo-
sition $D_{G}$ whose boundary area growth $\mu(D_{G})\leq 0$ . Then, all $\ell\infty$ -eigenvalues of
$-H_{\theta,G}$ are contained in its $f^{2}$ -spectrum set for any l-form $\theta$ on $A(G)$ ,
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Now, let $G$ be a graph satisfying Assumption 1 with an abelian group $\Gamma$ and
$H_{\theta,G}$ an operator satisfying Assumption 2. Then, we get the operator $H_{\theta,G}$ has
the Bloch property (Theorem A in Section 1):

PROPOSITION 2.3. Let $G$ be an abelian covering of a finite graph $M$ and $H_{\theta,G}$

be the lift of $H_{\theta,M}$ for any l-form $\theta$ on M. Then, the equation $-H_{\theta,G}u=\lambda u$

has a non-tnvial bounded solution if and only if $\lambda$ is the spectnjm $of-H_{\theta,G}$ .

Proof. For a fixed vertex $x_{0}\in V(G)$ , set $V_{k}=\{x\in V(G)|dist(x, x_{0})=k\}$ .
Here the distance dist $(x, y)$ is the number of edges in the shortest path joining
$x$ and $y$ . This gives the most typical l-dim decomposition $D_{G}$ . If a group $\Gamma$ is
abelian, it is of subexponential growth [15] and then $\mu(D_{G})\leq 0$ for the above $D_{G}$

(cf. [7]). Therefore, the “only if”part is a direct consequence of Theorem 2.2.
To show the “iPpart, we will equip a representation-theoretic technique em-

ployed in $[8, 11]$ . Using it, we imitate the procedure in the continuous case [10].
Let $\hat{\Gamma}$ be the group of unitary characters of the covering transformation group
$\Gamma$ . For any $\chi\in\hat{\Gamma}$ , we put

$\ell_{\chi}^{2}=$ { $f$ : $V(G)\rightarrow C|f(\sigma x)=\chi(\sigma)f(x)$ for any $\sigma\in\Gamma$ } (2. 3)

with the inner product $\langle f,g\rangle_{\chi}=\sum_{x\in \mathcal{D}}f(x)\overline{g(x)}m(x)$ , where $\mathcal{D}$ is a fundamental
set of $V(G)$ for $\Gamma$ . Since $H_{\theta,G}$ commutes with the $\Gamma$-action, we can restrict it to
$\ell_{\chi}^{2}$ , and denote the restriction operator by $H_{\theta,\chi}=H_{\theta,G}|_{\ell_{\chi}^{2}}$ . Then, it follows from
the theory of direct integral that

Spec
$(-H_{\theta,G})=\bigcup_{x\epsilon\hat{r}}Spec(-H_{\theta,\chi})$

. (2.4)

Let $\pi$ : $G\rightarrow M$ be the natural projection. For a function $f$ on $M$ , define the
lift $ f\sim$ to $G$ by $ f=\sim fo\pi$ . We can find a unitary map $U$ : $\ell^{2}(V(M))\rightarrow\ell_{\chi}^{2}$ such
that $ Uf=fs_{0}\sim$ , where $s_{0}$ is a bounded function on $V(G)$ . Denote by $\mathcal{L}_{\theta,\chi}$ the
operator $U^{-1}H_{\theta,\chi}U$ : $\ell^{2}(V(M))\rightarrow t^{2}(V(M))$ . Then, we have

Spec$(-H_{\theta,G})=$
$\bigcup_{\wedge,\chi\in\Gamma}Spec(-\mathcal{L}_{\theta,\chi})$

. (2.5)

Detailed explanations should be referred to [8, 11, 16].
$If\lambda\wedge$ is in the spectrum $of-H_{\theta,G}$ , then $\lambda$ is an eigenvalue $of-\mathcal{L}_{\theta,\chi}$ for some

$\chi\in\Gamma$ . It follows that there exists a non-zero function $f\in\ell^{2}(V(M))$ such that
$-\mathcal{L}_{\theta,\chi}f=\lambda f$ . Then $g=Uf=fs_{0}\sim\in t_{\chi}^{2}$ is a bounded function on $Gsatis\theta ing$

$-H_{\theta,G}g=\lambda g$ . This completes the proof. $\blacksquare$

The next proposition is also a discrete and magnetic analogue of a result in
[10].
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PROPOSITION 2.4. Let $G$ be an abelian covenng of a finite graph $M$ and
$H_{\theta,G}$ the lift of $H_{\theta,M}$ . For a sufficiently small $\epsilon>0$ and for any l-form $\theta$

such that $||\theta||_{A}<\epsilon$ , there exists $\lambda(>\lambda_{G}(\theta))$ such that the interval $[\lambda_{G}(\theta), \lambda]$ is
contained in the continuous spectrum, where $||\cdot||_{A}$ and $\lambda_{G}(\theta)$ are the same as in
Theorem 4.1 in Appendix.

Prvof For $\chi\in\hat{\Gamma}$ , denote by $\lambda_{0}(\theta, \chi)$ the smallest eigenvalue of the operator
$-\mathcal{L}_{\theta,\chi}$ and put $\lambda^{\prime}=\max_{\chi\in\hat{\Gamma}_{1}}\lambda_{0}(\theta,\chi)$ , where $\hat{\Gamma}_{1}$ is the component $of\hat{\Gamma}$ containing
the trivial character 1. It follows from Corollary 4.2 in Appendix (cf.[8]) and the
analyticity of $\lambda_{0}(0, \chi)([8,11])$ in $\chi$ that, for any l-form $\theta$ with the sufficiently
small $||\theta||_{\mathcal{A}}$ , there exists a neighbourhood $U(1)$ of the trivial character 1 such
that $\lambda_{0}(\theta, \chi)$ is analytic in $\chi\in U(1),$ $\lambda_{G}(\theta)=\inf_{\chi\in U(1)}\lambda_{0}(\theta,\chi)$ and the Hessian
of $\lambda_{0}(\theta,\chi)$ does not vanish in $U(1)$ . Thus we have $\lambda^{\prime}>\lambda_{G}(\theta)$ since $\lambda_{0}(\theta,\chi)$

is not a constant function, and that the interval $[\lambda_{G}(\theta), \lambda^{\prime}]$ is contained in the
spectrum.

If $\lambda$ is an eigenvalue $of-H_{\theta,G}$ , it follows from the analyticity $of-\mathcal{L}_{\theta,\chi}$ in $\chi$

that there exists a component $A$ of $\hat{\Gamma}$ such that $\lambda$ is an eigenvalue $of-\mathcal{L}_{\theta,\chi}$ for
any $\chi\in A$ . Assume that there exists a sequence $\{\lambda_{n}\}$ of eigenvalues $of-H_{\theta,G}$

accumulating to $\lambda_{G}(\theta)$ . So, we can choose a subsequence $\{\lambda_{n}:\}$ and a character
$\chi$ such that $\lambda_{n}$ . are eigenvalues $of-\mathcal{L}_{\theta,\chi}$ . This contradicts the finiteness of the
number of eigenvalues $of-\mathcal{L}_{\theta,\chi}$ . $\blacksquare$

3. Maximal abelian covering

In this section, let us put $\Gamma=H_{1}(M, Z)$ under Assumption 1 and 2 in
Section 1. Before proving Theorem $B$ in Section 1, we give some necessary
definitions in our discussions as follows: A path $p=(e_{1}e_{2}\cdots e_{n})$ of length $n$ is a
sequence of oriented edges with $t(e_{i})=o(e_{i+1})$ for $i=1,$ $\ldots,$

$n-1$ . For a path
$p$ , we define

$\int_{p}\theta=\sum_{:=1}^{n}\theta(e_{i})$ . (3. 1)

Moreover, for a closed path $c$ , which is a path such that $t(e_{n})=o(e_{1})$ , we call
$\int_{c}\theta$ the magnetic flux of $\theta$ through $c$ .

THEOREM 3.1. Let $G$ be the maximal abelian covering of a finite graph $M$ .
Then, for any l-form $\theta\in C^{1}(M, R)$ , the lift $H_{\theta,G}$ of $H_{\theta,M}$ is unitanly equivalent
to the Laplacian $\Delta_{G}=H_{0,G}$ , Moreover, for any l-form $\theta\in C^{1}(M, R)$ , the
spectrum set Spec $(-H_{\theta,M})$ is contained in Spec $(-\Delta_{G})$ .
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Proof. The second part is obvious from the first part and Theorem A since the
lift of an eigenfunction of $H_{\theta,M}$ is bounded. So we shall show only the first part
of this theorem.

Let $\theta\in C^{1}(M, R)$ and $\theta its\sim$ lift to $G=M^{ab}$ by the covering map $\pi$ : $G\rightarrow M$ .
For any closed path $c$ in $G$ , put $c_{0}$ the image of $c$ by $\pi$ . Regarding $c_{0}$ as a l-cycle,
we have $c_{0}$ is null-homologous in $M$ since the lift of $c_{0}$ is closed in $G$ and the
transformation group is $H_{1}(M, Z)$ . Then we obtain

$\int_{c}\theta=\sim\int_{c_{0}}\theta=0$ , (3.2)

for any closed path $c$ in $G$ . By Proposition 3.2, this implies that $H_{\theta,G}$ is unitarily
equivalent to the Laplacian $\Delta_{G}=H_{0,G}$ on G. $\blacksquare$

PROPOSITION 3.2. (cf.[7]) Let $\theta_{1},$ $\theta_{2}\in C^{1}(G, R)$ be l-fonns on G. If the
magnetic flux of $\theta_{1}$ equals to the one of $\theta_{2}$ in modulo $ 2\pi$ for every closed path of
$G$ , then Spec $(-H_{\theta_{1},G})=Spec(-H_{\theta_{2},G})$ .

The proof of Theorem 3.1 is also applicable to the following two propositions.

PROPOSITION 3.3. Let $G$ be the maximal abelian covenng of a finite graph
M. Then, $G$ is bipartite, that is, $G$ has no closed path of odd length.

Proof. We choose a l-form $\theta\in C^{1}(M, R)$ such that $|\theta(e)|=\alpha\in R\backslash \{0\}$ and
$\theta(e)=-\theta(\overline{e})$ for every $e\in A(M)$ . Assume that $G$ is not bipartite, then $G$ has a
closed path $c$ of odd length. For the lift $\theta of\theta\sim$ to $G$ , it is easy to see that $\int_{c}\theta\neq\sim 0$

from the odd parity of the length $c$ . This contradicts the equality (3.2) since $G$

is the maximal abelian covering of $M$ . $\blacksquare$

Remark. M. Kotani and T. Sunada proved this proposition independently [12].

PROPOSITION 3.4. Let $G$ be the maximal abelian covenng of a finite graph
M. Then, for any transition probability $p$ : $A(M)\rightarrow R^{+}$ , its lift $p\sim on$ $G$ is
reversible even if $p$ is not reversible on $M$ .

Proof. We set the l-form $\omega$ by

$\omega(e)=\log p(e)-\log p(\overline{e})$ (3. 3)

for any $e\in A(M)$ and $\tilde{\omega}=\omega\circ\pi$ . It is sufficient to show that

$l^{\tilde{\omega}=0}$ (3.4)
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for any closed path $c=(e_{1}e_{2}\cdots e_{n})$ in $G=M^{ab}$ . See Proposition 4.3 in Ap-
pendix.

Now it follows from (3.2) that

$\int_{c}\tilde{\omega}=\int_{c_{0}=\pi(c)}\omega=0$ , (3.5)

since $c_{0}$ is null-homologous in $M$ . Thus we get the conclusion. $\blacksquare$

Now, we give another kind of application of Theorem 3.1.
From now on, we put

$p(e)=(\deg_{G}o(e))^{-1}$ (3.6)

for any $e\in A(\cdot G)$ , which gives the transition probability of a simple random
walk on $G$ . It is obvious that the function $m,$ $m(x)=\deg_{G}x=\# A_{x}(G)$ for any
$x\in V(G)$ , is a reversible measure for the above $p$ . Then, for a function $f$ on
$V(G)$ ,

$H_{\theta,G}f(x)=(\deg_{G}x)^{-1}\sum_{\epsilon\in \mathcal{A}_{x}(G)}\exp(\sqrt{-1}\theta(e))f(t(e))-f(x)$
. (3.7)

Also, the Laplacian $\Delta_{G}$ on $G$ is as follows:

$\Delta_{G}f(x)=(\deg_{G}x)^{-1}\sum_{e\in A_{\epsilon}(G)}f(t(e))-f(x)$
, (3.8)

which is one of the standard Laplacians on graphs (cf.[3, 4, 5]). Remark that,
under Assumption 1, this Laplacian $\Delta_{G}$ automatically satisfies Assumption 2.

We have a conjecture (Problem $C$ in Section 1) which is a discrete analogue
of one of the problems in [10]:

CONJECTURE 3.5. Assume that $G=M^{ab}$ for a finite graph M. Then,
Spec$(-\Delta_{G})=[0,2]$ .

This is still open up to now, but we shall give some partial solutions using
Theorem 3.1.

PROPOSITION 3.6. Under the assumption of Conjecture 3.5, let $\deg_{G}x\in 2N$

for any vertex $x\in V(G)$ . Then, Spec$(-\Delta_{G})=[0,2]$ .

Proof. Let us first recall a notion in graph theory. A closed path $c=(e_{1}e_{2}\ldots e_{n})$

in a finite graph $M$ is called an Euler circuit if $n=\# A(M)/2$ and, for each
$e\in A(M)$ , there exists $i(1\leq i\leq n)$ such that $e_{i}$ or $\overline{e:}$ equals to $e$ . It is known
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as a classical fact in graph theory that a finite graph $M$ has an Euler circuit if
and only if the degree of each vertex is even (cf.[l, 2]).

Now, since the quotient graph $M$ also satisfies $\deg_{M}x\in 2N$ for any vertex
$x\in V(M)$ , so $M$ has an Euler circuit $c=(e_{1}e_{2}\cdots e_{n})$ . Then, we put a l-form
$\theta\in C^{1}(M, R)$ as $\theta(e_{i})=\alpha\in R$ and $\theta(\overline{e_{i}})=-\alpha$ for every $i$ . It is easy to see
that $\{e_{i},\overline{e:}\}^{n}:=1=A(M)$ and

$\#\{\theta(e)=\alpha|e\in A_{x}(M)\}=\#\{\theta(e)=-\alpha|e\in A_{x}(M)\}=(\deg_{M}x)/2(3.9)$

for every vertex $x\in V(M)$ . Denote by 1 a constant function on $V(M)$ such that
$1(x)=1$ . For a l-form $\theta$ set in the above, by (3.9),

$-H_{\theta,M}1(x)=-(\deg_{M}x)^{-1}\sum_{\epsilon\in \mathcal{A}_{x}(M)}\exp(\sqrt{-1}\theta(e))1(t(e))+1(x)$

$=1-(\deg_{M}x)^{-1}\cdot(\deg_{M}x)/2\cdot(\exp(\sqrt{-1}\alpha)+\exp(-\sqrt{-1}\alpha))$

$=(1-\cos\alpha)1(x)$ . (3. 10)

This implies that the quantity 1–cos $\alpha$ is an eigenvalue $of-H_{\theta,M}$ . Thus, by
Theorem 3.1, 1-cos $\alpha\in Spec(-\Delta_{G})$ for any $\alpha\in R$ , and we get the conclusion.
$\blacksquare$

By an argument similar to that in the above, we can get some results. Before
stating them, we recall the notion of k-factor.

DEFINITION 3.7. (k-factor cf.[l, 2]) Let $G=(V(G), E(G))$ be a finite graph.
Here $E(G)$ is the set of unoriented edges. A graph $H=(V(H), E(H))$ is called
a spanning subgraph or a factor of $G$ if $V(H)=V(G)$ and $E(H)\subset E(G)$ . In
addition, a factor $H$ is called a k-factor if $\deg_{H}x=k$ for every vertex $x\in V(H)$ .

Of course, a k-factor $H$ may not be connected even if $G$ is connected.

PROPOSITION 3.8. Under the assumption of Conjecture 3.5, let $M$ be a $(2d+$

$1)$ -regular graph having a l-factor $(d\geq 1)$ . Then, Spec$(-\Delta_{G})=[0,2]$ .

Proof. Let $H$ be a l-factor of $M$ . Then, $M^{\prime}=(V(M), E(M)\backslash E(H))$ , which
may consist of some connected components, is a $2d$-regular subgraph of $M$ . So
each component $M_{j}$ of $M^{\prime}$ has an Euler circuit $c_{j}=(e_{j1}e_{j2}\cdots e_{jn_{j}})$ in $M_{j}$ , and
we can set a l-form $\theta\in C^{1}(M, R)$ as $\theta(e_{ji})=-\theta(\overline{e_{j:}})=\alpha$ for every $i,j$ , and
$\theta(\cdot)=0$ for other edges. It is easy to see that

$\#\{\theta(e)=\alpha|e\in A_{\varpi}(M)\}=\#\{\theta(e)=-\alpha|e\in A_{x}(M)\}=d$ (3. 11)
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for every vertex $x\in V(M)$ . As is in the proof of Proposition 3.6,

$-H_{\theta,M}1(x)=-(2d+1)^{-1}\sum_{e\in A_{x}(M)}$
exp $(\sqrt{-1}\theta(e))1(t(e))+1(x)$

$=\frac{2d}{2d+1}(1-\cos\alpha)1(x)$ . (3. 12)

Thus we have $[0,4d/(2d+1)]\in Spec(-\Delta_{G})$ , where $4d/(2d+1)>1$ . The con-
clusion follows from the bipartiteness of $M^{ab}$ (Proposition 3.3) and the following
fact. $\blacksquare$

PROPOSITION 3.9. (cf.[7]) If a graph $G$ is bipartite, then Spec $(-H_{\theta,G})$ is
symmetnc with respect to 1.

Remark. For example, if $M$ satisfies one of the following, the conclusion of Con-
jecture 3.5 is true.

(1) $M$ is a $2d$-regular graph. (It just follows from Proposition 3.6.)

(2) $M$ is a bipartite $(2d+1)$-regular graph. (Such a graph has a l-factor by
Hall’s theorem (cf.[l, 2]).)

(3) $M$ is a non-bipartite $2d$-edge-connected $(2d+1)$ -regular graph. (It is known
that such a graph has a l-factor.)

(4) $M$ is a non-bipartite $(2d+1)$-regular graph satisfying that 1) $M$ has a
$(2k+1)$-factor such that $2k+1\leq d$ , or, 2) $M$ has a 2 $k$-factor such that
$2k\geq d+1$ , where $k\geq 1$ . (We can obtain this by imitating the procedure
in the proof of Proposition 3.8. It is known that $M$ does not always have
a l-factor even if $M$ has a k-factor $(k\geq 2)$ . There exist many criteria for
the existence of a k-factor (cf.[l, 2, 9]).)

4. Appendix

Let $G=(V(G), E(G))$ be a connected, locally finite graph, where $V(G)$ is the
set of its vertices and $E(G)$ the set of its unoriented edges. A graph $G$ may have
self-loops and multiple edges. We say $G$ is infinite (finite) if $\# V(G)$ is countably
infinite (finite). Considering each edge in $E(G)$ to have two orientations, we
introduce the set of all oriented edges; we denote it by $A(G)$ . For an edge
$e\in A(G)$ , the origin vertex and the terminus one of $e$ are denoted by $o(e)$ and
$t(e)$ , respectively. The inverse edge of $e$ is denoted by $\overline{e}$ . Let $p:A(G)\rightarrow R^{+}$ be
a transition probability such that, for every vertex $x$ ,

$\sum_{e\in A_{r}(G)}p(e)=1$
, (4. 1)
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where $A_{x}(G)=\{e\in A(G)|o(e)=x\}$ . We assume that $p$ is reversible, that is,
there exists a positive valued function $m:V(G)\rightarrow R^{+}$ such that

$m(o(e))p(e)=m(t(e))p(\overline{e})$ (4.2)

for every oriented edge $e\in A(G)$ . The function $m$ is called a reversible measure
for $p$ and it is unique, if exists, up to a multiple constant (cf. Proposition 4.3).

Set the Hilbert space

$\ell^{2}(V(G))=\{f:V(G)\rightarrow C|\sum_{\sigma\in V(G)}|f(x)|^{2}m(x)<\infty\}$
(4.3)

with the inner product $(f,g\rangle_{V}=\sum_{x\in V(G)}f(x)\overline{g(x)}m(x)$ . Put

$C^{1}(G, R)=\{\theta : A(G)\rightarrow R|\theta(\overline{e})=-\theta(e)\}$ (4.4)

and call an element of $C^{1}(G, R)$ a l-form on $G$ . For a fixed l-form $\theta$ , we define
the self-adjoint operator $H_{\theta,G}$ : $\ell^{2}(V(G))\rightarrow\ell^{2}(V(G))$ by

$H_{\theta,G}f(x)=\sum_{\epsilon\in A_{x}(G)}p(e)$
exp $(\sqrt{-1}\theta(e))f(t(e))-f(x)$ . (4.5)

We call it the discrete magnetic Schr\"odinger operator, or often simply, magnetic
Laplacian. We can easily see this operator $H_{\theta,G}$ is a bounded self-adjoint oper-
ator on $t^{2}(V(G))$ and the spectrum $of-H_{\theta,G},$ $Spec(-H_{\theta,G})$ , is a closed subset
in $[0,2]$ .

Under Assumption 1 and 2 in Section 1, we may regard a graph $G$ as a normal
covering graph of a finite graph $M$ with the covering transformation group $\Gamma$ ,
and $H_{\theta,G}$ as the lift of $H_{\theta,M}$ by the natural projection $\pi$ : $G\rightarrow M$ .

We call $G$ an abelian covering graph of $M$ if $\Gamma$ is an abelian group. In
particular, if $\Gamma$ is $H_{1}(M, Z)$ , the covering graph of $M$ is said to be the maximal
abelian covering graph of $M$ and denoted by $M^{ab}$ . For any abelian covering graph
$G$ of $M$ , there exists a covering map $M^{ab}\rightarrow G$ which factorizes the covering map
$M^{ab}\rightarrow M$ . The transformation group $\Gamma_{1}$ of the covering map $M^{ab}\rightarrow G$ is a
subgroup of $H_{1}(M, Z)$ and $\Gamma$ is isomorphic to $H_{1}(M, Z)/\Gamma_{1}$ .

The following is one of the results in a previous paper [8]:

THEOREM 4.1. ([8]) Let $\lambda_{G}(\theta)=$ inf Spec $(-H_{\theta,G})$ . If $\Gamma$ is abelian, then
$\lambda_{G}(\cdot)$ is real analytic in a neighbourhood of $O\in C^{1}(M, R)$ and $\nabla\lambda_{G}(0)=0$ . In
particula $r$, if $\theta$ is a harmonic l-form, that is, $\sum_{e\in A_{x}(M)}p(e)\theta(e)=0$ for any
$x\in V(M)$ , we have the following expression

$Hess\lambda_{G}(0)(\theta, \theta)=\frac{2}{Vol(M)}d(\theta, T_{1}\Gamma)^{2}\wedge$ , (4.6)
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where $Vol(M)=\sum_{x\in V(M)}m(x),$
$\hat{\Gamma}$ is the group of unitary characters of $\Gamma,$

$T_{1}\hat{\Gamma}$ is
the tangent space at the trivial character 1, and $d(\theta, T_{1}\hat{\Gamma})=\inf\{||\theta-\eta||_{A}|\eta\in\hat{\Gamma}\}$ .
The norm $||\cdot||_{A}$ on $C^{1}(M, R)$ is defined by

$||\theta||_{A}=\frac{1}{2}\sum_{e\in A(M)}|\theta(e)|^{2}m(o(e))p(e)$ . (4.7)

Here $\hat{\Gamma}$ is identified with a subset of the Jacobian torus $J(M)=H^{1}(M, R)/$
$H^{1}(M, Z)$ by the canonical injection and $d(\theta, \hat{\Gamma})$ is the natural distance on $J(M)$ .

COROLLARY 4.2. Suppose that $G$ is finite and $\Gamma$ is trivial. (In this case, $G$

coincides with $M$). If $\theta$ is a harmonic l-form, we have

$Hess\lambda_{M}(0)(\theta, \theta)=\frac{2}{Vol(M)}||\theta||_{A}^{2}$ . (4.8)

Remark that by the discrete version of Kodaira-Hodge theorem and Propo-
sition 3.2, we can choose a harmonic l-form $\theta^{\prime}$ for any $\theta$ on $M$ such that $H_{\theta,M}$

and $H_{\theta^{\iota},M}$ are unitarily equivalent. A representation-theoretic technique was
employed to prove this theorem. Details can be seen in [8].

Finally we give a criterion for the existence of a reversible measure for $p$ ,
which is used in the proof of Proposition 3.4.

PROPOSITION 4.3. Let $p$ be a transition prvbability on $G$ and set the l-form
$\omega$ by

$\omega(e)=\log p(e)-\log p(\overline{e})$ (4.9)

for any $e\in A(G)$ . Then, there exists a reversible measure $m$ on $V(G)$ if and
only if

$\int_{c}\omega=0$ (4. 10)

for any closed path $c=(e_{1}e_{2}\ldots e_{n})$ in G. If exists, $m$ is unique up to a multiple
constant.

Proof. To show the “iP’part, we fix an arbitrary vertex $x_{0}$ and put

$m(x)=\exp(\int_{p(x_{0},x)}\omega)$ , (4. 11)

which is independent of the choice of a path $p(x_{0}, x)$ joining from $x_{0}$ to $x$ by
(4.10). It is easy to check that the function $m$ satisfies (4.2). If both $m_{1}$ and $m_{2}$
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satisfy (4.2), then it holds that $m_{1}(t(e))/m_{2}(t(e))=m_{1}(o(e))/m_{2}(o(e))$ for any
$e\in A(G)$ . Since $G$ is connected, $m_{1}/m_{2}$ is a constant function.

Conversely, if $m$ satisfies (4.2), then the $\omega$ defined in (4.9) satisfies

$\omega(e)=\log m(t(e))$ –log $m(o(e))$ , (4. 12}

for any $e\in A(G)$ . Hence we obtain $\int_{c}\omega=0$ for any closed path $c$ . $\blacksquare$

Remark. The equality

$\prod_{i=1}^{n}p(e_{i})=\prod_{i=1}^{n}p(\overline{e_{i}})$ (4. 13)

is obviously equivalent to (4.10). The expression (4.13) in $s$tead of (4.10) is used
in the $s$ame statement as the above, for example, in [14].
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