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Abstract. Regular coverings of graphs have been treated in the literature in
various $way_{8}$ . In this paper we develop an elementary theory of regular lifts of
graphs and automorphisms by means of walks and their voltages, building thus
up certain type of “walk calculus” associated with regular coverings.

1. Introduction

In the theory of graphs and maps (that is, cellular embeddings of graphs) one
often tries to produce objects that are highly symmetric. The most frequently
used method for such a purpose seems to be the construction of regular covering

spaces. Originating in algebraic topology long time ago, the construction was
used in the sixties (in disguise, however) in the solution of the famous Heawood
map colouring problem. Since then it was combinatorialized in various ways,
and we just refer to [4] for a survey. Besides various applications in calculating
the genus of a graph (see [4] again), the covering construction was also success-
fully used in other areas. To list a few, we mention the construction of highly
symmetric trivalent graphs [2], regular maps (which, in a sense, are the “most
symmetric” maps; see e.g. $[3, 8]$ ), regular maps with forbidden external auto-
morphisms [1], and finally the largest known vertex-transitive graphs of diameter
2 and given degree [7].

A very general approach (based on group actions and their morphisms) to
coverings of topological spaces with applications to graphs can be found (to-
gether with an extensive bibliography) in [6]. For a treatment of graph coverings
aiming towards their enumeration we refer to the recent paper [5] and references
therein. Nevertheless, the theory associated with regular coverings of graphs can
be developed on a purely elementary level, considering walks in voltage graphs.
Elements of the “walk calculus” that arises this way have proved useful in all the
applications of the covering graph construction mentioned above. The purpose
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of this paper is to further develop the ideas of such a “walk calculus”, continuing
thereby the research initiated in [3].

The paper is organized as follows. We first review some concepts necessary
for our exposition, such as graphs, walks, voltage assignments on graphs, lifts of
graphs and regular coverings, lifts of automorphisms, and so on. In Section 3 we
revisit a necessary and sufficient condition for a group of graph automorphisms to
have alift and discuss in detail the associated group homomorphisms. Sometimes
the lift ofa group of automorphisms ofa graph turns out to beasplit extension
of the voltage group by the original group; necessary and sufficient conditions for
this to happen are given in Section 4. The final Section 5 is devoted to discussing
the limitations to possible extensions of the semidirect product results to lifts
of automorphism groups of regular maps. Throughout we develop a number of
formulae involving walks and voltages; this is what we call the “walk calculus”
associated with regular coverings of graphs.

2. Preliminaries

In what follows we give a brief introduction to graphs, voltage assignments,
and regular coverings; for many more details the reader is invited to consult the
excellent book [4]. All graphs and groups considered here will be finite.

As usual in topological graph theory, with every edge of a graph $\Gamma$ we will
associate a pair of oppositely directed edges called $orcS$ ; if $x$ is an arc with initial
vertex $u$ and terminal vertex $v$ then we write $u=i(x)$ and $v=t(x)$ . The
symbol $x^{-1}$ will denote the reverse arc to $x$ , with $i(x^{-1})=t(x)$ and $t(x^{-1})=$

$i(x)$ . We do not exclude the case when $u=v$ , i.e., we allow lopps (as well as
parallel edges) in our graphs. A walk in $\Gamma$ is a sequence $x_{1}x_{2}\ldots x_{k}$ of arcs
of $\Gamma$ such that $t(x_{j})=i(x_{J+1})$ for $1\leq j<k$ . The reverse walk to $W$ is the
walk $W^{-1}=x_{k}^{-1}\ldots x_{2}^{-1}x_{1}^{-1}$ . A walk $W=x_{1}x_{2}\ldots x_{k}$ is $s$aid to be a $u\rightarrow v$

walk if $i(x_{1})=u$ and $t(x_{k})=v$ ; in addition, the walk will be called closed and
u-based if $u=v$ . For the sake of convenience we admit at each vertex $u$ also the
trivial closed walk consisting only of $u$ (and no arcs at all). If $U_{1}=y_{1}y_{2}\ldots y_{m}$

and $U_{2}=z_{1}z_{2}\ldots z_{n}$ are two walks in $\Gamma$ such that $t(y_{m})=i(z_{1})$ then their
concatenation is the walk $U_{1}U_{2}=y_{1}y_{2}\ldots y_{m}z_{1}z_{2}\ldots z_{n}$ . In connection with the
“ walk calculus” we intend to develop later, note that $(U_{1}U_{2})^{-1}=U_{2}^{-1}U_{1}^{-1}$ . Also,
if $A$ is an arbitrary automorphism of $\Gamma$ and if $W=x_{1}x_{2}\ldots x_{k}$ is a walk in $\Gamma$

then the image of $W$ under $A$ is the walk $A(W)=A(x_{1})A(x_{2})\ldots A(x_{k})$ . The
identities $A(W^{-1})=(A(W))^{-1}$ and $A(U_{1}U_{2})=A(U_{1})A(U_{2})$ are obvious. For
brevity we sometimes write $AW$ instead of $A(W)$ .

Let $\Gamma$ be a connected graph and let $H$ be a group. We say that a mapping
$\alpha$ : $D(\Gamma)\rightarrow H$ is a voltage assignment if $\alpha(x^{-1})=(\alpha(x))^{-1}$ for each arc
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$x\in D(\Gamma)$ , that is, if mutually reverse arcs are assigned mutually inverse elements
in $H$ . We briefly say that $\alpha$ is a voltage assignment on $\Gamma$ in $H$ and call $H$ the
voltage group. For any walk $W=x_{1}x_{2}\ldots x_{k}$ in $\Gamma$ the net voltage of $W$ is the
product $\alpha(W)=\alpha(x_{1})\alpha(x_{2})\ldots\alpha(x_{k})$ ; observe that $\alpha(W^{-1})=(\alpha(W))^{-1}$ . The
voltage as $s$ignment $\alpha$ is said to be proper if for some (and hence each) vertex
$u$ of $\Gamma$ and for each $h\in H$ there exists a closed u-based walk in $\Gamma$ such that
$\alpha(W)=h$ . It is easy to see that if $\alpha$ is proper then for any pair of vertices
$u,$ $v\in V(\Gamma)$ and for any $h\in H$ there exists a $u\rightarrow v$ walk $U$ in $\Gamma$ with $\alpha(U)=h$ ;
we will often make use of this fact without an explicit reference.

Let $\Gamma$ be a connected graph endowed with a voltage assignment $\alpha$ in a group
$H$ . The lift $\Gamma^{\alpha}$ is the graph with vertex set $\{v_{h} ; v\in V(G), h\in H\}$ and arc set
$\{x_{h} ; x\in D(\Gamma), h\in H\}$ , where an arc $x_{h}$ emanates from the vertex $i(x)_{h}$ and
terminates at the vertex $t(x)_{h\alpha(x)}$ . Note that reverse arcs in the lift are given
by $(x_{h})^{-1}=(x^{-1})_{h\alpha(x)}$ . The lift $\Gamma^{\alpha}$ is a regular covering graph of $\Gamma$ , and the
mapping $\pi$ : $D(\Gamma^{\alpha})\rightarrow D(\Gamma)$ which erases subscripts, that is, $\pi(x_{h})=x$ for
each $x\in D(\Gamma)$ and each $h\in H$ , is a graph homomorphism called the (regular)
covering prvjection. It is easy to see that the lift $\Gamma^{\alpha}$ is a connected graph if and
only if the voltage assignment $\alpha$ is proper.

Along with lifting graphs we shall also be interested in lifting graph auto-
morphisms. Let again $\Gamma$ be a connected graph and let $\alpha$ be a proper voltage
assignment on $\Gamma$ in a group $H$ . Consider an automorphism $A$ of the graph
$\Gamma$ . We say that A lifts to an automorphism $\tilde{A}$ of the lift $\Gamma^{\alpha}$ if $\pi\tilde{A}=A\pi$ (the
composition is to be read from the right to the left). Leaving a more detailed
discussion of lifts of automorphisms to the next section, at this point we just
note that the identity automorphism $id$ of $\Gamma$ has $|H|$ lifts, namely, the mappings
$id_{h}$ : $\Gamma^{\alpha}\rightarrow\Gamma^{\alpha},$ $h\in H$ , where $id_{h}(x_{g})=x_{hg}$ . Observe also that this way the
voltage group $H$ has a regular action on each fibre $\pi^{-1}(x),$ $x\in D(\Gamma)$ ; hence the
adjective “regular” in the term for $\Gamma^{\alpha}$ and $\pi$ .

Continuing in the above exposition, let us now con$s$ider a group $G$ of auto-
morphisms of $\Gamma$ and let us assume that each automorphism of $G$ has a lift. Let
$G^{\alpha}$ denote the collection of all lifts of all automorphisms of $G$ . It is easy to
see that $G^{\alpha}$ again is a group, called the lift of $G$ (with respect to the voltage
assignment $\alpha$). Also, an easy calculation shows that the lift of the trivial group
$\{id\}^{\alpha}=\{id_{h} ; h\in H\}\simeq H$ is a normal subgroup of the lifted group $G^{\alpha}$ , and
hence the lift $G^{\alpha}$ is always isomorphic to some extension of the voltage group
$H$ . The question of when this extension is a semidirect product will be treated
in detail in Section 4.

For notational convenience, in order to distinguish between unit elements of
the groups that appear frequently in our exposition we keep using the symbol
$id$ for the identity automorphism of $\Gamma$ and 1 for the unit element of the voltage
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group $H$ . Also, we will occasionally omit brackets when no confucion is likely;
for example, we can write $\alpha(AW)$ instead of $\alpha(A(W))$ , etc.

3. $G$-compatible voltage assignments and the associated group homo-
morphisms

Let $\Gamma$ be a connected graph nd let $\alpha$ : $D(\Gamma)\rightarrow H$ be a voltage assignment
on $\Gamma$ in a group $H$ . Let $Aut(\Gamma)$ denote the (full) automorphism group of $\Gamma$ and
let $G$ be a subgroup of $Aut(F)$ . We shall say that the voltage assignment $\alpha$

is G-compatible at a vertex $u$ if for each closed u-based walk $W$ in $\Gamma$ and each
automorphism $A\in G$ ,

(1) $\alpha(W)=1$ if and only if $\alpha(AW)=1$ .

We first show that the choice of the vertex $u$ in the above definition is immaterial.
Indeed. let $v$ be any other vertex of our connected graph $\Gamma$ and let $U$ be a fixed
$u\rightarrow v$ walk in $\Gamma$ . Now let $W$ be an arbitrary closed v-based walk in $F$ . Then,
$\alpha(W)=1$ if and only if $\alpha(UWU^{-1})=1$ . The walk $W^{\prime}=UWU^{-1}$ is closed and
u-based, so by (1) we have $\alpha(W^{\prime})=1$ if and only if $\alpha(AW^{\prime})=1$ for each $A\in G$ .
The latter is equivalent to $\alpha((AU)(AW)(AU^{-1}))=1$ , which holds if and only if
$\alpha(AW)=1$ . Thus, we have (1) for closed walks based at any vertex, as claimed.
From now on we will therefore speak about G-compatibility without specifying
a reference vertex.

The importance of the concept of G-compatibility is the following theorem
stated in [3] for maps (with a proof that readily extends to graphs); see also [6]
for a list of various predecessors.

THEOREM 1. Let $\Gamma$ be a connected graph and let $\alpha$ be a voltage assignment
on $F$ in a group H. Let $G$ be a subgroup of $Aut(\Gamma)$ . Then each automorphism
$A\in G$ lifts to an automorphism of $G^{\alpha}$ if and only if the voltage assignment $\alpha$

is G-compatible. If, in addition, the assignment $\alpha$ is proper then, $fi_{X\dot{i}}ng$ a venex
$u$ , all lifts of an automorphism $A\in G$ have the form $A_{h;u},$ $h\in H$ where

(2) $A_{h;u}(x_{\alpha(U)})=(Ax)_{h\alpha(AU)}$ for any $u\rightarrow i(x)$ walk $U$ .

We emphasize that the explicit form of lifts of automorphisms given in (2)
depends on the choice of the fixed vertex $u$ (therefore, to apply it correctly we
always have to make sure that the corresponding walk $U$ in (2) indeed emanates
from $u$ and terminates at $i(x))$ . To see this, let $A$ be an automorphism from
$G$ , let $v$ be another vertex of $\Gamma$ and let $V$ be a $u\rightarrow v$ walk in $\Gamma$ such that
$\alpha(V)=1$ (the existence of $V$ follows $f_{f}om$ the fact that $\alpha$ is proper). It is
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an easy consequence of G-compatibility of $\alpha$ that the value of $\alpha(AV)$ does not
depend on a particular choice of the $u\rightarrow v$ walk $V$ with $\alpha(V)=1$ . Now, for any
arc $x$ of $\Gamma$ and for any $u\rightarrow i(x)$ walk $U$ in $\Gamma$ the walk $V^{-1}U$ is a $v\rightarrow i(x)$ walk
with $\alpha(V^{-1}U)=\alpha(U)$ , and according to (2) we have

$A_{h;v}(x_{\alpha(VU)}-1)=(Ax)_{h\alpha(A(VU))}-1$

$=(A_{X})_{h\alpha(AV)\alpha(\mathcal{A}U)}-1-1$ .

It follows that

(3) $A_{h;v}=A_{h\alpha(\mathcal{A}V);u}-1$ for any $u\rightarrow v$ walk $V$ such that $\alpha(V)=1$ .

The mapping $\alpha(U)\vdash+\alpha(AU)$ that appears in the explicit formula (2) for
a lifted automorphism is worth further study. We begin with the following
observation.

PROPOSITION 1. Let $\Gamma$ be a connected graph, let $G<Aut(\Gamma)f$ and let $\alpha$ be a
prvper voltage assignment on $\Gamma$ in a group H. Then, the following two statements
are equivalent:

1. The voltage assignment $\alpha$ is G-compatible.

2. For each vertex $u$ , the formula
(4) $\Phi_{\mathcal{A};u}(\alpha(W))=\alpha(AW)$ for any closed u-based walk in $\Gamma$

well-defines a $b\ddot{v}ectionH\rightarrow H$ such that $\Phi_{A;u}(1)=1$ .

Moreover, if either of the above conditions is satisfied then the mapping $\Phi_{\mathcal{A};u}$ is
automatically an automorphism of the voltage group $H$ .

Proof. First, assume that $\alpha$ is a G-compatible voltage assignment. If $W$

and $W^{\prime}$ are two closed u-based walks of $\Gamma$ such that $\alpha(W)=\alpha(W^{\prime})$ , then for
the walk $W^{\prime}W^{-1}$ (which, again, is closed and u-based) we have $\alpha(W^{\prime}W^{-1})=$

$1$ . By (1) we have $\alpha(A(W‘ W^{-1}))=1$ , which quickly implies that $\alpha(AW)=$

$\alpha(AW^{\prime})$ , that is, the value of $\Phi_{\mathcal{A},u}(\alpha(W))$ does not depend on the choice of
$W$ . A $s$imilar but reverse argument shows that $\Phi_{A;u}$ is one-to-one. From the
fact that $\alpha$ is a proper voltage assignment we now see that $\Phi_{A;u}$ is a bijection
$H\rightarrow H$ ; that $\Phi_{A;u}(1)=1$ is a consequence of G-compatibility. Conversely, if
(4) well-defines a bijection of $H$ such that $\Phi_{A;u}(1)=1$ then we obviously have
G-compatibility of $\alpha$ . Finally, if $\Phi_{A;u}$ is a well-defined bijection of $H$ that fixes
1 then it is automatically an automorphism of $H$ , as for any two closed u-based
walks $W,$ $W^{\prime}$ we have $\Phi_{\mathcal{A};u}$ $(\alpha(W)\alpha(W‘))$ $=\Phi_{\mathcal{A};u}(\alpha(WW^{\prime}))=\alpha(A(WW^{\prime}))=$

$\alpha(AW)\alpha(AW^{\prime})=\Phi_{A;u}(\alpha(W))\Phi_{A;u}(\alpha(W^{\prime}))$ . $\blacksquare$
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In order to determine the way the automorphism $\Phi_{A;u}$ of Proposition 1 de-
pends on the fixed vertex $u$ , let $v$ be another vertex of the (connected) graph
$\Gamma$ . As before, we let $\alpha$ be a proper voltage assignment on $\Gamma$ in a group $H$ .
Let $h$ be an element of $H$ and let $U$ be a $u\rightarrow v$ walk in $\Gamma$ such that $\alpha(U)$

belongs to $C_{H}(h)$ , the centralizer of $h$ in $H$ . Let $W$ be an arbitrary closed
v-based walk in $F$ such that $\alpha(W)=h$ . Then the walk $W^{\prime}=UWU^{-1}$ is
closed, u-based, and since $\alpha(U)\in C_{H}(h)$ , for the net voltage of $W^{\prime}$ it holds that
$\alpha(W^{\prime})=\alpha(W)=h$ . Now, assuming that $\alpha$ is a G-compatible voltage assign-
ment for some $G<Aut(\Gamma)$ , for any $A\in G$ we have $\Phi_{\mathcal{A};u}(h)=\Phi_{A;u}(\alpha(W^{\prime}))=$

$\alpha(AW^{\prime})=\alpha(AU)\alpha(AW)\alpha(AU^{-1})=\alpha(AU)\Phi_{A;v}(\alpha(W))\alpha(AU^{-1})=$

$\alpha(AU)\Phi_{A;v}(h)\alpha(AU^{-1})$ . It follow $s$ that

(5) $\Phi_{A;v}(h)=\alpha(AU^{-1})\Phi_{A;u}(h)\alpha(AU)$

for any $u\rightarrow v$ walk $U$ such that $\alpha(U)\in C_{H}(h)$ .
We see that in general for distinct vertices $u,$ $v$ the automorphisms $\Phi_{A;u}$ and

$\Phi_{A;v}$ may be different. Therefore one has to be careful when evaluating $\Phi_{\mathcal{A};v}$ at
a particular $h\in H$ -the element $h$ must be represented as the voltage of a closed
walk based at the vertex $v$ that appears in the subscript of $\Phi_{A;v}$ . Of course, it
is of interest to look for conditions which would guarantee independence of $\Phi_{\mathcal{A}_{1}\cdot v}$

on a particular vertex $v-at$ least within a subset of vertices which is, in some
sense, naturally related to our problem. This is the subject of our next result;
to state it we introduce the concept of a G-orbit of a vertex $u$ of $\Gamma$ , which is the
set $\{A(u);A\in G\}$ .

PROPOSITION 2. Let $\Gamma$ be a connected graph, let $G<Aut(\Gamma)$ and let $u$ be a
vertex of $\Gamma$ . Let $\alpha$ be a proper G-compatible voltage assignment on $\Gamma$ in a group
H. Then the following statements are equivalent:

1. For any vertex $v$ in the G-orbit of $u$ , the mapping $\Phi_{A;v}$ defined by (4) does
not depend on $v$ ; that is, $\Phi_{\mathcal{A};v}(h)=\Phi_{\mathcal{A};u}(h)$ for each $h\in H$ .

2. The function $\Phi_{u}$ : $G\rightarrow Aut(H)$ such that, for each $A\in G,$ $\Phi_{u}(A)=\Phi_{A;u}$

where $\Phi_{\mathcal{A};u}$ is given by (4), is a group homomorphism $G\rightarrow Aut(H)$ ,

3. For any vertex $v$ in the G-orbit of $u$ and for any $u\rightarrow v$ walk $U$ in $\Gamma$ , for
any closed v-based walk $W$ and any $A\in G$ we have

(6) $\alpha(U)\in C_{H}(\alpha(W))$ if and only if $\alpha(AU)\in C_{H}(\alpha(AW))$ .

Proof. $1\Rightarrow 2$ . Let $A,$ $B$ be two automorphisms from $G$ and let $v=B(u)$ . Let
$W$ be a closed u-based walk in $\Gamma$ ; then $B(W)$ is a closed walk that is v-based.
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Now, assuming the statement 1 with $h=\alpha(BW)$ and using the definition of
$\Phi_{A;u}$ given in (4) we obtain

$\Phi_{A;u}\Phi_{B;u}(\alpha W)=\Phi_{\mathcal{A};u}(\alpha(BW))=\Phi_{A;v}(\alpha(BW))=\alpha(ABW)=\Phi_{AB;u}(\alpha W)$ ,

which proves the statement 2.
$2\Rightarrow 3$ . Let $v$ be an arbitrary vertex of the G-orbit of $u$ , that is, $v=B(u)$ for

some $B\in G$ . Let $W$ be a closed v-based walk in $\Gamma$ and let $U$ be a $u\rightarrow v$ walk
in $\Gamma$ such that $\alpha(U)\in C_{H}(\alpha(W))$ . Note that then for the closed u-based walk
$UWU^{-1}$ we have $\alpha(UWU^{-1})=\alpha(W)$ . For any $A\in G$ we have, according to
(4) and the statement 2:

$\alpha(AW)=\Phi_{\mathcal{A}B;u}(\alpha(B^{-1}W))=\Phi_{A;u}\Phi_{B;u}(\alpha(B^{-1}W))$

$=\Phi_{A;u}(\alpha W)=\Phi_{A;u}(\alpha(UWU^{-1}))=\alpha(A(U)A(W)A(U^{-1}))$ .

This shows that $\alpha(U)\in C_{H}(\alpha(W))$ implies that $\alpha(AU)\in C_{H}(\alpha(AW))$ . Con-
versely, assume that $\alpha(AU)\in C_{H}(\alpha(AW))$ . Then, setting $h=\alpha(W)$ and
$h^{\prime}=\alpha(UWU^{-1})$ we successively obtain (using the statement 2 in the mid-
dle of our computation and making sure that the evaluation is carried out at
appropriate closed walks):

$\Phi_{A;u}(h^{\prime})=\Phi_{\mathcal{A};u}(\alpha(UWU^{-1}))=\alpha(A(U)A(W)A(U^{-1}))=\alpha(AW)$

$=\Phi_{\mathcal{A}B;u}$ (a $(B^{-1}W)$ ) $=\Phi_{\mathcal{A};u}\Phi_{B;u}(\alpha(B^{-1}W))=\Phi_{A;u}(\alpha(W))$

$=\Phi_{A,u}(h)$ .

Since, by Proposition 1, $\Phi_{A;u}$ is an automorphism of $H$ , we have $h=h^{\prime}$ , that is,
$\alpha(U)\in C_{H}(\alpha(W))$ , which completes the proof of the statement 3.

The implication $3\Rightarrow 1$ follows immediately from the analysis leading to the
formula (5). $\blacksquare$

For Abelian voltage groups we have the $fo$llowing obvious corollary of the
above results.

COROLLARY 2. Let $G$ be a group of automorphisms of a connected graph $\Gamma$ and
let $\alpha$ be a proper G-compatible voltage assignment on $\Gamma$ in an Abelian grvup $H$ .
Then the function $\Phi_{u}$ : $G\rightarrow Aut(H)$ such that, for each $A\in G,$ $\Phi_{u}(A)=\Phi_{\mathcal{A};u}$

where $\Phi_{A;u}$ is given by (4), is a group homomorphism $G\rightarrow Aut(H)$ .

4. Groups that lift to semidirect products

We continue considering a connected graph $\Gamma$ and a subgroup $G<Aut(\Gamma)$

together with a proper G-compatible voltage assignment $\alpha$ on $\Gamma$ in a group $H$ .
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By Theorem 1, the lifts $A_{g:u}$ of any particular automorphism $A\in G$ are given
by the formula (2). Let us now look at a composition of two such lifts, say, $A_{g;u}$

and $B_{h;u}$ . In order to evaluate $A_{g;u}B_{h;u}$ for any arc $x_{\alpha(V)}$ where $V$ is a $u\rightarrow i(x)$

walk in $\Gamma$ , we choose an arbitrary $u\rightarrow B(u)$ walk $U$ such that $\alpha(U)=h$ . Then,
$UB(V)$ is a $u\rightarrow i(B(x))$ walk which may be used for computing the image of
the arc $(Bx)_{\alpha(UB(V))}$ under $A_{g;u}$ according to (2):

$A_{g;u}B_{h;u}(x_{\alpha(V)})=A_{g;u}((Bx)_{h\alpha(B(V))})=A_{g;u}((Bx)_{\alpha(UB(V))})$

$=(ABx)_{g\alpha(A(U)AB(V))}=(AB)_{g\alpha(A(U));u}(x_{\alpha(V)})$

which implies the following composition law in the lifted group $G^{\alpha}$ with $u$ as a
reference vertex:

(7) $A_{g;u}B_{\alpha(U);u}=(AB)_{g\alpha(A(U))\cdot u})$ for any $u\rightarrow B(u)$ walk $U$ .

As regards inverses in the lifted group, let $A_{g;u}\in G^{\alpha}$ and let $U$ be an arbitrary
$u\rightarrow A(u)$ walk in $F$ such that $\alpha(U)=g$ . Then,

(8) $(A_{g;u})^{-1}=(A_{\alpha(U);u})^{-1}=(A^{-1})_{\alpha(AU);u}-1-1$

which can be verified by a direct computation using (7).
Under the above assumptions, representing the lifted group $G^{\alpha}$ in the form

$G^{\alpha}=\{A_{h,\cdot u} ; A\in G, h\in H\}$ we see from (7) that there is an obvious homo-
morphism $G^{\alpha}\rightarrow G$ which sends $A_{h;u}$ to $A$ ; its kernel $H^{\prime}=\{id_{h;u} ; h\in H\}$ is
a normal subgroup of $G^{\alpha}$ isomorphic to $H$ . This raises the natural question of
when the lifted group $G^{\alpha}$ is isomorphic to a split extension of the voltage group
$H$ by the group of automorphisms $G$ (or, equivalently, a semidirect product of
$H$ and $G$). By definition (see e.g. [9]), a group $L$ is a split extension of a normal
subgroup $K\triangleleft L$ by another subgroup $Q<L$ if $K\cap Q=1_{L}$ and $K.Q=L$ ; in
our case we have $L=G^{\alpha}$ and require that $K\simeq H$ and $Q\simeq G$ . Now, in general
the subgroups (isomorphic to) $H$ and $G$ may appear in $G^{\alpha}$ in ways which are
not naturally connected with the covering construction. Thus, it is unrealistic to
expect a reasonable answer to our question without specifying which copies of $H$

and $G$ we are interested in. We therefore stipulate that $K=H^{\prime}$ and as$k$ under
what conditions the lifted group $G^{\alpha}$ is a split extension of $H^{\prime}$ by a subgroup iso-
morphic to $G$ . Clearly, a necessary condition for this is that $G^{\alpha}$ at all contain $s$

a subgroup $G^{\prime}\simeq G$ . In what follows we therefore focus on subgroups $G^{\prime}\simeq G$ for
which $H^{\prime}\cap G^{\prime}=1_{G^{\alpha}}$ and $H^{\prime}G^{\prime}=G^{\alpha}$ . In order to simplify the notation, we will
denote the elements of the lifted group $G^{\alpha}$ by $A_{h}$ rather than $A_{h;u}$ (bearing in
mind the fixed vertex $u$ at all times).

First, observe that if $A_{h}$ and $A_{g}$ are elements of a subgroup $G^{\prime}<G^{\alpha}$ iso-
morphic to $G$ , then $h=g$ . Indeed, let $U$ and $V$ be two $u\rightarrow A(u)$ walks in $\Gamma$
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such that $\alpha(U)=g$ and $\alpha(V)=h$ . Then, by the inversion formula (8) we have
$(A_{g})^{-1}=(A^{-1})_{\alpha(A^{-1}U^{-1})}$ . Using now the composition law (7) we obtain:

$A_{h}(A_{g})^{-1}=A_{\alpha(V)}(A^{-1})_{\alpha(AU)}-1-1=(AA^{-1})_{\alpha(V)\alpha(A(AU))}-1-1=id_{\alpha(VU)}-1$ .
However, from the condition $H^{\prime}\cap G^{\prime}=1_{G^{a}}$ it follows that $\alpha(VU^{-1})=1$ , that
is, $\alpha(U)=\alpha(V)$ , and hence $g=h$ , as claimed. It is now an easy consequence of
the condition $H^{\prime}G^{\prime}=G^{\alpha}$ that $G^{\prime}$ necessarily has the form

(9) $G^{\prime}=\{A_{l(A)} ; A\in G\}$ for some function $l$ : $G\rightarrow H$ .

Our next aim is to investigate the function $l$ that appears in (9). As $G^{\prime}$ is
assumed to be a subgrvup of $G^{\alpha}$ , by (9) and by the composition law (7) for any
$A,$ $B\in G$ we must have

(10) $A_{l(A)}B_{l(B)}=(AB)_{l(\mathcal{A}B)}$ .
If $U$ is a $u\rightarrow B(u)$ walk in $\Gamma$ with $\alpha(U)=l(B)$ , using (7) we can evaluate the left
hand side of (10), which yields $A_{\ell(A)}B_{l(B)}=(AB)_{l(A)\alpha(AU)}$ . This immediately
implies that (10) is equivalent with the condition

(11) $\alpha(U)=l(B)$ if and only if $\alpha(AU)=(l(A))^{-1}l(AB)$

for any $A,$ $B\in G$ and any $u\rightarrow B(u)$ walk $U$ in the graph $F$ . Obviously, $l(id)=1$ .
As regards the values of $l$ for inverses of automorphisms, from the formula (8)
we quickly see that
(12) $l(A^{-1})=\alpha(A^{-1}U^{-1})$

for each $A\in G$ and any $u\rightarrow A(u)$ walk $U$ such that $\alpha(U)=l(A)$ .
So far we have seen that if the lifted group $G^{\alpha}$ is a split extension of its

subgroup $H^{\prime}\simeq H$ by a subgroup $G^{\prime}\simeq G$ then (assuming that $G$ is finite) there
exists a mapping $l$ : $G\rightarrow H$ which satisfies (11); the arguments are clearly
reversible. Before stating the result formally (and thus rectifying Theorem 5 of
[3]) let us complete the investigation by representing $G^{\alpha}$ in form of a semidirect
product $H^{\prime}\times\Psi G^{\prime}$ for a suitable group homomorphism $\Psi$ : $G^{\prime}\rightarrow Aut(H)$

provided that the condition (11) is satisfied. It follows from a general theory of
split extensions [9] that the associated group homomorphism $\Psi$ can be recovered
by considering conjugation in $G^{\alpha}$ . In order to do so let $A$ be an arbitrary
automorphism in $G$ and let $h\in H$ . Further, in the graph $\Gamma$ let $U$ be a $u\rightarrow A(u)$

walk such that $\alpha(U)=l(A)$ and let $W$ be a closed u-based walk with $\alpha(W)=h$ .
Then, according to the composition law (7) we have

$A_{l(\mathcal{A})}id_{h}(A^{-1})_{l(\mathcal{A}^{-1})}=A_{l(\mathcal{A})}id_{h}(A^{-1})_{\alpha(\mathcal{A}U)}-1-1=A_{\ell(A)}(idA^{-1})_{h\alpha(id\mathcal{A}^{-1}U^{-1})}$

$=A_{l(\mathcal{A})}(A^{-1})_{\alpha(W\mathcal{A}^{-1}(U^{-1}))}=(AA^{-1})_{\ell(A)\alpha((AW)U)}-1=id_{l(\mathcal{A})\alpha(AW)(l(A))}-1$
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It follows that the associated group homomorphism $\Psi$ : $G^{\prime}\rightarrow Aut(H)$ is given
by the formula

(13) $A\rightarrow\Psi_{A}$ where $\Psi_{A}(\alpha(W))=l(A)\alpha(AW)(l(A))^{-1}$

for any automorphism $A\in G$ and any closed u-based walk $W$ in $\Gamma$ . (The fact
that $\Psi$ is well defined is an easy consequence of G-compatibility at the vertex $u.$ )
Using the above computation in conjunction with (13), the fact that $G^{\alpha}=H^{\prime}G^{\prime}$

and the relation (10), we can now expre $ss$ the multiplication in $G^{\alpha}$ in the form

$id_{g}A_{l(A)}.id_{h}B_{l(B)}=id_{g}(A_{l(\mathcal{A})}id_{h}(A^{-1})_{l(A^{-1})})A_{l(A)}B_{l(B)}=id_{g\Psi_{\mathcal{A}}(h)}(AB)_{l(AB)}$ .

Thus, the split extension $G^{\alpha}$ of $H^{\prime}$ by $G^{\prime}$ can now be identified with the semidirect
product $H\times\Psi G^{\prime}$ whose elements are pairs $(g, A_{l(A)})$ where $g\in H$ and $A\in G$ ,
with the multiplication given by

(14) $(g, A_{l(A)})(h, B_{l(B)})=(g\Psi_{\mathcal{A}}(h), (AB)_{l(AB)})$ .

We now summarize all of the preceding discussion as follows.

THEOREM 3. Let $G$ be a group of automorphisms of a connected graph $\Gamma$ with
a fixed vertex $u$ . Let $\alpha$ be a proper G-compatible voltage assignment on $\Gamma$ in a
group H. Then the following statements are equivalent:

1. The lifted group $G_{u}^{\alpha}$ is a split extension of the subgrvup $H^{\prime}=\{id_{h} ; h\in H\}$

by some subgroup $G^{\prime}\simeq G$ .
2. There exists a mapping $l$ : $G\rightarrow H$ with the property that $\alpha(U)=l(B)$ if

and only if $\alpha(AU)=(l(A))^{-1}l(AB)$ for any $A,$ $B\in G$ and any $u\rightarrow B(u)$

walk $U$ in the graph $F$ .

Moreover, if one of the above statements holds true then $G^{\alpha}$ is isomo phic to
the semidirect product $H\times\Psi G^{\prime}$ where multiplication is given by (14) and the
associated group homomorphism $\Psi$ : $G^{\prime}\rightarrow Aut(H)$ is given by (13).

The calculations preceding Theorem 3 have all been carried out for a fixed
vertex $u$ . However, the choice of the fixed vertex playsjust a role of a”coordinate
system”. For example, the way the function $l$ associated with the group $G^{\prime}$

depends on the fixed vertex $u$ can easily be extracted from the formula (3) of
Section 3. To see this, let $l=l_{u}$ : $G\rightarrow H$ be the mapping as in the statement
2 of Theorem 3. Let $v$ be another vertex of $\Gamma$ and let $l_{v}$ be the corresponding
function which refers to $v$ as the fixed vertex. That is, returning to the extended
notation $A_{h,\cdot u}$ for lifts of automorphisms, we now want that $A_{l_{u}(\mathcal{A});u}=A_{l_{v}(A);v}$
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for each $A\in G$ . Let $V$ be an arbitrary $u\rightarrow v$ walk in $\Gamma$ with $\alpha(V)=1$ . Then,
setting $h=l_{v}(A)$ in (3) we obtain

$A_{\ell_{v}(A);v}=A_{l_{v}(\mathcal{A})\alpha(\mathcal{A}V-1})=A$

which implies that for the corresponding function $l=l_{v}$ at the fixed vertex $v$ we
have
(15) $l_{v}(A)=l_{u}(A)\alpha(AV)$ for any $u\rightarrow v$ walk with $\alpha(V)=1$ .

The reader may have realized some similarity between the group homomor-
phism $\Phi=\Phi_{u}$ : $G\rightarrow Aut(H)$ introduced in Proposition 2 of Section 3 (see also
(4)) and the homomorphism $\Psi$ : $G^{\prime}\rightarrow Aut(H)$ as defined by (13). Indeed, if the
mapping $l:G\rightarrow H$ referred to in Theorem 3 $s$atisfies $l(A)=1$ for each $A\in G$ ,
then (identifying $G^{\prime}$ with $G$) the two homomorphisms $\Phi$ and $\Psi$ are identical. We
state the consequences of this observation in form of a separate result (which the
reader is also invited to compare with statement 2 of Proposition 1). For the ease
of the formulation we will still introduce one more concept. Given a connected
graph $\Gamma$ and a group $G<Aut(F)$ , a voltage assignment $\alpha$ on the graph $\Gamma$ in a
group $H$ will be called G-supercompatible at $u$ if for each $A\in G$ and for each
walk $U$ in $F$ with both ends in the G-orbit of $u$ we have $\alpha(U)=1$ if and only if
$\alpha(AU)=1$ .

THEOREM 4. Let $\Gamma$ be a connected graph with a fixed vertex $u$ and let $G$ be a
group of automorphisms of $\Gamma$ . Let $\alpha$ be a proper G-compatible voltage assignment
on $\Gamma$ in a group H. Then the following statements are equivalent:

1. The collection $G_{1}^{\prime}=\{A_{1;u} ; A\in G\}$ forms a subgroup of the lifted group $G_{u}^{\alpha}$ ,
and, consequently, $G_{u}^{\alpha}$ is a split extension of the subgroup $H^{\prime}=\{id_{h}$ ; $ h\in$

$H\}$ by $G_{1^{\prime}}^{\prime}$

2. The voltage assignment $\alpha$ is G-supercompatible at $u$ .
3. The formula $\Phi_{\mathcal{A}}(\alpha(U))=\alpha(AU)$ where $U$ is an arbitrary walk in $\Gamma$ with

both ends in the G-orbit of $u$ , well-defines an automorphism of the voltage
group $H$ for any $A\in G$ .

Prvof. $1\Rightarrow 2$ . If $G_{1}^{\prime}$ is a subgroup of $G^{\alpha}$ then for the function $l_{u}$ : $G\rightarrow H$ we
have $l_{u}(A)=1$ for each $A\in G$ . The statement 2 of Theorem 3 implies that for
each walk $U$ of $\Gamma$ emanating from the vertex $u$ and terminating at some vertex in
the G-orbit of $u$ we have $\alpha(U)=1$ if and only if $\alpha(AU)=1$ . Using the relation
(15) we obtain that $l_{v}(A)=1$ for each vertex $v$ in the G-orbit of $u$ . Invoking the
statement 2 of Theorem 3 again, this time for the fixed vertex $v$ , we obtain the
G-supercompatibility of $\alpha$ .
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$2\Rightarrow 3$ . Let $U$ and $V$ be arbitrary two walks in $\Gamma$ with both ends in the G-orbit
of $u$ , such that $\alpha(U)=\alpha(V)$ . Assume that $U$ emanates from $u$ and terminates
at $u^{\prime}$ whereae $V$ emanates from $v$ and terminates at $v^{\prime}$ . Let $W,$ $W^{\prime}$ be walks in
$\Gamma$ emanating from $u,$ $v$ and terminating at $u^{\prime},$

$v^{\prime}$ , respectively, such that $\alpha(W)=$

$\alpha(W^{j})=1$ . Clearly $\alpha(W^{-1}UW^{\prime}V^{-1})=1$ , and by G-supercompatibility for each
$A\in G$ we have $1=\alpha(A(W^{-1}UW^{\prime}V^{-1}))=\alpha(AU)\alpha(AV^{-1})$ . Consequently,
$\alpha(AU)=\alpha(AV)$ for any two walks $U,$ $V$ in $\Gamma$ with both ends in the G-orbit of $u$

and such that $\alpha(U)=\alpha(V)$ , which proves the statement 3 (the homomorphism
part follows from the proof of Lemma 1).

$3\Rightarrow 1$ . Assuming the existence of $\Phi(A)$ for each $A\in G$ as given in the
statement 3 we may rewrite the composition law (7) of Section 4 for the special
case $g=1$ in the form

$A_{1;u}B_{\alpha(V);u}=(AB)_{1\Phi_{A}(\alpha(V));u}$ for any $u\rightarrow B(u)$ walk $V$ .

Now, if $\alpha(V)=1$ then, as $\Phi_{A}$ is a homomorphism, we have $\Phi_{\mathcal{A}}(\alpha(V))=1$ . This
implies that $G_{1}^{\prime}$ is a subgroup of $G^{\alpha}$ , which was to be shown. (Note that the
mapping $A\leftrightarrow\Phi_{\mathcal{A}}$ is now a homomorphism $G\rightarrow Aut(H)$ which, as expected,
can be identified with the homomorphism $\Psi$ defined in (13).) $\blacksquare$

The following is an obvious but important corollary of Theorems 3 and 4;
roghly speaking it states that lifts of vertex stabilizers are always semidirect
products. See also [6] for a different proof.

COROLLARY 5. Let $\Gamma$ be a connected graph endowed with a proper voltage
assignment $\alpha$ in a group H. Let $u$ be a vertex of $\Gamma$ and let $G$ be a subgroup
of $Aut(\Gamma)$ that stabilizes $u$ . Then the lifted group $G_{u}^{\alpha}$ is a split extension of the
grvup $H^{\prime}=\{id_{h}; h\in H\}$ by the subgroup $G^{\prime}=\{A_{1;u} ; A\in G\}$ .

Proof. In this case for the mapping $l$ : $G\rightarrow H$ we may set $l(A)=1$ for each
$A\in G$ , since (by the stabilizer assumption) the condition (11) coincides with
$G-(super)compatibility$ at $u$ . $\blacksquare$

5. Remarks and examples

Let us start with recalling the concept of equivalence of voltage assignments
(cf. [4]). We say that two voltage assignment $ s\alpha$ and $\alpha^{\prime}$ on a graph $\Gamma$ in the
same voltage group $H$ are locally equivalent if there exists a vertex $v$ of $\Gamma$ and an
element $h\in H$ such that $\alpha^{\prime}(x)=h\alpha(x)$ for each arc $x$ emanating from $v$ . Now,
two voltage assignments $\alpha,$

$\beta$ : $D(\Gamma)\rightarrow H$ are equivalent if there is a $s$equence
of voltage assignment$s\alpha=\alpha_{1},$ $\alpha_{2},$

$\ldots,$
$\alpha_{k}=\beta$ such that $\alpha_{j}$ and $\alpha_{j+1}$ are locally

equivalent for $1\leq j<k$ .
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Equivalence of voltage assignments is important for various reasons (see e.g.
$[4, 5])$ . owever, looking at our results concerning the semidirect product we see
that neither the G-supercompatibility condition of Theorem 4 nor the condition 2
of Theorem 3 are invariant under voltage assignment equivalence. It is therefore
tempting to expect here a result that would in one way or another refer to voltage
assignment equivalence. To be more concrete, one could expect that (perhaps)
for a voltage assignment $\alpha$ satisfying the statement 2 of Theorem 3 there could
exist an equivalent G-supercompatible assignment. Unfortnately, this is not
the case even when restricted to automorphisms of regular maps which we now
introduce.

A map $M$ is a (connected) 2-cell embedded finite graph $\Gamma$ in some closed
surface; we confine ourselves here to orientable surfaces. A map automorphism
of $M$ is an automorphism of the underlying graph $F$ which, in addition, preserves
the faces of the map and the orientation of the surface. It is well known that
the group $Aut(M)$ of all map automorphisms of $M$ always acts freely on the
set of arcs of the underlying graph $\Gamma$ . We say that a map is regular if its map
automorphism group acts regularly (that is, transitively and freely) on the set
of arcs. Thus, informally, regular maps are the “most $s$ymmetric” maps with
respect to orientation-preserving map automorphisms.

If a proper voltage assignment $\alpha$ : $D(\Gamma)\rightarrow H$ on an underlying graph $\Gamma$

of a map $M$ has been specified, then the lifted graph $\Gamma^{\alpha}$ naturally gives rise
to a lifted map $M^{\alpha}$ such that the regular covering $\pi$ : $\Gamma^{\alpha}\rightarrow\Gamma$ extends to a
(possibly branched) covering $M^{\alpha}\rightarrow M$ ; we refer to [4] for (many) details. The
important fact to be mentioned is that the necessary and sufficient condition for
map automorphisms in a group $G<Aut(M)$ to lift onto map automorphisms of
$M^{\alpha}$ turns out to be the G-compatibility of $\alpha$ , exactly as in Theorem 1 (see e.g.
[3] for a short proof).

Returning back to our project, in what follows we give an example of a regular
map $M$ with underlying graph $\Gamma$ endowed with a proper $Aut(M)$-compatible
voltage assignment $\alpha$ in a group $H,$ $s$uch that the lifted map automorphism
group $(Aut(M))^{\alpha}$ of the (regular) lifted map $M^{\alpha}$ is a split extension of the voltage
group $H$ by $Aut(M)$ , and yet $\alpha$ is not equivalent to any $Aut(M)$-supercompatible
voltage assignment in $H$ .

EXAMPLE. Let $\Gamma$ be a graph consisting of two vertices $u,$ $v$ and three parallel
edges joining the two vertices. For definiteness, let $x,$ $y$ and $z$ be the corre-
sponding three parallel arcs of $\Gamma$ emanating from $u$ and terminating at $v$ ; for the
reverse of an arc $a\in\{x, y, z\}$ we will now use the symbol $\overline{a}$ rather than $a^{-1}$ . Let
a voltage assignment $\alpha$ on the graph $\Gamma$ in the (additive) group $H=\mathcal{Z}_{3}$ be de-
fined by letting $\alpha(x)=0,$ $\alpha(y)=1$ , and $\alpha(z)=2$ ; in agreement with the general
definition, reverse arcs receive (additively) inverse voltages. Thus, according to
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the general formula $(a_{h})^{-1}=(a^{-1})_{h+\alpha(a)}$ for reverses of arcs in the lift $\Gamma^{\alpha}$ , we
have

(16) $\overline{x};=(x_{i})^{-1},\overline{y}_{i}=(y_{i-1})^{-1}$ , and $\overline{z}_{1}=(z_{i+1})^{-1}$ for any $i\in Z_{3}$ .

Let $M$ be the toroidal map of Fig. 1 whose underlying graph is $\Gamma$ . It is
easy to check that the permutation $A=$ (xyzxyz) of $D(\Gamma)$ is an orientation-
preserving automorphism of the map $M$ . Observe that, geometrically, $A$ rotates
the map about the centre of its unique hexagonal face $F$ in the counterclockwise
direction. The group $ G=\langle A\rangle$ acts regularly on $D(F)$ and thus $M$ is, in fact,
a regular map. Also, it is not hard to verify that the voltage assignment $\alpha$ is
G-compatible, and so all automorphisms in $G$ (that is, the powers of $A$) have a
lift.

$y$

$F$
$v$

$z$

$z$
$x$

$u$

$y$

Figure 1. The toroidal regular map $M$ .

The lift $\Gamma^{\alpha}$ is isomorphic to the complete bipartite graph $K_{3,3}$ , and the lift of
the map $M$ is isomorphic to the toroidal embedding $M^{\alpha}$ of $K_{3,3}$ as depicted in
Fig. 2. Note that the single face $F$ of $M$ with the (counterclockwise) boundary
walk $W=x\overline{y}z\overline{x}y\overline{z}$ of net voltage $\alpha(W)=0$ lifts to three faces $F_{i}$ of $M^{\alpha},$ $i\in Z_{3}$ ,
bounded by thb walks $W_{:}=x_{i}\overline{y}_{i}z_{t+2}\overline{x}_{i+1}y_{i+1}\overline{z}_{i+2}$ .

In all computations that follow we fix the vertex $u$ . Now, evaluating the three
lifts $A_{i}=A_{i;u}(i\in Z_{3})$ of the automorphism $A$ gives, according to the formula
(2) of Section 3 (and taking (16) into account),

$A_{0}=(x_{0}\overline{y}_{0}z_{2}\overline{x}_{1}y_{1}\overline{z}_{2})(x_{1}\overline{y}_{2}z_{0}\overline{x}_{0}y_{2}\overline{z}_{1})(x_{2}\overline{y}_{1}z_{1}\overline{x}_{2}y_{0}\overline{z}_{0})$ ,
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$y_{2}$
$x_{1}$

$F_{0}$

$v_{0}$
$z_{1}$

$u_{1}$

$x_{0}$

$y_{1}$

$z_{0}$ $u_{0}$ $z_{0}$

$F_{1}$

$v_{2}$

$y_{0}$

$x_{2}$

$z_{2}$
$u_{2}$

$v_{1}$

$F_{2}$

$x_{1}$

$y_{2}$

Figure 2. The lifted map $M^{\alpha}$ on a torus.

$A_{1}=(x_{0}\overline{y}_{1}z_{2}\overline{x}_{2}y_{1}\overline{z}_{0})(x_{1}\overline{y}_{0}z_{0}\overline{x}_{1}y_{2}\overline{z}_{2})(x_{2}\overline{y}_{2}z_{1}\overline{x}_{0}y_{0}\overline{z}_{1})$ ,
$A_{2}=(x_{0}\overline{y}_{2}z_{2}\overline{x}_{0}y_{1}\overline{z}_{1})(x_{1}\overline{y}_{1}z_{0}\overline{x}_{2}y_{2}\overline{z}_{0})(x_{2}\overline{y}_{0}z_{1}\overline{x}_{1}y_{0}\overline{z}_{2})$ .

The reader may check that for each $i\in 2_{3}$ the lifted automorphism $A_{i}$ of $\Gamma^{\alpha}$ is, at
the same time, an automorphism of the lifted map $M^{\alpha}$ , counterclockwise rotating
the face $F_{1}$ about its centre (compare with Fig. 2). It readily follows that $M^{\alpha}$ is
a regular map (which is a well known fact); moreover, just by looking at the cycle
structure of the $A_{i}’ s$ we see that the lifted group $G^{\alpha}=(Aut(M))^{\alpha}=Aut(M^{\alpha})$

is a split extension of the voltage group $H=Z_{3}$ by a subgroup $G^{\prime}$ isomorphic
to $G=Aut(M)$ .

In order to identify the extension more exactly, we explicitly compute $G^{\prime}$

together with the function $l$ . Of course $G^{\prime}$ (and hence l) need not be determined
uniquely (and in our case they are not); we choose the subgroup $G^{\prime}$ which is
obtained by considering powers of, say, $A_{1}$ . It can be checked that

$(A_{1})^{2}=(A^{2})_{2}$ , $(A_{1})^{3}=(A^{3})_{2}$ , $(A_{1})^{4}=(A^{4})_{1}$ , and $(A_{1})^{5}=(A^{5})0$ ,

and so $ G^{\prime}=\langle A_{1}\rangle$ is a subgroup of $G^{\alpha}$ isomorphic to $G$ . For the corresponding
function $l:G\rightarrow H$ introduced in (9) we have $l(id)=l(A^{5})=0,$ $l(A)=l(A^{4})=$
$1$ , and $l(A^{2})=l(A^{3})=2$ . (The fact that the condition (11) is satisfied for the
mapping $l$ can be checked directly but the computation is a bit time consuming.)
The associated homomorphism $\Psi$ : $G\rightarrow Aut(H)$ referred to in (13) is given by
$\Psi_{\mathcal{A}}(i)=2i$ where $i\in H=Z_{3}$ .
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Thus, Theorem 3 implies that the lifted group $G^{\alpha}$ is indeed isomorphic to
the semidirect product $H\times\Psi G=Z_{3}\times\Psi Z_{6}$ . However, an easy inspection shows
that our voltage assignment $\alpha$ is not equivalent to any G-supercompatible voltage
assignment.

Finally, we note that commutativity of both $G$ and $H$ does not guarantee that
the lifted group $G^{\alpha}$ is isomorphic to a split extension of $H$ by $G$ . For example,
let $\Gamma$ be a graph consisting of two vertices $u,$ $v$ and two arcs $x,$ $y$ from $u$ to $v$ .
Let $\alpha$ be a voltage assignment on $\Gamma$ in the group $Z_{2}$ such that $\alpha(x)=1$ and
$\alpha(y)=0$ . Consider the automorphism $A=(x\overline{y})(\overline{x}y)$ and let $G=\langle A\rangle\simeq Z_{2}$ . It
is easy to check that $G^{\alpha}\simeq Z_{4}$ and this is clearly not a split extension of $Z_{2}$ by
$Z_{2}$ .
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