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Abstract. Enumerative research is presently a major center of interest in topo-
logical graph theory, as in the work of Archdeacon et al [2], Gross and Furst [4],
Hofmeister $[9]-[13]$ , Kwak and Lee $[20]-[24]$ , Mizuno and Sato $[25]-[28]$ and [32],
Mohar [29], Mull, Rieper and White [30], Negami [31], etc. In this paper, we
survey some results on the enumeration of graph coverings and introduce some
unsolved problems.

Introduction

Let $G$ be a connected finite simple graph with vertex set $V(G)$ and edge set
$E(G)$ . The neighborhood of a vertex $v\in V(G)$ , denoted by $N(v)$ , is the set of
vertices adjacent to $v$ . We use $|X$ I for the cardinality of a set $X$ . The number
$\beta(G)=|E(G)|-|V(G)|+1$ is equal to the number of independent cycles in $G$

and it is referred to as the Betti number of $G$ . Let $Aut(G)$ be the group of all
automorphisms of $G$ .

A graph $\tilde{G}$ is called a covenng of $G$ with projection $p:\tilde{G}\rightarrow G$ if there is a
surjection $p:V(\tilde{G})\rightarrow V(G)$ such that $p|_{N(\tilde{v})}$ : $N(\tilde{v})\rightarrow N(v)$ is a bijection for all
vertices $v\in V(G)$ and $\tilde{v}\in p^{-1}(v)$ . We also say that the projection $p:\tilde{G}\rightarrow G$

is an n-fold covering of $G$ if $p$ is $n- t\infty one$ . A covering $p:\tilde{G}\rightarrow G$ is said to be
regular if $there\sim$ is a subgroup $A$ of the automorphism group $Aut(\tilde{G})$ of $\tilde{G}$ acting
heely on $G$ such that the quotient graph $\tilde{G}/\mathcal{A}$ is isomorphic to $G$ . The fiber of
an edge or a vertex is its preimage under $p$ .

Let $\Gamma$ be a group of automorphisms of the graph $G$ . Two coverings $p_{i}$ : $\tilde{G}_{i}\rightarrow$

$G,$ $i=1,2$ , are said to be isomorphic with respect to $\Gamma$ or $\Gamma$ -isomorphic if there
exist a graph isomorphism $\Phi$ : $\tilde{G}_{1}\rightarrow\tilde{G}_{2}$ and a graph automorphism $\gamma\in\Gamma$ such
that the diagram
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$\tilde{G}_{1}\rightarrow^{\Phi}\tilde{G}_{2}$

$p_{1\downarrow}G\underline{\gamma}G\downarrow p_{2}$

commutes. Such a $\Phi$ is called a covering isomorphism with respect to $\Gamma$ or $\Gamma-$

isomorphism. Note that for any group $\Gamma$ of automorphisms of $G$ , the covering
isomorphic relation with respect to $\Gamma$ on the coverings of $G$ is an equivalence
relation.

Every edge of a graph $G$ gives rise to a pair of oppositely directed edges.
By $e^{-1}=vu$ , we mean the reverse edge to a directed edge $e=uv$ . We denote
the set of directed edges of $G$ by $D(G)$ . Following Gross and Tucker [7], a
permutation voltage assignment $\phi$ of $G$ is a function $\phi$ : $D(G)\rightarrow S_{n}$ with the
property that $\phi(e^{-1})=\phi(e)^{-1}$ for each $e\in D(G)$ , where $S_{n}$ is the symmetric
group on $n$ elements $\{1, \ldots, n\}$ . The permutation denved graph $G^{\phi}$ is defined
as follows: $V(G^{\phi})=V(G)\times\{1, \ldots, n\}$ , and for each edge $e=uv\in D(G)$
and $j\in\{1, \ldots, n\}$ , let there be an edge $(e,j)$ in $D(G^{\phi})$ joining a vertex $(u,j)$

and $(v, \phi(e)j)$ . The first coordinate projection $p^{\phi}$ : $G^{\phi}\rightarrow G$ , called the natural
projection, is a covering. Let $A$ be a finite group. An ordinary voltage assignment
(or, A-voltage assignment) of $G$ is a function $\phi$ : $D(G)\rightarrow A$ with the property
that $\phi(e^{-1})=\phi(e)^{-1}$ for each $e\in D(G)$ . The values of $\phi$ are called voltages, and
$A$ is called the voltage group. The ordinary derived graph $ G\times\phi$ $A$ derived from
an ordinary voltage assignment $\phi$ : $D(G)\rightarrow A$ has as its vertex set $V(G)\times \mathcal{A}$

and as its edge set $E(G)\times A$ , so that an edge of $G\times\phi \mathcal{A}$ joins a vertex $(u,g)$

to $(v, \phi(e)g)$ for $e=uv\in D(G)$ and $g\in A$ . The first coordinate projection
$p_{\phi}$ : $G\times\phi A\rightarrow G$ , also called the natural projection, commutes with the left
multiplication action of the $\phi(e)$ and the right action of $\mathcal{A}$ on the fibers, which
is free and transitive, so that $p_{\phi}$ is an $|A|$-fold regular covering, called simply an
A-coven $ng$.

In this paper, we mainly discuss the enumeration of the I-isomorphism classes
of coverings of $G$ , where $I$ is the trivial automorphism group {1} of $G$ . From
now on, we shall assume that the isomorphism classes of coverings stand for the
I-isomorphism classes of them. Waller [34] studied the structures of double cover-
ings of $G$ . After then, Hofmeister [9] enumerated the isomorphism classes of dou-
ble coverings of $G$ . Kwak and Lee $[20, 23]$ enumerated the isomorphism classes
of graph bundles and those of all finite-fold graph coverings. Hofmeister $[10, 13]$

independently enumerated the isomorphism classes of all finite-fold graph cover-
ings. But the enumeration of the isomorphism classes of regular graph coverings
has not been answered completely. As its partial answers, Hofmeister [9] enu-
merated the isomorphism classes of regular double coverings of $G$ , Kwak and
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Lee [21], and Sato [32] did the same work for regular prime-fold coverings. Hong
and Kwak [14] did it for regular four-fold coverings. Hofmeister [11] enumer-
ated the isomorphism classes of $\oplus_{\dot{\iota}=1}^{n}\mathbb{Z}_{p}$ -coverings. Recently, Kwak et al [18]
enumerated the isomorphism classes of $A$-coverings when $A$ is a finite abelian
group or the dihedral group $D_{n}$ . Notice that there are also several interesting
result $s$ on the enumeration of the $\Gamma$-isomorphism classes of graph coverings for
any nontrivial subgroup $\Gamma$ of $Aut(G)$ . For example, Hofmeister [9] enumerated
the F-isomorphism classes of double coverings and Sato $[28, 32]$ did the same
work for $\mathbb{Z}_{2}\times \mathbb{Z}_{2^{-}}$ or $h$-coverings. When $\Gamma$ fixes a spanning tree of $G$ , some
results on the enumeration of the $\Gamma$-isomorphism classes of graph coverings can
be found in [15] and [20]. It can be also found in [3], [12], [26] and [27] that
several generalized notion of graph coverings and some interesting results on the
enumeration of the isomorphism classes of them.

This paper is organized as follows. In section 1, we deal with some algebraic
characterizations when given two coverings are isomorphic and derive some new
enumeration formulas for the F-isomorphism classes of regular coverings. In
section 2, we treat some explicit enumeration formulas for graph coverings. In
section 3, we conclude with some problems.

1. Algebraic characterizations

Gross and Tucker [7] showed that every covering $\tilde{G}$ (resp. regular covering)
of $G$ can be described by a permutation (resp. ordinary) voltage assignment. By
the virtue of their work, we may enumerate the isomorphism classes of coverings
of $G$ by enumerating some equivalence classes of voltage assignments of $G$ .

THEOREM 1. ([20]) Let $\Gamma$ be a subgrvup of $Aut(G)$ and $\phi,$ $\psi$ : $D(G)\rightarrow S_{n}$

permutation voltage assignments. Then two n-fold coverings $G^{\phi}$ and $G^{\psi}$ are
isomorphic with respect to $\Gamma$ if and only if there exist a function $f:V(G)\rightarrow S_{n}$

and $\gamma\in\Gamma$ such that
$\psi(\gamma u\gamma v)=f(v)\phi(uv)f(u)^{-1}$

for each $uv\in D(G)$ .

Notice that an equivalent form of Theorem 1 can also be found in [10]. For a
finite group $A$ , let $S_{A}$ denote the set of all bijective functions on the underlying
set $A$ and $\mathcal{L}_{\mathcal{A}}$ denote the left translation group of $A,$ $i.e.,$ $\mathcal{L}_{A}$ is the group of left
translations $\mathcal{L}_{g}$ for $g\in A$ , where $\mathcal{L}_{g}(g^{\prime})=gg^{\prime}$ for all $g^{\prime}\in \mathcal{A}$ . Then Theorem 1
can be rephrased for regular coverings as follows:
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THEOREM 2. ([15]) Let $\Gamma$ be a subgrvup of $Aut(G)$ and $\phi,$ $\psi$ A-voltage assign-
ments of G. Then two A-coverings $ G\times\phi$ $A$ and $ G\times\psi$ $A$ are isomorphic with
respect to $\Gamma$ if and only if there exist a graph automorphism $\gamma\in\Gamma$ and a function
$f:V(G)\rightarrow S_{A}$ such that

$\mathcal{L}_{\psi(\gamma u\gamma v)}=f(v)\circ \mathcal{L}_{\phi(uv)}of(u)^{-1}$

for each $uv\in D(G)$ .

A finite group $A$ is said to have the isomorphism extension property (IEP)
if every isomorphism between any. two isomorphic subgroups $\mathcal{B}_{1}$ and $\mathcal{B}_{2}$ of $\mathcal{A}$

can be extended to an automorphism of $\mathcal{A}$ . For example, the cyclic group $\mathbb{Z}_{n}$

for any natural number $n$ , the dihedral group $D_{n}$ for odd $n\geq 3$ , and the direct
sum of $m$ copies of $\mathbb{Z}_{p}$ for a prime number $p$ have the IEP. Moreover, the direct
sum of two groups whose orders are relatively prime has the IEP if each direct
summand has it. However, neither $\mathbb{Z}_{2}\oplus \mathbb{Z}_{4}$ nor $D_{n},$ $n=even$ has the IEP.

THEOREM 3. ([15]) Let $\Gamma$ be a subgroup of $Aut(G)$ and $\phi,$ $\psi A$-voltage assign-
ments ofG. If either $A$ has the IEP or both $\phi$ and $\psi$ derive connected covenngs,
then the following are equivalent:

(a) Two $A$-coverings $ G\times\phi$ $A$ and $ G\times\psi$ $A$ are isomorphic with respect to $\Gamma$ .
(b) There exist a graph automorphism $\gamma\in\Gamma$ , a group automorphism $\sigma\in$

$Aut(A)$ and a function $f$ : $V(G)\rightarrow A$ such that

$\psi(\gamma u\gamma v)=f(v)\sigma(\phi(uv))f(u)^{-1}$

for each $uv\in D(G)$ .

Moreover, if $A$ is abelian, then each of these two conditions is also equivalent to
the following conditi on:

(c) There exist a graph automorphism $\gamma\in\Gamma$ , a group automorphism $\sigma\in$

$Aut(A)$ , and a function $f:V(G)\rightarrow A$ such that

$\psi(\gamma u\gamma v)=\sigma(\phi(uv))f(v)f(u)^{-1}$

for each $uv\in D(G)$ .

Let $\mathcal{A}$ be an abelian group and let $H^{1}(G;A)$ be the first cohomology group
of $G$ . We define a $\Gamma\times Aut(A)$ action on $H^{1}(G;\mathcal{A})$ by

$(\gamma, \sigma)\cdot[\phi]=[(\gamma, \sigma)\cdot\phi]$ , where $((\gamma, \sigma)\cdot\phi)(uv)=\sigma(\phi(\gamma^{-1}u\gamma^{-1}v))$
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for $(\gamma, \sigma)\in\Gamma\times Aut(A),$ $[\phi]\in H^{1}(G;A)$ , and $uv\in D(G)$ . If $A$ has the IEP, then,
by Theorem 3, two A-coverings $G\times\phi \mathcal{A}$ and $ G\times\psi$ $A$ are isomorphic with respect
to $\Gamma$ if and only if $[\phi]$ and $[\psi]$ are in the $s$ame orbit of the $\Gamma\times Aut(\mathcal{A})$ action on
$H^{1}(G;\mathcal{A})$ . Hence, the number of the $\Gamma$-isomorphism classes of the A-coverings
of $G$ is equal to $|H^{1}(G;A)/(\Gamma\times Aut(A))|$ .

For a finite group $A$ and a subgroup $\Gamma$ of $Aut(G)$ , let Isor $(G;\mathcal{A})$ (resp.,
$Isoc_{\Gamma}(G;A))$ denote the number of the F-isomorphism classes of A-coverings
(resp., connected $\mathcal{A}$-coverings) of $G$ . Let $Iso_{\Gamma}^{R}(G;n)$ (resp., $Isoc_{\Gamma}^{R}(G;n)$ ) denote
the number of the $\Gamma$-isomorphism classes of regular n-fold coverings (resp., con-
nected regular n-fold coverings) of $G$ . When $\Gamma$ is the trivial group, they are
simply denoted by $Iso(G;\mathcal{A}),$ $Isoc(G;A),$ $Iso^{R}(G;n)$ and ISOC $(G;n)$ .

By using Theorem 3, Kwak et al [18] derived some formulas for enumerating
the isomorphism classes of regular coverings. Now, we aim to derive some enu-
meration formulas for the $\Gamma$-isomorphism classes of regular coverings. It comes
from the definition of a regular covering that each component of a regular n-fold
covering of $G$ is also a connected regular d-fold covering of $G$ for a divisor $d$ of $n$ ,
and any two components are isomorphic with respect to the trivial automorphism
group of $G$ . Hence, the number of the $\Gamma$-isomorphism classes of regular n-fold
coverings with $n/d$ component $s$ is equal to the number of the $\Gamma$-isomorphism
classes of connected regular d-fold coverings. Moreover, each component of an
A-covering of $G$ is I-isomorphic to a connected S-covering of $G$ for a subgroup $S$

of $A$ . Let $A$ and $B$ be two non-isomorphic groups such that $|\mathcal{A}|=|\mathcal{B}|$ . Then, by
a method similar to the proof of Theorem 3, we can have that, for each subgroup
$\Gamma$ of $Aut(G)$ , every connected A-covering of $G$ can not be $\Gamma$-isomorphic to any
B-covering of $G$ . Hence, we have the following theorems.

THEOREM 4. For any natural number $n$ and any subgrvup $\Gamma$ of $Aut(G)$ ,

$Iso_{\Gamma}^{R}(G;n)=\sum_{d|n}Isoc_{\Gamma}^{R}(G;d)$
and $Isoc_{\Gamma}^{R}(G;n)=\sum_{A}Isocr(G;A)$ ,

where A runs over all representatives of the isomorphism classes of groups of
order $n$ .

THEOREM 5. For any finite group $\mathcal{A}$ and any subgroup $\Gamma$ of $Aut(G)$ ,

$Iso_{\Gamma}(G;A)=\sum_{s}Isoc_{\Gamma}(G;S)$ ,

$\mathcal{A}wheoeS$
runs over all representatives of the isomorphism classes of subgrv ups of

Theorems 4 and 5 say that the computation of the number $Iso_{\Gamma}^{R}(G;n)$ may be
completed if one can compute the number Isocr $(G;A)$ for each group $A$ whose
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order is a divisor of $n$ . In general, for a non-trivial subgroup $\Gamma$ of $Aut(G)$ , it
is very hard to derive a formula for computing the number $Isoc_{\Gamma}(G;A)$ . The
computation of the number $Isoc_{\Gamma}(G;\mathcal{A})$ has been done for only few cases (see
the table in Section 3). When $\Gamma=I$ , Kwak et al [18] computed this number as
follows.

THEOREM 6. For any finite group $A$ ,

Isoc $(G;A)=\frac{|\mathfrak{G}(\mathcal{A};\beta(G))|}{|Aut(A)|}$ ,

where $\mathfrak{G}(A;n)=$ { $(g_{1},$ $g_{2},$ $\ldots g_{n})\in \mathcal{A}^{n}$ : $\{g_{1},g_{2},$ $\ldots g_{n}\}$ generates $A$ }.

THEOREM 7. For any two finite groups $\mathcal{A}$ and $\mathcal{B}$ with $(|A|, |\mathcal{B}|)=1$ ,

Isoc $(G;\mathcal{A}\oplus \mathcal{B})=Isoc(G;\mathcal{A})Isoc(G;\mathcal{B})$ ,

and
$Iso(G;A\oplus \mathcal{B})=Iso(G;\mathcal{A})Iso(G;\mathcal{B})$ .

Note that, even though $Iso(G;A\oplus \mathcal{B})=Iso(G;\mathcal{A})Iso(G;\mathcal{B})$ for $(|A|, |\mathcal{B}|)=1$ ,
it does not hold that $Iso^{R}(G;mn)=Iso^{R}(G;m)Iso^{R}(G;n)$ for two relatively
prime numbers $m$ and $n$ , because there may be a group of order $mn$ which can
not be expressed as a direct sum of two groups of order $m$ and $n$ . For example,
the dihedral group D3 of order 6 is not isomorphic to the direct sum of the two
cyclic groups $\mathbb{Z}_{2}$ and $\mathbb{Z}_{3}$ .

2. Some explicit formulas

In this section, we introduce some known explicit enumeration formulas for
the isomorphism classes of graph coverings.

The enumeration of the isomorphism clas$s$es of n-fold coverings of $G$ was
completely done by Kwak and Lee [20], and independently Hofmeister [10].

THEOREM 8. ([10], [20]) The number $Iso(G;n)$ of the isomorphism classes of
n-fold covenngs of $G$ is

$Iso(G;n)=\sum_{\ell_{\iota+2\ell_{2}+\cdots+n\ell_{n}=n}}(\ell_{1} ! 2^{\ell_{2}}\ell_{2}! \cdots n^{\ell_{n}}\ell_{n}!)^{\beta(G)-1}$
.



ENUMERATION OF GRAPH COVERINGS 107

For convenience, let $\mathfrak{P}(n)$ denote the set of all partitions of the natural num-
ber $n$ . For a partition $\mathfrak{p}$ of $n$ , let $j_{k}(\mathfrak{p})$ denote the multiplicity of $k$ in the partition

$\mathfrak{p}$ , so that $j_{1}(\mathfrak{p})+2j_{2}(\mathfrak{p})+\cdots+nj_{n}(\mathfrak{p})=n$ . By using this terminology, Kwak and
Lee [23] enumerate the number of the isomorphism classes of connected n-fold
coverings as follows. (also see Hofmeister [13]).

THEOREM 9. ([23]) For $n\geq 2$ , the number of the isomorphism classes of
connected n-fold covenngs of $G$ is

Isoc $(G;n)$

$=\sum_{l_{1}+2l_{2}\cdots+(n-1)\ell_{*-1}=n-1}((t_{1}+1)^{\beta(G)-1}-1)$

$\times(f_{1} ! 2^{\ell_{2}}\ell_{2}!\cdots(n-1)^{l_{n-1}}\ell_{n-1}!)^{\beta(G)-1}$

$+\sum_{2\ell_{2}+u_{\theta}+\cdots+n\ell.=n}(2^{\ell_{2}}\ell_{2}!3^{l_{\theta}}\ell_{3}!\cdots n^{\ell_{n}}\ell_{n}!)^{\beta(G)-1}$

$-\sum_{\mathfrak{p}\in \mathfrak{P}(n)-\{[[n,\cdot 1]]\}j_{k}}\prod_{(\mathfrak{p})\neq 0}$ ( $\frac{1}{j_{k}(\mathfrak{p})!}\prod_{\ell=0}^{j_{k}(\mathfrak{p})-1}$ (Isoc $(G;k)+\ell$)) ,

$j_{1}(p)=0$

where the summation over the empty index set is defined to be $0$ .

Notice that the number of the isomorphism classes of connected n-fold cov-
erings of $G$ is equal to the total number of the conjugacy classes of subgroups of
index $n$ of the free group generated by $\beta(G)$ elements.

For any natural number $n$ , the enumeration of the isomorphism classes of
regular n-fold coverings is much harder than that of all coverings. It has been
done for only few cases.

THEOREM 10. ([9], [20], [32])

(a) The number of the isomorphism classes of double covenngs (resp. con-
nected double coverings) of $G$ is

$Iso^{R}(G;2)=2^{\beta(G)}$ and (resp. ISOC $(G;2)=2^{\beta(G)}-1$ ).

(b) For any pnme number $p$, the number of the isomorphism classes of regular
p-fold covemngs (resp. connected regular p-fold covenngs) of $G$ is

$Iso^{R}(G;p)=\frac{p^{\beta(G)}+p-2}{p-1}$ and $(resp$ . $Isoc^{R}(G;p)=\frac{l^{(G)}-1}{p-1})$ .
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The number of the isomorphism classes of A-coverings was computed when
$\mathcal{A}=h$ ([20, 32]), $A=h^{2}$ ([21]), $\oplus_{1=1}^{n}\mathbb{Z}_{p}([11])$ , etc. Almost all of these result $s$

can be contained in the following.

THEOREM 11. ([18]) Let $m_{1},$ $\ldots m_{\ell}$ and $s_{1},$ $\ldots s_{\ell}$ be natural numbe $rs$ with
$s_{l}<$ . . . $<s_{1}$ . Then the number of the isomorphism classes of connected
$\oplus_{h=1}^{\ell}m_{h}h\cdot\hslash$ -coverings of $G$ is

$\prod p^{\beta(G)-i+1}-1m$

Isoc $(G;\oplus_{h=1}^{\ell}m_{h}b\cdot h)=p^{f(\beta(G),m:,s_{i})_{\frac{1=1}{\ell m_{j}}}}$ ,

$\prod_{j=1}\prod_{h=1}p^{m_{j}-h+1}-1$

where $m=m_{1}+\cdots+m\ell,$ $p$ is prime and

$f(\beta(G), m_{i,}s_{i})=(\beta(G)-m)(\sum_{j}^{\ell}m_{i}(s_{i}-1))+\sum_{i=1}^{\ell-1}m;t_{=}\sum_{j+1}^{p}m_{j}(s_{i}-s_{j}-1))$ .

Now, we can calculate the number $Iso(G;A)$ or Isoc$(G;A)$ for any finite
abelian group $A$ by using Theorems 5, 7 and 11 repeatedly if necessary. As a
consequence, we can obtain a formula to calculate the number of the subgroups
of a given index of any finitely generated free abelian group.

For a non-abelian group $A$ , there is no explicit formulas for computing the
number $Iso(G;A)$ except that $A$ is the dihedral group $D_{n}$ of order $2n$ .

THEOREM 12. ([18]) For any $n\geq 3$ , the number of the isomorphism classes of
connected $D_{n}$ -coveri ngs of $G$ is

Isoc $(G;D_{n})=(2^{\beta(G)}-1)\prod_{i=1}^{\ell}p_{i}^{(m:-1)(\beta(G)-2)}\frac{p_{i}^{\beta(G)-1}-1}{p_{i}-1}$ ,

where $p_{1}^{m_{1}}\cdots p_{\ell}^{m_{\ell}}$ is the pnme decomposition of $n$ .

Note that, by using the enumeration formulas discussed in Section 1 and
Section 2, we can obtain explicit enumeration formulas for the isomorphism
classes of (connected) regular n-fold coverings of $G$ when $n=p,$ $n=2p,$ $n=p^{2}$

or $n=p^{3}$ , where $p$ is a prime number.
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3. Further remarks

In this section, we discuss some unsolved problems related to the enumeration
of graph coverings. The known results on the enumeration of graph coverings
are listed in following table.

From this table, we can ask the following problems.

PROBLEM 1. For any natural number $n$ and any group $\Gamma$ of automorphisms of
$G$ , enumera $te$ the F-isomorphism classes of (connected) n-fold coverings of $G$ .

PROBLEM 2. For any natural number $n$ and any gmup $\Gamma$ of automorphisms of
$G$ , enumerate the $\Gamma$ -isomorphism classes of (connected) regular n-fold covenngs
of $G$ .

PROBLEM 3. For any finite group $A$ and any grvup $\Gamma$ of automorphisms of $G$ ,
enumerate the $\Gamma$ -isomorphism classes of (connected) A-coverings of $G$ .

Note that if one can solve Problem 3 for any group of order $n$ , then the num-
bers $Iso_{\Gamma}^{R}(G;n)$ or $Isoc_{\Gamma}^{R}(G;n)$ can be computed. A weak version of Problem 3
is the following.

PROBLEM 4. For any finite non-abelian group $\mathcal{A}$ , enumera $te$ the I-isomorphism
classes of (connected) A-coverings of $G$ .

Recently, Mizuno and Sato introduced the notion of a g-cyclic cover of a
symmetric digraph as a generalization of a regular covering ([27], [28]). Sato [33]
mentioned some open problems for the enumeration of the isomorphism classes
of g-cyclic covers. Anyone interested in this topic is suggested to read his paper.

An enumeration of covering graphs can be applied to classify surface branched
coverings (see [8], [19]).
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PROBLEM 5. For any pair of surfaces $S$ $and\sim S$ , and natural number $n$ , enumer-
ate the equivalence classes of the (regular) branched n-fold coverings $p:S\sim\rightarrow S$ .

PROBLEM 6. For any pair of surfaces $S$ $and\sim S$ , and finite grvup $A$ , enumerate
the equivalence classes of the regular branched coverings $p:S\sim\rightarrow S$ whose coverzng
$tm$nsformation groups are $A$ .

If Problem 6 is solved for a finite group $\mathcal{A}$ , then one can deduce some inter-
esting results about A-actions on surfaces. Problem 6 was solved in [19] and [24]
when the covering transformation group $\mathcal{A}$ is $h,$ $h\times \mathbb{Z}_{q}$ or the dihedral group
$D_{p}$ , where $p$ and $q$ are distinct primes.

Acknowledgement. The author would like to express his gratitude to pro-
fessor Negami and professor Sato for their nice and warm hospitality.
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