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Abstract. Let $M$ be a closed 2-manifold. A face coloring of a triangulation
$T$ of $M$ is called a cyclic coloration if, for any vertex, the incident faces have
different colors. Let $V(T)$ denote the vertex set of $T$ . We $co\iota\dot{u}ecture$ that there
will be found a constant $C(M)$ so that $|V(T)|+C(M)co$lors are enough for cyclic
coloration of any triangulation $T$ of $M$ . When $M$ is not the projective plane, we
conjecture that $|V(T)|$ colors will suffice, whenever $T$ is minimal with respect to
the number of vertices. If this conjecture is true, the formula for the minimum
number of vertices in a triangulation of a given 2-manifold with boundary is
determined to have at most one gap.

1. Introduction

In this note we consider only connected, compact 2-manifolds, with or with-
out boundary. Every 2-manifold is uniquely determined, up to homeomorphisms,
by this triple: {orientability class, Euler characteristic, number of boundary
components}. Every orientable 2-manifold $M_{\sigma}=M_{\chi,\sigma}$ with boundary is ob-
tained from a closed orientable 2-manifold $M=M_{\chi}$ with Euler characteristic
$\chi$ by deleting some $\sigma$ disjoint open 2-disks. The deleted disks are the ”holes”
of $M_{\chi,\sigma}$ . We sometimes omit $\chi$’in indices. The nonorientable antipode of an
orientable 2-manifold $M$ will be differentiated by a tilde in notation, $\tilde{M}$ . As
matter of notation, $M_{\chi}=M_{\chi,0}$ is a closed 2-manifold.

We first introduce the concept of a “cyclic coloration of a triangulation” $T$ of
a fixed closed 2-manifold $M$ . A face coloring of $T$ is called a cyclic coloration if,
for any vertex, the incident faces have different colors. By $V(T)$ we denote the
vertex set of $T$ . We conjecture that there will exist a constant $C(M)$ such that
$|V(T)|+C(M)$ colors suffice for cyclic coloration of any triangulation $T$ of $M$ .
By $V_{\min}(M)$ we denote the minimum number of vertices that a triangulation of
a given 2-manifold $M$ can have. Then a triangulation $T$ of $M$ is called a minimal
triangulation if $|V(T)|=V_{\min}(M)$ . We conjecture that $|V(T)|$ colors will suffice
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for cyclic coloration of any minimal triangulation $T$ of any closed 2-manifold $M$ ,
not the projective plane. This conjecture would imply the completeness of the
formula, Eq.(7) obtained in Section 3, for the minimum number of vertices which
a triangulation of a given 2-manifold with boundary can have.

2. Cyclic colorations

The cyclic chromatic number of a triangulation $T$ of a given 2-manifold $M$ is
denoted by $\xi(T)$ and is defined to be the smallest number of colors that suffice
for cyclic coloration of $T$ .

CONJECTURE 1. Let $M=M_{\chi}$ be a closed 2-manifold (orientable or nonori-
entable), not the projective plane, and let $T$ be a minimal tnangulation of $M_{\chi}$ .
Then
(1) $\xi(T)=|V(T)|=V_{\min}(M_{\chi})$ .

For example, consider the complete graph $K_{7}$ whose vertices are labeled by
$0,1,2,3,4,5$ and 6. Let us interpret these labels as the elements of the
cyclic group $Z_{7}$ , the additive group of integers modulo 7. It is well-known
that $K_{7}$ admits a triangulation of the torus $M_{0}$ which is minimal. One such
triangulation is induced by the following triangular rotation scheme, taken from
Ringel’s book [5]:

$0$ . 1 3 2 6 4 5
1. 2 4 3 $0$ 5 6
2. 3 5 4 1 6 $0$

3. 4 6 5 2 $0$ 1
4. 5 $0$ 6 3 1 2
5. 6 1 $0$ 4 2 3
6. $0$ 2 1 5 3 4

Each row indicates the cyclic ordering of the vertices around the correspond-
ing vertex. This means, for instance, that row $0$ induces the faces $013,032,026$ ,
$064$ , 045 and $051$ . Let us color the faces of this triangulation algebraically;
associate the colors with the elements of $Z_{7}$ and color face uvw with $u+v+w$
modulo 7. The so-obtained face coloring is a cyclic coloration, which is easily
seen from the following two observations.

(i) Row $0$ of the scheme is precise, i.e., the sums of the neighboring elements,
in pairs in cyclic order around $0$ , are all different (addition is always carried
out in the group $Z_{7}$).
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(ii) The scheme is of index 1, i.e., row $i$ is obtained from row $0$ by adding $i$ to
each element.

It would be tempting to apply the same algebraic method for cyclic coloration
of the other minimal triangulations of the Map Color Theorem presented in [5],
since they are usually of index 1 (in particular, in the regular orientable Cases 7
and 10). Unfortunately, except the above example, we have failed to identify a
scheme in [5] with precise row $0$ .

Note that in Conjecture 1 we have to exclude the case of the projective plane.
For, the familiar embedding of the complete graph $K_{6}$ in the projective plane is
a triangulation with ten faces, by Euler’s formula. Since any two faces have at
least one vertex in common, the cyclic chromatic number of this triangulation is
10.

The minimality assumption is essential, too. For instance, consider $K_{5}$ with-
out one edge in the 2-sphere $M_{2}$ .

In the general case, we obviously have $\xi(T)\geq\Delta(T)$ , where $\Delta(T)$ denotes the
maximum degree of a vertex of $T$ . It is a sensible task to estimate $\xi(T)$ above
by an expression of the form $\Delta(T)+C(M)$ , where $C(M)$ is some (yet unknown)
constant.

Plummer and Toft [3] studied the dual of this problem. They colored the
vertices of an embedding $\Psi$ : $G\rightarrow M_{2}$ of a planar graph $G$ in the 2-sphere $M_{2}$

cyclically, i.e., so that vertices on the same face receive different colors.

THEOREM 1. (Plummer and Toft [3]) For every spherical embedding $\Psi$ : $ G\rightarrow$

$M_{2}$ of a 3-connected graph $G$ , we have

(2) $\xi^{*}(\Psi)\leq\Delta^{*}(\Psi)+9$ ,

where $\xi^{*}(\Psi)$ denotes the minimum number of colors that suffice to color the
vertices of $\Psi$ cyclically and $\Delta^{*}(\Psi)$ denotes the maximum size of a face of $\Psi$ . $\blacksquare$

We do not know any results dealing with cyclic coloration of graphs embedded
in 2-manifolds other than the 2-sphere.

Now we return to the cyclic (face) colorations of triangulations. As the
extremal possibility, we have $\Delta(T)=|V(T)|-1$ . This extreme is the case in
pyramidal triangulations, i.e., triangulations having a vertex adjacent to all other
vertices; in particular, minimal triangulations are normally pyramidal (see [5]).
Therefore, it is also a sensible task to establish upper bounds of the form $|V(T)|+$

$C(M)$ .

CONJECTURE 2. Let $M$ be a closed 2-manifold. Then therue will exist a con-
stant $C(M)$ such that
(3) $\xi(T)\leq|V(T)|+C(M)$
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for any tnangulation $T$ of $M$ , and therefore

(4) $\lim_{|V(T)}\sup_{1\rightarrow\infty}\frac{\xi(T)}{|V(T)|}=1$

over tnangulations $T$ of $M$ .

3. Application to minimal triangulations

The number $V_{\min}(M)$ has been determined by Ringel [4] for each nonori-
entable closed 2-manifold $M=\tilde{M}_{\chi}$ , and by Jungerman and Ringel [2] for each
orientable closed 2-manifold $M=M_{\chi}$ :

(5) $ V_{\min}(M)=\lceil\frac{7+\sqrt{49-24\chi}}{2}\rceil$ ,

except the 2-manifolds $\tilde{M}_{0},\tilde{M}_{-1}$ , and $M_{-2}$ , for which $V_{\min}(M)=8,9$ and 10,
respectively.

For 2-manifolds $M_{\sigma}$ with boundary, the problem of determining $V_{\min}(M_{\sigma})$ is
open, except several small cases. Here we look at the problem of determining
$V_{\min}(M_{\sigma})$ , restricting ourselves to the triangulations in which every boundary
component is a cycle of length 3. [Note: under this restriction $V_{\min}(M_{0,1})=$

$V_{\min}(M_{0})=7$ , while in general $V_{\min}(M_{0,1})=6.$] It has turned out that the so-
restricted problem is closely related to the problem of determining the maximum
number, denoted by $I(M)$ , of (pairwise) independent faces in a minimal trian-
gulation of closed 2-manifold $M$ , where two faces are regarded as independent if
they are disjoint in the form of closures.

CONJECTURE 3. (Archdeacon [1]) Let $M$ be a closed 2-manifold, not the
projective plane. Then
(6) $ I(M)=\lfloor\frac{V_{\min}(M)}{3}\rfloor$ .

The following is a formula for the minimum number of vertices in a triangu-
lation of a given 2-manifold with boundary.

THEOREM 2. For a given 2-manifold $M_{\sigma}$ with $\sigma,$ $\sigma\geq 1$ , boundary components,
there enists an integral constant $J(M)$ such that:

(7) $V_{\min}(M_{\sigma})=\left\{\begin{array}{ll}V_{\min}(M) & if \sigma\leq I(M),\\3\sigma & if \sigma>J(M).\end{array}\right.$
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Proof. The part $\sigma\leq I(M)$ is obvious. To prove the existence of $J(M)$ , let $T_{0}$ be
a triangulation of the closed 2-manifold $M$ with a collection of independent faces
removed. Assume $T_{0}$ has a vertex, $v$ , not on the boundary. It can be easily seen
that by suitably triangulating some face of $T_{0}$ incident to $v$ and then removing
one of the newly-formed faces, again incident to $v$ , one can diminish the number
of interior (nonboundary) vertices, still having a 2-manifold (with boundary).
Repeatedly applying this process to $T_{0}$ , one can finally make all the vertices be
on the boundary of the resulting 2-manifold. We may take $J(M)$ equal to the
number of holes (or boundary component $s$ ) in the resulting 2-manifold. For, once
all the vertices become on the boundary, we can continue to increase repeatedly
the number of vertices by three, and the number of holes by one at the same
time, by adding an octahedron to a suitable face. On the other hand, it is clear
that $|V(T)|\geq 3\sigma$ for any triangulation $T$ of $M_{\sigma}$ . The result follows. $\blacksquare$

As matter of notation, hereafter by $J(M)$ we will denote the minimum value
of $J(M)$ for which the formula of Eq.(7) holds. The following conjecture in fact
says that there is no gap in that formula:

CONJECTURE 4. Let $M$ be a closed 2-manifold, not the prvjective plane. Then

(8) $J(M)=I(M)$ .

EXAMPLE 1. (i) For the orientable part, consider the triangulation of the
torus $M_{0}$ with the complete graph $K_{7}$ given by the rotation scheme in the pre-
ceding section. We have $I(M_{0})=2,$ $V_{\min}(M_{0,3})=9$ , and $J(M_{0})=2$ .

(ii) For the nonorientable part, consider the triangulation of the projective
plane $\tilde{M}_{1}$ with the complete graph $K_{6}$ . We have $I(\tilde{M}_{1})=1,$ $V_{\min}(\tilde{M}_{1,2})=7$ ,
and $J(\tilde{M}_{1})=2$ .

THEOREM 3. In the case of onentable $M=M_{\chi}$ , if Conjecture 1 is true, then
Conjecture 4 is true, with $t\prime I(M)^{\prime\prime}$ possibly replaced by $tlI(M)+1$ ;” in other
words, $J(M)=I(M)$ or $I(M)+1$ .

Proof. We first prove that if Conjecture 3 is true, then Conjecture 4 is true. The
notation $s$ is used to denote the quantity $\lfloor V_{\min}(M_{\chi})/3\rfloor$ . Let $T_{0}$ be a minimal
triangulation of $M_{\chi}$ with some $s$ independent faces deleted. When $ V_{\min}(M_{\chi})\equiv$

$0$ (mod3), all the vertices of $T_{0}$ are on the boundary. Then we can increase
repeatedly the number of vertices by 3 and the number of holes by 1 as in
the proof of Theorem 2. When $V_{\min}(M_{\chi})\equiv 1(mod 3)$ , we can make all the
vertices be on the boundary by accommodating an $(s+1)st$ hole as described
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in the proof of Theorem 2, and then proceed as in that proof. Finally, when
$V_{\min}(M_{\chi})\equiv 2(mod 3)$ , it may require already $(s+1)st$ and $(s+2)nd$ holes
to make all the vertices be on the boundary, in which event we would have to
replace $I(M)$ by $I(M)+1$ . [Note: the $(s+2)nd$ hole would be required in
the apparently rare case where the two interior vertices of the 2-manifold $M_{\chi)\sigma}$ ,
constructed as in the proof of Theorem 2, are nonadjacent.]

Now we prove that if Conjecture 1 is true then Conjecture 3 is true. Let $T$

be a minimal triangulation of $M_{\chi}$ . It is obvious that $ I(M_{\chi})\leq\lfloor V_{\min}(M_{\chi})/3\rfloor$ .
On the other hand, by Euler formula,

(9) $|F(T)|=2|V(T)|-2\chi$ ,

and we have

(10) $ I(M_{\chi})\geq r\frac{|F(T)|}{\xi(T)}\rceil=r\frac{2V_{\min}(M_{\chi})-2\chi}{V_{\min}(M_{\chi})}\rceil\geq\lfloor\frac{V_{\min}(M_{\chi})}{3}\rfloor$ .

The last inequality in this sequence follows from the following inequalities:

(11) $0<\frac{V_{\min}(M_{\chi})}{3}-\frac{2V_{\min}(M_{\chi})-2\chi}{V_{\min}(M_{\chi})}<1$ .

These inequalities are equivalent to the following ones (respectively),

(12) $ V_{\min}(M_{\chi})^{2}-6V_{\min}(M_{\chi})+6\chi>0>V_{\min}(M_{\chi})^{2}-9V_{\min}(M_{\chi})+6\chi$ ,

which are obvious, since $V_{\min}(M_{\chi})$ given by Eq.(5) is strictly between the larger
roots of the quadric polynomials $ x^{2}-6x+6\chi$ and $ x^{2}-9x+6\chi$ , respectively.
The exceptional case of $M_{-2}$ is settled by a straightforward verffication. The
proof is complete. $\blacksquare$
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