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PROBLEMS IN TOPOLOGICAL GRAPH THEORY
– QUESTIONS I CAN’T ANSWER –
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Abstract. This paper describes my Problems in Topological Graph Theory,
which can be accessed through the world-wide-web at

http: $//www..rba$ . uv$\bullet$ . $odu/\sim_{archdoac}/prob1\cdot-\epsilon/prob1\cdot\bullet s$ . html.

This list of problems is constantly being revised; the interested reader is encour-
aged to submit additions and updates.

1. Introduction

I have collected a number of open problems in topological graph theory. The
problems are placed on the world-wide web at

http: $//www.\epsilon mba.uvm.edu/\sim archdeac/problems/probloms.html$ .

Each problem is a self-contained module with some of the basic definitions, the
statement of the problem, and some citations into the literature. The intent is
to spread interest in what I consider to be a very interesting field.

I toyed with the idea of writing a one-line paper: namely, giving only the
web address. In the end I decided to provide three sample problems to give the
reader an idea of what to expect.

Enjoy my $problems\rightarrow do!$

2. How often must curves touch?

Suppose that we are given $n$ simple closed curves in the plane such that each
curve shares a point with every other curve, but no three curves share a common
point. Two curves that share a point need not cross transversally–tangential
intersections $are$ allowed. Let $f(n)$ denote the minimum number of intersections
over all such families of curves.
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It is obvious that $f(n)\geq(_{2}^{n})$ . It is also easy to construct examples that show
$f(n)\leq 2(n2)$ : take $n$ circles $C_{i}$ of the same radius with centers perturbed a small
distance $\epsilon_{i}$ from the origin. It is also known that $f(4)=6,$ $f(5)=12,$ $f(6)=20$ .

PROBLEM. Determine $f(7)$ ,

Asymptotically:

CONJECTURE. $\lim_{n\rightarrow\infty}\frac{f(n)}{(_{2}^{n})}=2$ .

It is not too hard to show that $ f(n+1)\geq\lceil\frac{n+1}{n-1}f(n)\rceil$ : in any realization of
$n+1$ curves, count the number of induced intersections over all sub-realizations
of $n$ curves. In combination with $f(6)=20$ , this implies that the limit in the
conjecture is at least 3/2.

I believe that these problems were first posed by Bruce Richter and Carsten
Thomassen in [2]. A partial result is given by Gelasio Salazar [3], who showed
that if any two such curves intersect in at most $k$ points (for a fixed value of $k$ ),
then the above limit is 2. This includes many special cases; for example, when
each curve is an ellipse, or when each curve is a piecewise-linear p-gon for fixed
$p$ .

3. Drawing rotations in the plane

Suppose that we are given a drawing of the complete graph $K_{n}$ in the plane
(in a drawing nonadjacent edges are allowed to cross at most once, and this
crossing must be transversal). This drawing determines a local rotation at each
vertex: the (clockwise) cyclic permutation of the edges incident with each vertex
from 1 to $n$ . This collection of local rotations is called a $\mathfrak{w}$ tation. It is well-
known that rotations are in a bijective correspondence with embeddings of $K_{n}$

in an oriented surface. Less well-known is their use in studying drawings in the
plane.

For example, there are 16 possible rotations on $K_{4}$ . Two of these are pla-
nar corresponding to the two unique embeddings of $K_{4}$ into the oriented plane.
Six more correspond to planar drawings of $K_{4}$ (there are three ways to choose
two nonadjacent crossing edges and two mirror images for each choice). The
remaining eight rotations on $K_{4}$ cannot be achieved by planar drawings. For
example, $\{0$ : 132, 1 : 023, 2 : 031, 3 : 012 $\}$ denotes a planar embedding of the
complete graph on $\{0,1,2,3\}$ where $a$ : bcd represents the permutation of edges
around vertex $a$ incident with vertices $(b, c, d)$ respectively. Similarly { $0$ : 132,
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1 : 023, 2 : 031, 3 : 021} represents a permutation which cannot arise in any
planar drawing.

PROBLEM. Determine those rotations on $K_{n}$ which can arise from a planar
$dm$wing.

It is tempting to conjecture that a rotation can arise from a planar drawing
of $K_{n}$ if and only if the rotation induced on every $K_{4}$ is achievable. However,
this conjecture is false. The rotation { $0$ : 1243, 1 : 2430, 2 : 3041, 3 : 0412,
4: 1032} on $K_{5}$ cannot be realized by a planar drawing, but every induced $K_{4}$

rotation can be so realized.
This problem arose when trying to find a lower bound for the crossing number

of the complete graph (see the related problem The Crossing Number of the
Complete Graph from this problem list). Knowing the rotation is sufficient to
count the number of crossings in a drawing. Hence a solution to the above
problem would reduce finding the minimum crossing number of the complete
graph to a purely combinatorial problem.

I note that the problem naturally suggests itself to finding the rotations corre-
sponding to drawings of a arbitrary graph $G$ , although without the applications
to finding the minimum crossing number of $G$ . Another related problem would
be to find the minimum genus $g$ so that a given rotation $\rho$ could be realized by
a drawing on the sphere with $g$ handles–the crossing genus of $\rho$ .

PROBLEM. Find the maximum crvssing genus over all rotations on $K_{n}$ .

4. Defective-list-coloring planar graphs

Perhaps the most famous result in graph theory is the Four-Color Theorem:
every planar graph can be vertex-4-co1ored such that no two vertices with the
same color are adjacent. The problem posed here combines two variations on
this theme.

The first variation is list colorings. Suppose that each vertex of a graph is
given a list of $k$ colors. The goal is to assign to each vertex a color from its
list such that adjacent vertices receive distinct colors. The usual concept of k-
coloring corresponds to the special case when each vertex has the same list of
colors. If a graph $G$ can always list colored for every possible k-list assignment
to the vertices, then we say that $G$ is k-list-colora $ble$ .

At first glance, coloring from lists appears less difficult than coloring from
a fixed set of colors: if the lists on adjacent vertices are not identical, selecting
distinct colors should be easier. However, Voigt showed [5] that there are planar
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graphs with lists of 4 colors on each vertex that cannot be properly list-colored.
Thomassen showed [4] that every planar graph is 5-1ist-colorable.

The second variation involves defective colorings. A k-coloring has defect $d$ if
each vertex is adjacent to at most $d$ other vertices with the same color. The usual
concept of coloring corresponds to the case $d=0$ . A graph is $(k, d)$ -colorable
if it can be colored with $k$ colors with defect $d$ . It is known that every planar
graph can be $(4,0)$-colored and $(3,2)$-colored. See e.g. [1] for an entry into the
literature.

Now combine the two variations on the theme. Suppose that each vertex is
given a list of $k$ colors, and we want to assign each vertex a color from its list
such that it is adjacent to at most $d$ vertices with the same color. If this can be
done for every possible k-list assignment, then we say that the graph is $(k, d)-$

list-colora $ble$ . It is natural to ask for which pairs $(k, d)$ is every planar graph
$(k, d)$-list-colorable. I believe that the answer is known for all pair $s$ except $(4,1)$ ,
although I do not have the reference.

PROBLEM. Is every planar graph $(4,1)$-Iist-coloroble?

5. Conclusion

I urge the interested reader to visit the web site. I also urge the reader to do
two things: 1) If you have an interesting problem in Topological Graph Theory,
submit it to me for addition to the list. 2) If you have any additional information
on a problem, especially a solution, please let me know so that the list can be
updated.
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