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Abstract. We present some topics on graph covering and its generalization.
We survey some results on enumeration of isomorphism classes of coverings of a
graph and g-cyclic A-covers of a symmetric digraph, where $A$ is a finite group
and $g\in A$ . We also mention some related questions.

1. Introduction

The central concern of topological graph theory is the embedding of graphs
on surfaces. One mathematical structure that permits an economical description
of graphs and their embeddings is a covering space(graph covering) of a graph.
The details for constructing a graph covering are efficiently encoded in what is
called a voltage graph. Every covering of a graph aries from some permutation
voltage graph. Furthermore, every regular covering of a graph is constructed by
some ordinary voltage graph.

Recently, enumeration results are of particular interest in topological graph
theory. For example, Mohar $[39,40]$ , used coverings of $K_{4}$ to enumerate the
akempic triangulations of the 2-sphere with 4 vertices of degree 3. Negami [42]
established a bijection between the equivalence classes of embeddings of a 3-
connected nonplanar graph $G$ into a projective plane and the isomorphism classes
of planar 2-fold coverings of $G$ . Mull, Rieper and White [41] enumerated 2-cell
embeddings of connected graphs. Hofmeister [11-17], Kwak and Lee [5,7,19,22-
28] enumerated several classes of graph coverings.

Enumeration of graph coverings started from classification of double cover-
ings of a graph by Waller [46] in 1976. After about ten years, Hofmeister [11]
enumerated the isomorphism ( $\Gamma$-isomorphism) classes of double coverings (2-fold
coverings or $Z_{2}$-coverings) of a graph with respect to any group $\Gamma$ of its auto-
morphisms. Hofmeister [12] and, independently, Kwak and Lee [24] enumerated
the I-isomorphism classes of n-fold coverings of a connected graph $G$ , for any
$n\in N$ , where $I$ is the trivial automorphism group of $G$ . The general problem of
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counting the F-isomorphism classes of all n-fold coverings of $G$ is still unsolved
except in the cases of $n=2$ or $\Gamma=I$ .

The enumeration of $\Gamma$-isomorphism classes of regular n-fold coverings of $G$ is
a weak version of the above problem, but is still unsolved except in the case of
prime $n$ . $Sato[44]$ counted the $\Gamma$-isomorphism classes of regular p-fold coverings
of $G$ for any prime $p(>2)$ . Some enumeration of I-isomorphism classes of regular
coverings of $G$ were done by Hofmeister [15], Kwak and Lee [19,22,25].

Cheng and Wells [3] discussed isomorphism classes of cyclic triple covers
(l-cyclic $Z_{3}$-covers) of a complete symmetric digraph. Furthermore, Mizuno
and Sato [33] presented cyclic $\gamma tuple$ covers of a symmetric digraph $D$ , and
enumerated the number of F-isomorphism classes of cyclic p-tuple covers of $D$ .
For a symmetric digraph $D$ , a finite group $A$ and $g\in A$ , Mizuno and Sato [34]
introduced a g-cyclic A-cover of $D$ as a generalization of regular coverings and
cyclic p-tuple covers, and enumerated the number of I-isomorphism classes of g-
cyclic $F_{p}^{r}$-covers of a connected symmetric digraph $D$ for any finite dimensional
vector space $F_{p}^{r}$ over the finite field $F_{p}=GF(p)(p>2)$ . Mizuno and Sato [37]
gave a necessary and sufficient condition for two cyclic A-covers of a connected
symmetric digraph $D$ to be $\Gamma$-isomorphic for any finite abelian group $A$ with the
isomorphism extension property, and enumerated the number of I-isomorphism
classes of g-cyclic $Z_{p^{\hslash}}$ -covers of $D$ for any prime $(p>2)$ . Furthermore, Mizuno,
Lee and Sato [30] enumerated the number of I-isomorphism classes of connected
g-cycic $Z_{p}^{n}$ -covers and connected h-cycic $Z_{p^{\hslash}}$ -covers of $D$ , where $p(>2)$ is prime,
and the orders of $g$ and $h$ are odd.

In this article, we survey some results on enumeration of graph coverings,
g-cyclic A-covers and mention a related topics. In Section 2, we give definition
and notation of graph coverings. In Sections 3, we deal with enumeration of iso-
morphism classes of coverings of a graph. In Sections 4,5, we treat enumeration
of isomorphism classes of g-cyclic A-covers and connected g-cyclic A-covers of a
connected symmetric digraph. In Section 6, we describe decomposition formulas
for the characteristic polynomials of regular coverings and g-cyclic A-covers. A
general theory of graph coverings refer to Gross and Tucker [10].

2. Definition and notation

Graphs and digraphs treated here are finite and simple.
A graph $H$ is called a covenng of a graph $G$ with projection $\pi$ : $H\rightarrow G$ if

there is a surjection $\pi$ : $V(H)\rightarrow V(G)$ such that $\pi|_{N(v)}$ : $N(v^{\prime})\rightarrow N(v)$ is a
bijection for all vertices $v\in V(G)$ and $v^{\prime}\in\pi^{-1}(v)$ . The projection $\pi$ : $H\rightarrow G$

is an n-fold covering of $G$ if $\pi$ is n-to-one. A covering $\pi$ : $H\rightarrow G$ is said to be
regular if there is a subgroup $B$ of the automorphism group Aut $H$ of $H$ acting
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freely on $H$ such that the quotient graph $H/B$ is isomorphic to $G$ .
Permutation voltage assignments were introduced by Gross and Tucker [9].

For a graph $G$ , let $D(G)$ be the arc set of the symmetric digraph corresponding
to $G$ . A permutation voltage assignment of $G$ with voltages in the symmetric
group $S_{r}$ of degree $r$ is a function $\phi$ : $D(G)\rightarrow S_{r}$ such that inverse arcs have
inverse assignments. The pair $(D, \phi)$ is called a permutation voltage graph. The
(permutation) denved graph $G^{\phi}$ derived from a permutation voltage assignment
$\phi$ is defined as follows:

$V(G^{\phi})=V(G)\times\{1, \cdots, r\}$ , and $((u, h),$ $(v, k))\in D(G^{\phi})$ if and
only if $(u, v)\in D(G)$ and $\phi(u, v)(h)=k$ .

The natural projection $\pi$ : $G^{\phi}\rightarrow G$ is a function from $V(G^{\phi})$ onto $V(G)$ which
erases the second coordinates. Gross and Tucker [9] showed that every covering
of a given graph aries from some permutation voltage assignment in a symmetric
group.

Ordinary voltage assignments were introduced by Gross [8]. Let $A$ a finite
group. Then a mapping $\alpha$ : $D(G)\rightarrow A$ is called an ordinary voltage assignment
if $\alpha(v, u)=\alpha(u, v)^{-1}$ for each $(u, v)\in D(G)$ . The (ordinary) derived graph $G^{\alpha}$

derived from an ordinary voltage assignment $\alpha$ is defined as follows:

$V(G^{\alpha})=V(G)\times A$ , and $((u, h),$ $(v, k))\in D(G^{\alpha})$ if and only if
$(u, v)\in D(G)$ and $k=h\alpha(u, v)$ .

The natural projection $\pi$ : $G^{\alpha}\rightarrow G$ is a function from $V(G^{\alpha})$ onto $V(G)$ which
erases the second coordinates. The graph $G^{\alpha}$ is called an A-covering of $G$ . The
A-covering $G^{\alpha}$ is an $|A|$-fold regular covering of $G$ . Every regular covering of $G$

is an A-covering of $G$ for some group $A$ (see [9]).
Let $\alpha$ and $\beta$ be two permutation (ordinary) voltage assignments on $G$ with

voltages in $S_{r}(A)$ , and let $\Gamma$ be a group of automorphisms of $G$ , denoted $\Gamma\leq$

Aut $G$ . Two coverings $G^{\alpha}$ and $G^{\beta}$ are called $\Gamma$ -isomorphic, denoted $G^{\alpha}\cong rG^{\beta}$ , if
there exist an isomorphism $\Phi$ : $G^{\alpha}\rightarrow G^{\beta}$ and a $\gamma\in\Gamma$ such that $\pi\Phi=\gamma\pi$ , i.e.,
the diagram

$G^{\alpha}G^{\beta}\underline{\Phi}$

$\pi\downarrow$ $\downarrow\pi$

$GG\underline{\gamma}$

commutes. Let $I=\{1\}$ be the trivial group of automorphisms. A general theory
of graph coverings is developed in Gross and Tucker [10].
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3. Enumeration of graph coverings

3.1 Characterization

Enumeration of graph coverings is to cout the isomorphism classes of cover-
ings of a graph with respect to a group $\Gamma$ of its automorphisms.

A characterizations for isomorphic graph coverings were given by Hofmeister
[12], Kwak and Lee [24].

THEOREM 1. (Hofmeister; Kwak and Lee) Let $G$ be a graph and $\Gamma\leq AutG$ .
For two permutation voltage assignments $\alpha$ : $D(G)\rightarrow S_{r}$ and $\beta$ : $D(G)\rightarrow S_{r}$ ,
the following are equivalent:

1. $G^{\alpha}\cong rG^{\beta}$ .
2. There exist a family $(\pi_{u})_{u\in V(G)}\in S_{r}^{V(G)}$ and $\gamma\in\Gamma$ such that

$\beta^{\gamma}(u, v)=\pi_{v}\alpha(u, v)\pi_{u}^{-1}$ for each $(u, v)\in D(G)$ ,

wheoe the multiplication of permutations is carried out from nght to left.

3.2 $N$-fold coverings

We stat $e$ one problem on enumeration of graph coverings.

PROBLEM 1. For any natural number $n$ , enumerate the $\Gamma$ -isomorphism classes
of n-fold covenngs of a graph $G$ .

Problem 1 is still unsolved except in the cases of $n=2$ or $\Gamma=I$ . Two-
fold coverings (or double coverings) of graphs are regular, and were deal$ed$ in
Hofmeister [11] and Waller [46]. The $\Gamma$-isomorphism classes of 2-fold coverings
of a graph $G$ was count$ed$ by Hofmeister [11], where the enumeration was done
by commutative algebra arguments.

For $\gamma\in\Gamma$ , a $\langle\gamma\rangle$-orbit $\sigma$ of length $k$ on $E(G)$ is called diagonal if $\sigma=$

$\langle\gamma\rangle\{x,\gamma^{k}(x)\}$ for some $x\in V(G)$ . The vertex orbit $\langle\gamma\rangle x$ and the arc orbit
$\langle\gamma\rangle(x,\gamma^{k}(x))$ are also called diagonal. For $\gamma\in\Gamma$ , let $G(\gamma)$ be a simple graph
whose $ve$rtices ar$e$ the $\langle\gamma\rangle$-orbits on $V(G)$ , with two vertices adjacent in $G(\gamma)$ if
and only if some two of their $re$presentatives ar $e$ adjacent in $G$ . The kth 2-level
of $G(\gamma)$ is the induced subgraph of $G(\gamma)$ on the vertices $\omega$ such that $\theta_{2}(|\omega|)=2^{k}$ ,
where $\theta_{2}(i)$ is the largest power of 2 dividing $i$ . A 2-level component of $G(\gamma)$ is a
connected component of some $2$-le$ve1$ of $G(\gamma)$ . A 2-level component $H$ is called
favorable if there $e$xists a vertex $\sigma$ of $H$ which is diagonal or adjacent in $G(\gamma)$ to
a vertex $\omega$ such that $\theta_{2}(|\sigma|)>\theta_{2}(|\omega|)$ . Otherwis$eH$ is called defective (see [47]).
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THEOREM 2. (Hofmeister) The number of F-isomorphism classes of double
coverings ($Z_{2}$ -coverings) of a graph $G$ is

$\frac{1}{|\Gamma|}\sum_{\gamma\in\Gamma}2^{\epsilon(\gamma)-\nu(\gamma)+\omega(\gamma)}$ ,

where $\epsilon(\gamma)$ and $\nu(\gamma)$ is the number of $\langle\gamma\rangle$ -orbits on $E(G)$ and $V(G)$ , respectively,
and $\omega(\gamma)$ is the number of defective 2-level components in $G(\gamma)$ .

Hofmeister [12] and, independently, Kwak and Lee [24] enumerat$ed$ the I-
isomorphism classes of n-fold coverings of a graph, for any $n\in N$ .

THEOREM 3. (Hofmeister; Kwak and Lee) The number of I-isomorphism
classes of n-fold coverings of a connected graph $G$ is

$\sum_{k_{1}+2k_{2}+\cdots+nk_{n}=n}(k_{1}!2^{k_{2}}k_{2}! \cdots n^{k_{n}}k_{n}!)^{\beta(G)-1}$
,

where $\beta(G)=|E(G)|-|V(G)|+1$ is the Betti number of $G$ .

3.3 Regular $n$-fold coverings

A weak version of Problem 1 is

PROBLEM 2. For any natural number $n$ , enumerate the $\Gamma$ -isomorphism classes
of regular n-fold coverings of a graph $G$ .

Problem 2 is solved for any prime number $p$ . Since any regular 2-fold coverings
are double coverings, the case ofp $=2isgiveninTheorem2$ .

Sato [44] count$ed$ the $\Gamma$-isomorphism classes of regular p.fold coverings of a
connected graph $G$ for any prime $p(>2)$ .

Let $\gamma\in\Gamma,$ $\lambda\in Z_{p}^{*}$ and ord $(\lambda)=m$ . A diagonal arc orbit of length $2k$

(the corresponding edge orbit of length $k$ and the corresponding $ve$rtex orbit of
length $2k$ ) is called type-l if $\lambda^{k}=-1$ , and type-2 otherwis $e$ . A $\langle\gamma\rangle$-orbit $\sigma$ on
$V(G),$ $E(G)$ or $D(G)$ is called m-divisible if $|\sigma|\equiv 0$ $(mod m)$ . A m-divisible
$\langle\gamma\rangle$-orbit $\sigma$ on $V(G)$ ia called strongly m-divisible if $\sigma$ satisfies the following
condition:

If $\Omega=\langle\gamma\rangle(x, y)$ is any not diagonal $\langle\gamma\rangle$-orbit on $D(G)$ , and $y=$
$\gamma^{j}(x),$

$x,$ $ y\in\sigma$ , then $j\equiv 0$ $(mod m)$ .

The kth p-level and p-level components of $G(\gamma)$ are defined similarly to the
kth 2-level and 2-1evel components of $G(\gamma)$ . Let $G_{\lambda}(\gamma)$ be the subgraph of $G(\gamma)$
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induced by the set of m-divisible $\langle\gamma\rangle$-orbits on $V(G)$ . The kth p-level and p-
level components of $G_{\lambda}(\gamma)$ are defined similarly to the case of $G(\gamma)$ . A p-level
component $K$ of $G_{\lambda}(\gamma)$ is called defective if each vertex $\sigma$ of $H$ is strongly m-
divisible, not type-l diagonal, and satisfies $\theta_{p}(|\omega|)>\theta_{p}(|\sigma|)$ whenever $\omega\not\in V(H)$

and $\sigma\omega\in E(G(\gamma))$ . Otherwise $H$ is called favorable.

THEOREM 4. (Sato) Let $G$ be a connected graph, $p(>2)$ prime and $\Gamma\leq AutG$ .
The number of $\Gamma$ -isomorphism classes of regular p-fold coverings of a connected
graph $G$ is

$\frac{1}{|\Gamma|(p-1)}\sum_{\gamma\epsilon r}\sum_{\lambda\in Zj}p^{\epsilon(\gamma)-\nu(\gamma)+\nu_{0}(\gamma,\lambda)-\kappa(\gamma,\lambda)-\mu(\gamma,\lambda)+d(\gamma,\lambda)}$ ,

where $\nu_{0}(\gamma, \lambda),\mu(\gamma, \lambda)$ and $d(\gamma, \lambda)$ is the number of not m-divisible $\langle\gamma\rangle$ -orbits
on $V(G)$ , type-2 diagonal $\langle\gamma\rangle$ -orbits on $E(G)$ and defective p-level components
in $G_{\lambda}(\gamma)$ , respectively, where ord $(\lambda)=m$ , and $\kappa(\gamma, \lambda)$ is the number of not
m-divisible $\langle\gamma\rangle$ -orbits on $E(G)$ which are not diagonal.

3.4 $A$-coverings

PROBLEM 3. Enumera $te$ the $\Gamma$ -isomorphism classes of A-coverings of a graph
for any finite group $A$ .

Problem 3 is still unsolved except in the cas$e$ that $A$ is any cyclic group of
prime order or $A=Z_{2}\times Z_{2}$ . $Z_{p}$-coverings are regular p-fold coverings for any
prime $p$ .

Mizuno and Sato [38] enumerat$ed$ the number of $\Gamma$-isomorphism classes of
$Z_{2}\times Z_{2}$-coverings of a connected graph $G$ for any group $\Gamma$ of automorphisms
of $G$ . This enumeration is a unique result for Problem 3 except in the case of
$A=Z_{p}$ ($p$ ; prime).

For $\gamma\in\Gamma$ , a $\langle\gamma\rangle$-orbit $\sigma$ on $V(G),$ $E(G)$ or $D(G)$ is called 3-divisible if
$|\sigma|\equiv 0$ $(mod 3)$ . A 3-divisible $\langle\gamma\rangle$-orbit $\sigma$ on $V(G)$ is called strongly 3-divisible
if $\sigma$ satisfies the following condition:

If $\Omega=\langle\gamma\rangle(x, y)$ is any not diagonal $\langle\gamma\rangle$ -orbit on $D(G)$ , and $y=$
$\gamma^{j}(x),$

$x,$ $ y\in\sigma$ , then $j\equiv 0$ $(mod 3)$ .

Let $G_{3}(\gamma)$ be the subgraph of $G(\gamma)$ induced by the set of 3-divisible $\langle\gamma\rangle$ -orbits
on $V(G)$ . The kth 2-level and 2-level components of $G_{3}(\gamma)$ are defined similarly
to the case of $G(\gamma)$ . A 2-1evel component $K$ of $G_{3}(\gamma)$ is called strongly favorable
if some vertex $\sigma$ of $H$ is not strongly -divisible, diagonal or adjacent in $G(\gamma)$ to
a vertex $\omega$ such that $\theta_{2}(|\sigma|)>\theta_{2}(|\omega|)$ . Otherwise $H$ is called strongly defective.
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THEOREM 5. (Mizuno and Sato) Let $G$ be a connected graph and $\Gamma\leq AutG$ .
For $\gamma\in\Gamma$ , let $\epsilon_{0}(\gamma)$ and $\nu_{0}(\gamma)$ be the number of not 3-divisible $\langle\gamma\rangle$ -orbits on $E(G)$

and $V(G)$ , respectively. Furthermore, let $d(\gamma)$ be the number of strongly defective
2-level components in $G_{3}(\gamma)$ . Then the number of $\Gamma$ -isomorphism classes of $Z_{2^{-}}^{2}$

coverings of $G$ is

$\frac{1}{6|\Gamma|}\sum_{\gamma\epsilon r}\{4^{\epsilon(\gamma)-\nu(\gamma)+\omega(\gamma)}+3\cdot 2^{\epsilon(\gamma^{2})-\nu(\gamma^{2})+tv(\gamma^{2})}+2\cdot 4^{\epsilon(\gamma)-\nu(\gamma)+\nu_{0}(\gamma)+d(\gamma)-\epsilon_{0}(\gamma)}\}$ .

The number of I-isomorphism classes of regular fourfold coverings of graphs
were enumerated by Hong and Kwak [18].

THEOREM 6. (Hong and Kwak) Let $G$ be a connected gruph. Then the number
of I-isomorphism classes of regular fourfold covenngs of $G$ is

$\frac{1}{3}(2^{2\beta(G)+1}+1)$ ,

where $\beta(G)$ is the Betti number of $G$ .

A regular 4-fold covering of $G$ is either a $Z_{2}\times Z_{2}$-covering or $Z_{4}$-covering of $G$ .
If the enumeration of $\Gamma$-isomorphism classes of $Z_{4}$-coverings of $G$ is $es$tablished,
then we might be able to count the number of $\Gamma$-isomorphism classes of regular
4-fold coverings of $G$ . This will be a unique result for Problem 2 except in the
case that $n$ is prime.

PROBLEM 4. Enumerate the $F$ -isomorphism classes of regular 4-fold coverings
of a graph $G$ for any $\Gamma\leq AutG$ .

In general, it is natural to ask

PROBLEM 5. Enumera $te$ the $\Gamma$ -isomorphism classes of regular $p^{2}$ -fold covenngs
of $G$ for any prime $p(>2)$ and any $\Gamma\leq AutG$ .

It seems that Problem 5 is $ve$ry hard to answer, because the parameters in
counting formula might be more complicat$ed$ than Theorem 4.

Some reults for the enumeration of I-isomorphism classes of of A-coverings of
a connected graph $G$ we $re$ known. Kwak and Lee [25] did it for $Z_{p}\oplus Z_{q}(p\neq q$ :
prime) or $Z_{p^{2}}$ -coverings of $G$ . The I-isomorphism classes of regular coverings
of graphs with voltages in finit $e$ dimensional vector spaces over finite fields were
enumerated by Hofmeister [15]. Hong, Kwak and Lee [19] gave the number of
I-isomorphism classes of $Z_{p^{m}}$ -coverings, $Z_{p}\oplus Z_{p}$ -coverings and $D_{n}$ -coverings,
$n$ : odd, of graphs, respectively.
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THEOREM 7. (Hofmeister) The number of I-isomorphism classes of $mZ_{p^{-}}$

coverings of $G$ is

$1+\sum_{h=1}^{m}\frac{(p^{\beta(G)}-1)(p^{\beta(G)-1}-1)\cdot\cdot.\cdot.(p^{\beta(G)-h+1}-1)}{(p^{h}-1)(p^{h-1}-1)\cdot(p-1)}$ .

THEOREM 8. (Hong, Kwak and Lee) The number of I-isomorphism classes of
$Z_{p^{n}}$ -covenngs of $G$ is

$\left\{\begin{array}{ll}m+1 & if \beta(G)=1f\\\frac{p^{m(\beta(G)-1)+1}-1}{p-1}+\frac{p^{m(\beta(G)-1)}-1}{p^{\beta(G)-1}-1} & otherwise.\end{array}\right.$

For a connected graph $G$ and $n\in N$ , let Iso $r(G;n)$ (Iso $rR(G;n)$ , Isoc $rR(G;n)$ )
be the number of $\Gamma$-isomorphism classes of (regular, connected regular) n-fold
coverings of $G$ . For a finite group $A$ , let Iso $r(G;A)$ (Isoc $\Gamma(G,\cdot A)$ ) be the number
of $\Gamma$-isomorphism classes of (connected) A-coverings of $G$ .

Kwak and Lee [27] enumerated the I-isomorphism classes of connected n-
fold coverings of a connected graph. Kwak, Chun and Lee [22] investigated the
I-isomorphisms of connect$ed$ A-coverings of a connected graph $G$

)
and gave a

decomposition formula for them.

THEOREM 9. (Kwak, Chun and Lee)

1. For any $n\in N$ , Iso $IR(G;n)=\sum_{d|n}$ Isoc $IR(G;d)$ .
2. For any finite group $A$ , Iso $I(G;A)=\sum_{S}$ Isoc $I(G;S)$ , where $S$ runs over

all representatives of isomorphism classes of subgroups of $A$ .
3. For any $n\in N$ , Isoc $IR(G;n)=\sum_{A}$ Isoc $I(G;A)$ , where A runs over all

representatives of isomorphism classes of groups of order $n$ .

Thus, they enumerat$ed$ the I-isomorphism classes of connected A-coverings
of $G$ when $A$ is a finite abelian group or the dihedral group $D_{n}$ .

4. A generalization of graph coverings

4.1 Background

Let $G$ be a graph with $ve$rtex set $V$ and $X$ a subset of $V$ . Then the operation
of switching at $X$ replaces all edges between $X$ and $V\backslash X$ with nonedges and
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nonedges with edges, leaving edges and nonedges within each part unaltered.
We say that $H$ is switching equivalent to $G$ if $H$ is obtained from $G$ by switching
at $X$ for $s$ome $X\subseteq V$ . The equivalence classes in graphs with vertex set $V$ are
called switching classes of graphs on $V$ . Mallows and Sloane [29] showed that
two-graphs, Euler graphs and switching classes of graphs on $n$ vertices have the
same number of isomorphism classes. Cameron [2] stated the “equivalence” of
switching classes of graphs on $V$ and double coverings of the complete graph on
V.

Well$s[47]$ defined signed switching classes of agraph. Given agraph $G$ , let
$C^{0}(G;Z_{2})$ and $C^{1}(G;Z_{2})$ be the set of all functions $s$ : $V(G)\rightarrow Z_{2}$ and all
ordinary voltage assignments $\alpha$ : $D(G)\rightarrow.Z_{2}$ , respectively. The coboundary
operator $\delta$ : $C^{0}(G;Z_{2})\rightarrow C^{1}(G;Z_{2})$ is defined by $(\delta s)(x, y)=s(x)-s(y)$ for
$s\in C^{0}(G;Z_{2})$ and $(x, y)\in D(G)$ . Two element $s\alpha,$ $\beta$ in $C^{1}(G;Z_{2})$ are call$ed$
switching equivalent if $\beta=\alpha+\delta s$ for some $s\in C^{0}(G;Z_{2})$ . The equivalence
classes ar $e$ called signed switching classes of $G$ . Zaslavsky [48] showed that
there is a one-to-one correspondence between I-isomorphism classes of double
coverings and signed switching classes of $G$ . Wells [47] enumerated the number
of $F$-isomorphism classes of signed switching classes of $G$ , which is equal to that
of $\Gamma$-isomorphism classes of double coverings ( $Z_{2}$-coverings) of $G$ by Hofmeister
[11] (see Theorem 2).

Cheng and Wells [3] presented the switching classes of digraphs and a cyclic
triple cover of a complete symmetric digraph. Given a finite set $X$ , let $V^{0}$

and $V^{1}$ be the set of all functions $s$ : $X\rightarrow Z_{3}$ and all alternating functions
$\alpha$ : $X\times X\rightarrow Z_{3}$ , respectively. For the coboundary operator $\delta$ : $V^{0}\rightarrow V^{1}$ , the
cosets of ${\rm Im}\delta$ in $V^{1}$ are called switching classes of digraphs on $X$ . Let $KD$ be
the complete symmetric digraph with vertex set $X$ . For $\alpha\in V^{1}$ , the cychc triple
cover $D(\alpha)$ of $KD$ is given by

$V(D(\alpha))=X\times Z_{3}$ and $((x, i),$ $(y,j))\in A(D(\alpha))$ if and only if
$x\neq y$ and $j=\alpha(x, y)+i-1$ .

Cheng and Wells [3] led the fact that there exists a one-to-one correspondence
between I-isomorphism classes of cyclic triple covers of $KD$ and switching classes
of digraphs on $X$ .

$Re$placing $Z_{3}$ and $KD$ with $Z_{p}$ ($p$ : prime) and a symmetric digraph $D$

in the definition of switching classes of digraphs, Mizuno and Sato [31] intro-
duced switching classes of alternating functions on $A(D)$ , and counted the $\Gamma-$

isomorphism class$es$ of them. Furthermor $e$ , Mizuno and Sato [33] presented
cyclic p-tuple covers of $D$ . For an alternating function $\alpha$ : $A(D)\rightarrow Z_{p}$ , the
cyclic p-tuple cover $D(\alpha)$ of $D$ is defined by

$V(D(\alpha))=V(D)\times Z_{p}$ and $((x, i),$ $(y,j))\in A(D(\alpha))$ if and only
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if $(x, y)\in A(D)$ and $j=\alpha(x, y)+i-1$ .

They [33] showed that the number of $F$-isomorphism classes of switching classes
of alternating functions on $A(D)$ is equal to that of F-isomorphism classes of
cyclic p-tuple covers of $D$ , and $e$numerated them.

For a graph $G$ and a finite field $F_{q}(q=p^{n})$ , let $C^{0}(G;F_{q})$ and $C^{1}(G;F_{q})$

be the set of all functions $s$ : $V(G)\rightarrow F_{q}$ and all ordinary voltage assignments
$\alpha$ : $D(G)\rightarrow F_{q}$ , respectively. For the coboundary operator $\delta$ : $ C^{0}(G;F_{q})\rightarrow$

$C^{1}(G;F_{q})$ , the cosets of ${\rm Im}\delta$ in $C^{1}(G;F_{q})$ ar$e$ called switching equivalence
classes.

Hofmeister [17] defined the above switching equivalence classes and gave a
counting formula for the number of $\Gamma$-isomorphism classes of switching equiva-
lence classes.

Let $\Gamma\leq AutD$ and $\gamma\in\Gamma$ . A p.level component $H$ of $G(\gamma)$ is called minimal
if there exists no vertex $\sigma$ of $H$ which is adjacent to a $ve$rtex $\omega$ such that $\theta_{p}(|\sigma|)>$

$\theta_{p}(|\omega|)(see[17,47])$ .

THEOREM 10. (Hofmeister) The number of $F$ -isomorphism classes of switching
equivalence classes is

$\frac{1}{|\Gamma|}\sum_{\gamma\in\Gamma}q^{\epsilon(\gamma)-\nu(\gamma)+\xi(\gamma)-\rho(\gamma)}$ ,

where $\xi(\gamma)$ and $\rho(\gamma)$ is the number of minimal p-level components on $G(\gamma)$ , and
diagonal $\langle\gamma\rangle$ -obits on $E(G)$ , respectively.

Let $D$ be a symmetric digraph, $A$ a finite group and $g\in A$ . Mizuno and Sato
[34] introduced a g-cyclic A-cover of $D$ as a generalization of regular coverings
and cyclic p-tuple covers, and discussed the number of $\Gamma$-isomorphism classes of
g-cyclic $Z_{p}^{r}$ -covers of a connected symmetric digraph $D$ for any finite dimensional
vector space $Z_{p}^{r}$ over the finite field $Z_{p}=GF(p)(p>2)$ . Thus, they $e$numerated
the number of I-isomorphism classes of g-cyclic $Z_{p}^{r}$-covers of $D$ .

THEOREM 11. (Mizuno and Sato) Let $g\neq 0$ . Then the number of I-iso-
morphism classes of g-cyclic $Z_{p}^{r}$ -covers of $D$ is

$\frac{1}{|GL_{r}(Z_{p})|}\sum_{m=1}^{r}\left\{\begin{array}{l}-r1\\m-1\end{array}\right\}\alpha(p^{r}, m)p^{m\beta(D)}$ ,

where $GL_{r}(Z_{p})$ is the general linear $gro$up, $\alpha(p^{r}, m)(0\leq m\leq r)$ is the number of
$A\in GL_{r}(Z_{p})$ such that a given m-dimensional subspace of $Z_{p}^{r}$ is the eigenspace
of $A$ belonging to the eigenvalue 1 and $[_{k}^{l}]_{p}$ is the p-binomial number.

The proof is made by counting some isomorphism classes of switching equiv-
alence classes.
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4.2 Cyclic $A$-covers of symmetric digraphs

Let $D$ be a symmetric digraph and $A$ a finite group. A function $\alpha$ : $A(D)\rightarrow A$

is called alternating if $\alpha(y, x)=\alpha(x, y)^{-1}$ for each $(x, y)\in A(D)$ . For $g\in A$ , a
g-cyclic A-cover $D_{g}(\alpha)$ of $D$ is the digraph as follows:

$V(D_{g}(\alpha))=V(D)\times A$ , and $((u, h),$ $(v, k))\in A(D_{g}(\alpha))$ if and only
if $(u, v)\in A(D)$ and $k^{-1}h\alpha(u, v)=g$ .

The natural projection $\pi$ : $D_{g}(\alpha)\rightarrow D$ is a function from $V(D_{g}(\alpha))$ onto $V(D)$

which erases the second coordinates. A digraph $D^{\prime}$ is called a cyclic A-cover of
$D$ if $D^{\prime}$ is a g-cyclic A-cover of $D$ for $s$ome $g\in A$ . In the case that $A$ is abelian,
then $D_{g}(\alpha)$ is simply called a cyclic abelian cover. Furthermore the l-cyclic A-
cover $D_{1}(\alpha)$ of a symmetric digraph $D$ can be considered as the A-covering $\tilde{D}^{\alpha}$

of the underlying graph $\tilde{D}$ of $D$ .
Let $\alpha$ and $\beta$ be two alternating functions from $A(D)$ into $A$ , and let $\Gamma$ be

a subgroup of the automorphism group Aut $D$ of $D$ , denot$ed\Gamma\leq AutD$ . Let
$g,$ $h\in A$ . Then two cyclic A-covers $D_{9}(\alpha)$ and $D_{h}(\beta)$ are called F-isomorphic,
denoted $D_{g}(\alpha)\cong rD_{h}(\beta)$ , if there exist an isomorphism $\Phi$ : $D_{g}(\alpha)\rightarrow D_{h}(\beta)$ and
a $\gamma\in F$ such that $\pi\Phi=\gamma\pi$ , i.e., the diagram

$\pi D_{g}\downarrow^{\alpha)D_{h}}\int_{\pi}^{\beta)}\underline{\Phi}$

$DD\underline{\gamma}$

commutes. Let $I=\{1\}$ be the trivial group of automorphisms.
The group $\Gamma$ of automorphisms of $D$ acts on the set $C(D)$ of alternating

functions from $A(D)$ into $A$ as follows:

$\alpha^{\gamma}(x, y)=\alpha(\gamma(x),\gamma(y))$ for all $(x, y)\in A(D)$ ,

where $\alpha\in C(D)$ and $\gamma\in F$ . Any voltage $g\in A$ determines a permutation $\rho(g)$

of the symmetric group $S_{A}$ on $A$ which is given by $\rho(g)(h)=hg,$ $h\in A$ .
Mizuno and Sato [34] gave a characterization for two cyclic A-covers of $D$ to

be $\Gamma$-isomorphic.

THEOREM 12. (Mizuno and Sato) Let $D$ be a symmetnc digraph, $A$ a finite
group, $g,$ $h\in A,$ $\alpha,$ $\beta\in C(D)$ and $F\leq Aut$ D. Then the following are equivalent:

1. $D_{g}(\alpha)\cong rD_{h}(\beta)$ .
2. There exist a family $(\pi_{u})_{u\in V(D)}\in S_{A}^{V(D)}$ and $\gamma\in\Gamma$ such that

$\rho(\beta^{\gamma}(u, v)h^{-1})=\pi_{v}\rho(\alpha(u, v)g^{-1})\pi_{u}^{-1}$ for each $(u, v)\in A(D)$ ,
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where the multiplication of permutations is carried out from right to lefl.

4.3 Isomorphisms of cyclic abelian covers

Let $D$ be a connected symmetric digraph and $A$ a finite abelian group. Let
$G$ be the underlying graph, $T$ be a spanning tree of $G$ and $w$ a root of $T$ . For
any $\alpha\in C(D)$ and any walk $W$ in $G$ , the net $\alpha dvoltage$ of $W$ , denoted $\alpha(W)$ , is
the sum of the voltages of the edges of $W$ . Then the T-voltage $\alpha_{T}$ of $\alpha$ is defined
as follows:

$\alpha_{T}(u, v)=\alpha(P_{u})+\alpha(u, v)-\alpha(P_{v})$ for each $(u, v)\in D(G)=A(D)$ ,

where $P_{u}$ and $P_{v}$ denote the unique path from $w$ to $u$ and $v$ in $T$ , respectively.
For a function $f$ : $C(D)\rightarrow A$ , the net f-value $f(W)$ of any walk $W$ is defined as
the net $\alpha$-voltage of $W$ . For a function $f$ : $C(D)\rightarrow A$ , let the pseudolocal voltage
group $A_{f}(v)$ of $f$ at $v$ denote the subgroup of $A$ generated by all net $f$-values of
the closed walk based at $v\in V(D)$ . Let ord $(g)$ be the order of $g\in A$ .

THEOREM 13. (37, Theorem 2) Let $D$ be a connected symmetric digraph, $A$

a finite abelian group $g,$ $h\in A$ and $\alpha,\beta\in C(D)$ . $Furthermooe_{f}$ let $G$ be the
underlying graph of $D,$ $T$ a spanning tree of $G$ and $F\leq Aut$ G. Assume that the
orders of $g$ and $h$ are equal and odd. Then the following are equivalent:

1. $D_{g}(\alpha)\cong rD_{h}(\beta)$ .
2. There exist $\gamma\in\Gamma$ and an isomorphism $\sigma$ : $A_{\alpha_{T}-g}(w)\rightarrow A_{\beta_{\gamma T}-h}(\gamma(w))$

such that

$\beta_{\gamma T}^{\gamma}(u, v)-h=\sigma(\alpha_{T}(u, v)-g)$ for each $(u, v)\in A(D)$ ,

where $(\alpha\tau-g)(u, v)=\alpha\tau(u, v)-g,$ $(u, v)\in A(D)$ and $w\in V(D)$ .

An finite group $\mathcal{B}$ is $s$aid to have the isomorphism extension property (IEP),
if every isomorphism between any two isomorphic subgroups $\mathcal{E}_{1}$ and $\mathcal{E}_{2}$ of $\mathcal{B}$ can
be extented to an automorphism of $\mathcal{B}$ (see [19]). For example, the cyclic group
$Z_{n}$ for any $n\in N$ , the dihedral group $D_{n}$ for odd $n\geq 3$ , and the direct sum of
$m$ copies of $Z_{p}$ have the IEP.

Let Iso $(D, A,g, F)$ be the number of $\Gamma$-isomorphism classes of g-cyclic $A-$

covers of $D$ .

THEOREM 14. (37, Theorem 3) Let $D$ be a connected symmetric digruph, $G$ its
underlying graph, $A$ a finite abelian group with the $IEP,$ $g,$ $h\in A$ and $F\leq AutD$ .
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Assume that the orders of $g$ and $h$ are $odd_{f}$ and $\rho(g)=h$ for some $\rho\in AutA$ .
Then

Iso $(D, A, g, F)=Iso(D, A, h, F)$ .

4.4 Isomorphisms of orbit-cyclic abelian covers

Let $D$ be a connected symmetric digraph, $A$ a finit $e$ abelian group with the
IEP and $\Pi=AutA$ . For an element $g$ of $A$ with odd order, the $\Pi$-orbit on $A$

containing $g$ is denoted by $\Pi(g)$ . A cyclic A-cove$rD_{h}(\alpha)$ of $D$ is called $\Pi(g)-$

cyclic if $h\in\Pi(g)$ . Let $\mathcal{D}_{k}$ be the set of all k-cyclic A-covers of $D$ for any $k\in A$ ,
and let $\mathcal{D}=\bigcup_{h\epsilon n(g)}\mathcal{D}_{h}$ . Then $\mathcal{D}$ is the set of all $\Pi(g)$-cyclic A-covers of $D$ .
Let $\mathcal{D}/\cong r$ and $\mathcal{D}_{h}/\cong r$ be the set of all F-isomorphism classes over $\mathcal{D}$ and $\mathcal{D}_{h}$ ,
respectively.

THEOREM 15. (37, Theorem 4) Let $D$ be a connected symmetric digraph, $A$ a
finite abelian group with the $IEP,$ $F\leq AutD$ and $\Pi=Aut$ A. $fl_{j}rthermooe$ , let
$g$ be an element of $A$ with odd order. Then

$|\mathcal{D}/\cong r|=Iso(D, A, h, \Gamma)$ for each $h\in\Pi(g)$ .

Now, we state the structure of $\Gamma$-isomorphism classes of $\Pi(g)$-cyclic A-covers
$ofD$ .

The set of ordinary voltage assignment $s$ of $G$ with voltages in $A$ is denoted
by $C^{1}(G;A)$ . Note that $C(D)=C^{1}(G;A)$ . Furthremore, let $C^{0}(G;A)$ be the $s$et
of functions from $V(G)$ into $A$ . We consider $C^{0}(G;A)$ and $C^{1}(G;A)$ as additive
groups. The homomorphism $\delta$ : $C^{0}(G;A)\rightarrow C^{1}(G;A)$ is defined by $(\delta s)(x, y)=$

$s(x)-s(y)$ for $s\in C^{0}(G;A)$ and $(x, y)\in A(D)$ . For each $\alpha\in C^{1}(G;A)$ , let $[\alpha]$

be the element of C1 $(G;A)/{\rm Im}\delta$ which contains $\alpha$ .
The automorphism group Aut $A$ acts on $C^{1}(G;A)$ as follows:

$(\sigma\alpha)(x, y)=\sigma(\alpha(x, y))$ for $(x, y)\in A(D)$ ,

where $\alpha\in C^{1}(G;A)$ and $\sigma\in AutA$ .

THEOREM 16. (37, Theorem 5) Let $D$ be a connected symmetric digraph, $A$

a finite abelian group with the $IEP,$ $\Gamma\leq AutD$ and $\Pi=Aut$ A. Suppose that
$g\in A$ has odd order. Let $\sigma_{h}$ be a fixed automorphism of $A$ such that $\sigma_{h}(g)=h$

for $h\in\Pi(g)$ , Then any $\Gamma$ -isomorphism class of $\Pi(g)$ -cyclic A-covers of $D$ is of
the forn

$\cup\{D_{h}(\sigma_{h}\beta)|\beta=\sigma\alpha^{\gamma}+\delta s, \sigma\in\Pi_{g}, \gamma\in F, s\in C^{0}(G;A)\}$ ,
$h\in\Pi(g)$

where $\alpha\in C(D)$ and $G$ is the underlying graph of $D$ .
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4.5 Isomorphisms of cyclic $Z_{n}$ -covers

Mizuno and Sato [37] enumerated the number of I-isomorphism classes of
g-cyclic $Z_{p^{n}}$ -covers of $D$ , for any $g\in Z_{p^{m}}$ . Let $\beta(D)=m-n+1$ be the
Betti-number of $D$ , where $m=|A(D)|/2$ and $n=|V(D)|$ .

THEOREM 17. (Mizuno and Sato) Let $D$ be a connected symmetnc digraph and
$p(>2)$ przme. Let $g\in Z_{p^{m}}$ and ord $(g)=p^{m-\mu}$ the order of $g$ . Set $\beta=\beta(D)$ .
Then the number of I-isomorphism classes of g-cyclic $Z_{p^{n}}$ -covers of $D$ is

Iso $(D, Z_{p^{n}},g, I)$

$=\left\{\begin{array}{ll}p^{m\beta-\mu}+p^{(m-\mu)\beta-1}(p-1)(p^{\mu(\beta-1)}-1)/(p^{\beta-1}-1) & if \mu\neq m and \beta>1,\\p^{m-\mu-1}\{(\mu+1)p-\mu\} & if \mu\neq m and \beta=1,\\(p^{m(\beta-1)+1}-1)/(p-1)+(p^{m(\beta-1)}-1)/(p^{\beta-1}-1) & if \mu=ma,nd\beta>1,\\m+1 & otherwise.\end{array}\right.$

In Table 1, we give some valu$es$ of $isc(D, Z_{3^{6}},g, I)$ .

Table 1.

Mizuno and Sato [37] showed that the number of $\Gamma$-isomorphism classes of
g-cyclic $Z_{p}$-covers of a connected symmetric digraph is equal to that of noniso-
morphic switching equivalence classes of its underlying graph for $e$ach $g\in Z_{p}^{*}$ .

THEOREM 18. (Mizuno and Sato) Let $D$ be a connected symmetric digruph,
$p(>2)$ prime, $g\in Z_{p}\backslash \{0\}$ and $\Gamma\leq Aut$ D. Then the number of F-isomorphism
classes of g-cyclic $Z_{p}$ -covers of $D$ is

Iso $(D, Z_{p},g, \Gamma)=\frac{1}{|\Gamma|}\sum_{\gamma\in\Gamma}p^{\epsilon(\gamma)-\nu(\gamma)+\xi(\gamma)-\rho(\gamma)}$ .
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4.6 Further remarks

PROBLEM 6. Let $A$ be any finite abelian group and $g\in A$ of odd order.
Then, enumerate the F-isomorphism classes of g-cyclic A-covers of a connected
symmetric digraph $D$ .

It seems that this problem is a difficult problem, because Problem 3 is very
hard.

In the cas $e$ that $A$ is a finite group and the order of $g\in A$ is even, we have
no information about the isomorphisms of g-cyclic A-covers of $D$ . We propose
the following problem.

PROBLEM 7. Let $g$ be the element of even order in a finite abelian group
A. Then, what is an algebra $ic$ condition for two g-cyclic A-covers of $D$ to be
$F$ -isomorphic ($c.f.$ , Theorem 13).

In general, we as $k$

PROBLEM 8. For any finite group $A$ and $g\in A$ , what is an algebraic condition
for two g-cychc A-covers of $D$ to be F-isomorphic.

5. Connected cyclic abelian covers

5.1 Isomorphisms of connected cyclic abelian covers

Mizuno, Lee and Sato [30] considered the number of $\Gamma$-isomorphism class $es$

of connect$ed$ 9-cycic A-cove$rs$ of $D$ for a finite abelian group $A$ and $g\in A$ of odd
order.

Let $D$ be a connected symmetric digraph, $G$ the underlying graph of $D,$ $T$

a spanning tree of $G$ and $A$ a finite abelian groups. If $g\in A$ with odd order,
then the pseudolocal voltage groups $A_{\alpha-g}$ and $A_{\alpha_{T}-g}$ are equal to the group
generated by $g$ and $A_{\alpha}=A_{\alpha_{T}}$ . Moreover, $D_{g}(\alpha)$ is connected if and only if
$A_{\alpha-g}$ is the full group $A$ .

The following result is given by a method similar to the proof of Theorem
13.

THEOREM 19. (30, Theor$em1$ ) Let $D$ be a connected symmetnc digraph, $G$ the
underlying graph of $D,$ $T$ a spanning tree of $G$ and $\Gamma\leq Aut(G)$ . Let $A,$ $B$ be two
finite abelian grvups, $g\in A$ and $h\in B.$ Let $\alpha\in C^{1}(G;A)$ and $\beta\in C^{1}(G;B)$ .
Assume that the orders of $g$ and $h$ are odd. Then the following are equivalent:
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1. $D_{g}(\alpha)\cong rD_{h}(\beta)$ .
2. There exist $\gamma\in\Gamma$ and an isomorphism $\sigma$ : $A_{\alpha\tau-g}\rightarrow B_{\beta_{\gamma T}^{\gamma}-h}$ such that

$\beta_{\gamma T}^{\gamma}(u, v)=\sigma(\alpha_{T}(u, v))$ for each $(u, v)\in A(D)$ and $\sigma(g)=h$ .

Furthermore, if both $\alpha$ and $\beta$ derive connected cyclic abelian covers, then the
above statement 1 is also equivalent to:

There exist $\gamma\in F$ and a group isomorphism $\sigma$ : $A\rightarrow B$ such that

$\beta_{\gamma T}^{\gamma}(u, v)=\sigma(\alpha_{T}(u, v))$ for each $(u, v)\in A(D)$ and $\sigma(g)=h$ .

Let $\alpha\in C(D)$ which assigns identity for each arc in a spanning tree $T$ of the
underlying graph $G$ of $D$ . Let $v\in V(D)$ be fixed. Then the component of g-
cyclic A-cover $D_{g}(\alpha)$ containing $(v, 0)$ is called the identity component of $D_{g}(\alpha)$ .
By the definition of cyclic A-covers, it is not hard to show that each component of
$D_{g}(\alpha)$ is isomorphic to the identity component and two cyclic abelian coverings
of $D$ are I-isomorphic if and only if their identity components are I-isomorphic.
Furthermore, the identity component of g-cyclic A-cover $D_{g}(\alpha)$ is just a g-cyclic
$A_{\alpha-g}$-cover if $g$ is of odd order.

For a finite abelian group $A$ and $g\in A$ , let Isoc $(D, A,g, I)$ be the number
of I-isomorphism classes of connected g-cyclic A-covers of $D$ . Let $S_{1}$ and $S_{2}$ be
two subgroups of $A$ containing $g$ . We say that $S_{1}$ and $S_{2}$ are isomorphic with
respect to $g$ or g-equivalent if there $e$xists an isomorphism $\sigma$ : $S_{1}\rightarrow S_{2}$ such that
$\sigma(g)=g$ .

THEOREM 20. (30, Theorem 2) Let $D$ be a connected symmetric digraph, $A$ a
finite abelian $gm$up and $g\in A$ . Assume that the order of $g$ is odd. Then

Iso $(D,A,g, I)=\sum_{s}$ Isoc $(D, S,g, I)$ ,

where $S$ runs over all representatives of g-equivalence classes of subgrvups of $A$

which contain $g$ .

PROBLEM 9. For any $\Gamma\leq$ Aut $D$ , is there a decomposition formula for the
number of F-isomorphism classes of g-cyclic A-covers of $D$ .

If Problem 9 is affirmative, then we guess that an approach for Problem 6 is
obtained. Furthermore, Problem 9 is relat$ed$ to

PROBLEM 10. Enumerate the $\Gamma$ -isomorphism classes of connected g-cyclic A-
covers of $D$ .
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This problem is a difficult problem, and so it is interesting to count the
I-isomorphism classes of connected g-cyclic A-covers of $D$ .

Let $D$ be a connected symmetric digraph and $A$ a finite abelian group. For
$A$ and a natural number $n$ , let

$F_{g}(A;n)=$ { $(g_{1},$ $\cdots,g_{n})\in A^{n}|\{g\}\cup\{g_{1},$ $\cdots,g_{n}\}$ generates $A$}.

We give a formula on the number of I-isomorphism classes of connected g-cyclic
A-covers of $D$ for an element $g$ of odd order.

THBOREM 21. (30, Theorem 3) Let $D$ be a connected symmetric digraph, $A$ a
finite abelian group and $g\in A$ . Furthermore, assume that the order of $g$ is odd.
Then

Isoc $(D,A,g, I)=|F_{g}(A;\beta(D))|/|(AutA)_{g}|$ ,

where $\beta(D)$ is the Betti number of $D$ and $($ Aut $A)_{g}=\{\sigma\in AutA|\sigma(g)=g\}$ .

5.2 Connected cyclic $Z_{p}^{n}$-covers and cyclic $Z_{p^{n}}$ -covers

Mizuno, $Lee$ and Sato [30] counted the number of I-isomorphism classes of
connected g-cyclic A-cover $s$ of $D$ , when $A$ is the cyclic group $Z_{p^{n}}$ and the direct
sum $Z_{p}^{n}$ of $n$ copies of $Z_{p}$ for any prime number $p(>2)$ .

THEOREM 22. (Mizuno, Lee and Sato) Let $D$ be a connected symmetric digraph
and $g\in Z_{p}^{n}\backslash \{0\}$ , Then the number of I-isomorphism classes of connected g-
cyclic $Z_{p}^{n}$ -covers of $D$ is

Isoc $(D, Z_{p}^{n},g, I)=\frac{p^{\beta-n+1}(p^{\beta}-1)\cdots(p^{\beta.-n+2}-1)}{(p^{n-1}-1)(p^{n-2}-1)\cdot\cdot(p-1)}$ ,

where $\beta=\beta(D)$ .

The following formula is an explicit form of the formula in Theorem 11.

COROLLARY 1. Let $D$ be a connected symmetric digraph and $g\in Z_{p}^{n}\backslash \{0\}$ .
Then the number of I-isomorphism classes of g-cyclic $Z_{p}^{n}$ -covers of $D$ is

Iso $(D, Z_{p}^{n},g, I)=\sum_{k=1}^{n}\frac{p^{\beta-k+1}(p^{\theta}-1)\cdots(p^{\beta.-k+2}-1)}{(p^{k-1}-1)(p^{k-2}-1)\cdot(p-1)}$ .

THEOREM 23. (Mizuno, Lee and Sato) Let $D$ be a connected symmetnc digraph,
$Z_{p^{n}}$ the cyclic group of orderp($p(>2)$ : pnme) and $g\in Z_{p^{n}}\backslash \{0\}$ . Furthermore,
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let ord $(g)=p^{n-\mu}(\mu<n)$ be the order of $g$ . Then the number of I-isomorphism
classes of connected g-cyclic $Z_{p^{n}}$ -covers of $D$ is

Isoc $(D, Z_{p}\cdot,g, I)=\left\{\begin{array}{ll}p^{(n-1)\beta-\mu}(p^{\beta}-1) & if \mu\geq 1,\\p^{n\beta} & othe nvise,\end{array}\right.$

The following formula is an alternative form of the formula in Theorem 17.

COROLLARY 2. Let $D$ be a connected symmetric digraph and $g\in Z_{p^{n}}\backslash \{0\}$ .
Furthernore, let ord $(g)=p^{n-\mu}(0<\mu<n)$ be the order of $g$ . Then the number
of I-isomorphism classes of g-cyclic $Z_{p^{\hslash}}$ -covers of $D$ is

Iso $(D, Z_{p^{n}},g, I)=p^{(n-\mu-1)\beta}+p^{(n-\mu-1)\beta}(l-1)\frac{p^{(\mu+1)(\beta-1)}-1}{(P^{-1}-1)}$ .

6. Characteristic polynomials

6.1 Characteristic polynomials of cyclic A-covers

Let $G$ be a graph or a digraph. Two vertices are adjacent if they are joined by
an edge (arc). The adjacency matnx $A(G)$ of a graph (digraph) $G$ whose vertex
set is $\{v_{1}, \cdots , v_{n}\}$ is a square matrix of order $n$ , whose entry $a:j$ at the place $(i,j)$

is equal to 1 if there $e$xists an edge (arc) starting at the vertex $v$; and terminating
at the vertex $v_{j}$ , and $0$ otherwise. Then the charactenstic polynomial $\Phi(G;\lambda)$ of
$G$ is defined by $\Phi(G;\lambda)=det(\lambda I-A(G))$ .

Schwenk [43] studied relations between the characteristic polynomials of some
$re$lated graphs. Kitamura and Nihei [21] discussed the structure of regular double
coverings of graphs by using their eigenvalues. Chae, Kwak and Lee [5] gave the
complete computation of the characteristic polynomials of $K_{2}$ (or $\overline{K}_{2}$ )-bundles
over graphs. Kwak and Lee [26] obtained a formula for the chracteristic polyno-
mial of a graph bundle when its voltag$e$ assignment takes in an abelian group.
Sohn and Lee [45] showed that the characteristic polynomial of a weighted $K_{2}$

(or $\overline{K}_{2}$ )-bundles over a weighted graph of $G$ can be expressed as a product of
characteristic polynomials of two weighted graphs whose underlying graphs are
$G$ . Mizuno and Sato [35] established an explicit decomposition formula for the
characteristic polynomial of a regular covering of a graph.

Mizuno and Sato [36] gave a decomposition formula for the characteristic
polynomial of a g-cyclic A-cove $r$ of a symmetric digraph $D$ for any finite group
$A$ and any $g\in A$ . As a corollary, we obtained the above formula for the charac-
teristic polynomial of a regular covering of a graph.
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THEOREM 24. (Mizuno and Sato) Let $D$ be a symmetric digraph, $A$ a finite
group, $g\in A$ and $\alpha$ : $A(D)\rightarrow A$ an alternating function. Furthermore, let
$\rho_{1}=1_{f}\rho_{2},$

$\cdots,$ $\rho_{t}$ be the irreducible representations of $A$ , and $f_{i}$ the degree of
$\rho_{i}$ for each $i$ , where $f_{1}=1$ . For $h\in A$ , the matrix $A_{h}=(a_{uv}^{(h)})$ is defined as
follows:

$a_{uv}^{(h)}$ $:=\left\{\begin{array}{ll}1 & if \alpha(u, v)=h and (u, v)\in A(D),\\0 & otherwise.\end{array}\right.$

Then the charactertStic polynomial of the g-cyclic A-cover $D_{g}(\alpha)$ of $D$ is

$\Phi(D_{g}(\alpha);\lambda)=\Phi(D;\lambda)\cdot\prod_{j=2}^{t}\{\Phi(\sum_{h\in A}\rho_{j}(h)\otimes A_{hg}; \lambda)\}^{f_{j}}$ ,

$wheoe\otimes is$ the Kronecker product of matnces.

COROLLARY 3. $\Phi(D;\lambda)|\Phi(D_{g}(\alpha);\lambda)$ .

Let $D$ be the symmetric digraph corr$es$ponding to a graph $G$ . Then, note
that $A(D)=A(G)$ .

COROLLARY 4. (Mizuno and Sato) Let $G$ be a graph, $A$ a finite group and
$\alpha$ : $D(G)\rightarrow A$ an ordinary voltage assignment. Let $\rho_{i},$

$f_{i}$ be as in Theoruem 24.
Then the charactenStic polynomial of the $A- cove\dot{n}ngG^{\alpha}$ of $G$ is

$\Phi(G^{\alpha}; \lambda)=\Phi(G;\lambda)\cdot\prod_{j=2}^{t}\{\Phi(\sum_{h}\rho_{j}(h)\otimes A_{h} ; \lambda)\}^{f_{j}}$ .

6.2 Characteristic polynomials of cyclic abelian covers

Mizuno and Sato [36] presented two formulas for the characteristic polynomial
of a cyclic abelian cover.

Let $D$ be a symmetric digraph, $A$ a finite abelian group and $A^{*}$ the character
group of $A$ . For a mapping $f$ : $A(D)\rightarrow A$ , a pair $D_{f}=(D, f)$ is called a weighted
symmetnc digraph. Given any weighted symmetric digraph $D_{f}$ , the adjacency
matrix $A(D_{f})=(a_{f,uv})$ of $D_{f}$ is the square matrix of order $|V(D)|$ defined by

$a_{f,uv}=a_{uv}\cdot f(u, v)$ .

The characteristic polynomial of $D_{f}$ is that of its adjacency matrix, and is de-
not$ed\Phi(D_{f} ; \lambda)$ (see [45]).
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COROLLARY 5. (Mizuno and Sato) Let $D$ be a symmetric digraph, $\alpha$ an al-
temating function from $A(D)$ to a finite abelian group $A$ , and $g\in A$ . Then we
have

$\Phi(D_{g}(\alpha);\lambda)=\prod_{\chi\in A}\Phi(D_{\chi(g)^{-1}(\chi 0\alpha)} ; \lambda)$ .

Another formula for the characteristic polynomial of a cyclic abelian cover is
obtained by considering its structure.

COROLLARY 6. (Mizuno and Sato) Let $D$ be a symmetnc digraph, $A$ a finite
abelian group, $g\neq 1\in A$ and $\alpha$ : $A(D)\rightarrow A$ an alternating fijnction. Set
$|V(D)|=t$ , ord $(g)=n,$ $|A|=nq$ and $ H=\langle g\rangle$ . $Fb$ rthermore, let $\beta$ : $ A(D)\rightarrow$

$A/H$ be the alternating function such that $\beta(x, y)=\alpha(x, y)H$ for each $(x, y)\in$

$A(D)$ . Then the characteristic polynomial of the g-cyclic A-cover $D_{g}(\alpha)$ of $D$ is

$\Phi(D_{g}(\alpha);\lambda)=\zeta^{-qtn(n-1)/2}\prod_{k=0}^{n-1}\prod_{\chi\in(A/H)}\Phi(D_{\chi 0\beta} ; \zeta^{k}\lambda)$ ,

where $(A/H)^{*}$ is the character group of $A/H$ and $\zeta=\exp(2\pi i/n)$ .
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