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Abstract. $Thi_{8}$ is an expository paper concerning geometry of frameworks.
Many interesting results on frameworks including several recent works are pre-
sented together with some open problems. The contents are:

1. Introduction
2. Rigidity and infinitesimal rigidity
3. Bipartite frameworks
4. Unit-bar-frameworks
5. Generic rigidity of graphs
6. Configuration spaces of frameworks.

1. Introduction

By a motion of a graph with vertices in Euclidean space $R^{d}$ , we mean a
continuous movement of the vertices in $R^{d}$ with keeping the distances between
adjacent vertices unchanged. When we are interested in motions of a graph with
vertices in $R^{d}$ , we usually call the graph a ffamework in $R^{d}$ . The vertices and
edges of a framework are then called the joints and bars. The distance between
the two end-points of a bar is called the length of the bar. So, during a motion
of a framework, the lengths of bars are all fixed. A continuous deformation of a
framework $F$ in $R^{d}$ is a motion of $F$ in $R^{d}$ that changes the distance between
a pair of non-adjacent joints. If a framework $F$ in $R^{d}$ admits a continuous
deformation, then $F$ is called flexible, otherwise, it is called $r\dot{i}gid$ .

For example, a 4-cycle in $R^{2}$ consisting of four vertices and four edges of a
square is flexible. Indeed, it continuously deforms into a family of rhombi. On
the other hand, every complete graph in $R^{d}$ is rigid.

$**********$

The subjects of the present paper are mainly related to so-called bar-and-joint-
frameworks. Some of them were themes of my talks in the series of meetings
on Topological Graph Theory (organized by Prof. S. Negami) at Yokohama
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National University, during the past ten years. Other closely related things such
as, tensegrity frameworks, bar-and-body-frameworks, scene analysis, matroid
theory, are omitted here. For matroid and rigidity, see, e.g., [11], [32], [42].

1.1 Linkages

A planar (spatial) linkage is a framework in which a few joints are fixed in
the plane (space). Usually, the interest in linkages is not in finding rigid ones,
but in finding linkages one of whose joints will trace specffic curves (surfaces).

Figure 1. Peaucellier’s linkages

Figure l(a) shows a planar linkage called the Peaucellier’s inversor. It con-
sisits of six bars $OA,$ $OB,AP,$ $BP,$ $AQ,$ $BQ$ of two different lengths, and the
joint $O$ is fixed on the plane. Notice that the joint $P$ can move freely on the
plane to some extent without any constraint. It is not difficult to see that the
three joints $O,$ $P,$ $Q$ are always collinear, and $OP\cdot OQ=OA^{2}-AP^{2}$ . Hence,
$Q$ is the inversion of $P$ with respect to the circle centered at $O$ having radius
$\sqrt{OA^{2}-AP^{2}}$. Hence this linkage is called the inversor.

Since James Watt had completed the steam engine, it became an interesting
problem to find a linkage in which a certain joint draws a straight line-segment.
In 1784, James Watt found such a linkage that works approximately satisfac-
torily. An exact solution was found by Peacellier in 1864. In the Peaucellier’s
inversor (Figure 1 $(a)$ ), if we move $P$ along a circle that passes through $O$ , then
$Q$ will draw a straight line. (Recall that the inversion of a circle that passes
through the center of the inversion is a straight line.) Hence, in the linkage
shown in Figure 1(b) (in which the joint $R$ is also fixed (pinned) on the plane),
$Q$ draws a straight line-segment.

Hart also made an inversor in different way and made a linkage drawing a
straight line-segment. Kempe devised a linkage drawing a straight line-segment
without using (inversion’. For the details on their linkages, see Rademacher-
Toeplits [31] Chapter 16.

$Modi\theta ing$ Peaucellier’s inversor, we can make a spatial inversor. Figure 2
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shows one. It consisits of 9 bars of two different lengths. The joint $O$ is fixed in
the space. As far as the three joints $A,$ $B,$ $C$ take different positions, the three
joints $O,$ $P,$ $Q$ are collinear, and $OP\cdot OQ=OA^{2}-AP^{2}$ . Hence $Q$ is the inversion
of $P$ with respect to the sphere centered at $O$ with radius $\sqrt{OA^{2}-AP^{2}}$. (If you
worry about the case that two of $A,$ $B,$ $C$ , say, $A,$ $B$ come to the same position by
chance, you may add two bars $AE,$ BE of different lengths. Then $A,$ $B$ cannot
come to the $s$ame position.) If we add further a bar $PR$ and fix the joint $R$ at
the position such that $OR=PR$ , then $Q$ will draw (a part of) a plane.

For another type of spatial linkage that draws a plane, see the book of Hilbert
and Cohn-Vossen [15] Ch. V, Section 40.

Figure 2. A spatial inversor

Kempe [18] proved the following amazing result.

THEOREM 1.1. (Kempe 1876) For any polynomial $\varphi(x, y)$ , there is a planar
linkage that draws (a part of) the curve $\varphi(x, y)=0$ .

Motivated by planning of motion in robotic $s$ , Hopcroft-Joseph-Whitesides
[16] gave a modified version of Kempe’s construction of a linkage that “solves” a
multivariable polynomial equations. Using it, they gave, among others, a linkage
that traces a ‘triangle’.

1.2 $Hinged-panel$-surfaces

Let us mention here some results on the rigidity of a polyhedral surface. We
regard a polyhedral surface as a hinged-panel-surface, that is, a 2-dimensional
manifold in $R^{3}$ obtained by attaching rigid panel-polygons along their edges
with hinges. Its dihedral angles can be changed freely if no constraints come
from other faces. In a polyhedral surface, if we can change continuously some
dihedral angle of the surface, then the surface is called flexible, otherwise, it is
called rigid.

As you know empirically, a box is rigid as a hinged-panel-manifold, even if
one face of a box is removed. On the other hand, by removing a face from a
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cube, and by triangulating the remaining 5 faces by diagonals as illustrated in
Figure 3, we have a flexible polyhedral surface. Actually, it can be folded flat.

Figure 3. A folding container

From a cube, remove the top face and the bottom face, and triangulate the
remaining 4 faces by pairs of diagonals crossing in the shape ‘X’, see Figure 4.
Then we have a polyhedral ‘tube’ consisiting of $4\times 4=16$ right-angled isosceles
triangles of the same size. This tube is called a flexagon. As a hinged-panel-
surface, the flexagon is not only flexible. It is reversible! (Paint the inside of
the tube red, outside blue. Then it is possible to deform the tube to a one with
outside color red.) The process of turning the flexagon inside out is complicated
and intriguing, and hence the flexagon works as a nice toy. The flexagon was dis-
covered by Arthor Stone in 1939, see Bolt [5] p. 22. For other types of flexagons,
see Gardner [10].

Figure 4. A flexagon

1.3 A flexible closed surface

A flexagon and a folding container (Figure 3) are flexible, but they are poly-
hedral surfaces with boundaries. How about closed polyhedral surfaces? Are all
closed polyhedral surface rigid? Euler thought so, and conjectured in 1766 “a
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closed spatial figure allows no changes, as long as it is not ripped apart”. Cauchy
proved that Euler’s conjecture is true for convex polyhedral surfaces.

THEOREM 1.2. (Cauchy 1813) Every closed convex polyhedral surface is rigid.

In his proof, Cauchy overlooked an exceptional possibility in the auxiliary
lemma. This minor flaw was amended by Stoker [37].

Since a triangle is rigid as a framework, it follows from Cauchy’s rigidity
theorem that the graph (l-skeleton) of a convex polyhedron consisting of only
triangular faces is rigid.

Let $G=(V, E)$ be an abstract graph. Then, any injection $f:V\rightarrow R^{d}$ define
a framework $f(G)$ in $R^{d}$ with joints $f(i)(i\in V)$ and bars $f(i)f(j)(ij\in E)$ .
The framework $f(G)$ in $R^{d}$ is called a representation of $G$ in $R^{d}$ .

THEOREM 1.3. (Gluck 1975) Let $G=(V, E)$ be a maximal planar graph.
Then an arbitrary representation of $G$ in $R^{3}$ is rigid almost surely.

What do we mean by almost surely? Suppose that $G$ has $n$ vertices. Then
an injection $f:V\rightarrow R^{3}$ is represented by a point in $R^{3n}$ . The theorem implies
that the set of points of $R^{3n}$ corresponding to rigid representations of $G$ , is an
open dense subset of $R^{3n}$ .

Since a l-skeleton of a triangulation of a 2-sphere is a maximal planar graph,
the above theorem implies that almost all simply connected, triangulated polyhe-
dral surfaces in $R^{3}$ are rigid. Thus, we may say Euler’s conjecture is statistically
true.

In 1976, however, Connelly [7], [8] proved the following startling result.

THEOREM 1.4. (Connelly 1976) There is a closed polyhedral surface in $R^{3}$

with faces all triangles, homeomorphic to a 2-dimesional sphere, and yet flemble.

His flexible surface preseves its volume (content) under any continuous defor-
mation, that is, the volume of the polyhedron remains constant during contin-
uous deformation. This fact lead him to the Bellow Conjecture. It asserts that
each flexible closed surface in $R^{3}$ conserves its volume during continuous defor-
mation. Recently, the affirmative answer to the Bellow Conjecture was obtained
for all flexible polyhedra in $R^{3}$ , see [9], [34], [35]. On the other hand, the Bellow
Conjecture is no longer true in the sphencal space $S^{3}$ ; Alexandrov [1] presented
a flexible polyhedron in $S^{3}$ which changes its volume during deformation.
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2. Rigidity and infinitesimal rigidity

Here, we recall some fundamentals concerning rigidity and infinitesimal rigid-
ity of frameworks.

2.1 Infinitesimal deformations

A vector field $f$ on X C $R^{d}$ is a map $f$ : $X\rightarrow R^{d}$ . When we want to show the
domain of $f$ explicitly, we use the notation $f|X$ . If the values of $f$ are obtained
as the velocity vectors of a smooth ‘rigid motion’ of $X$ in $R^{d}$ , then $f$ is called
tmvial. An infinitesimal motion of a framework $F$ with the vertex-set $X\subset R^{d}$

is a vector field $f|X$ that satisfies

$(f(x)-f(y))\cdot(x-y)=0$

for all bars $xy$ of $F,$ where. denotes the inner product. Consider, for example,
a smooth motion of $F$ in $R^{d}$ . Since, for any bar $xy$ of $F$ ,

II $x-y||^{2}=$ const.

holds during the motion, by differentiating with the time parameter $t$ , we have
$(dx/dt-dy/dt)\cdot(x-y)=0$ for all bars $xy$ of $F$ . Hence the velocity vectors (at
any instant) of a smooth motion of $F$ in $R^{d}$ is an infinitesimal motion of $F$ . A
nontrivial infinitesimal motion of $F$ is called an infinitesimal deformation of $F$ .
If $F$ admits an infinitesimal deformation in $R^{d}$ , then $F$ is called infinitesimally
flexible in $R^{d}$ , otherwise, $F$ is called infinitesinally ngid in $R^{d}$ .

The infinitesimal motions of $F$ in $R^{d}$ form a vector space $W$ with respect to
joint-wise addition and multiplication of scalars. The trivial motions of $F$ yield
a $(^{d+1}2)$ -dimensional subspace of this vector space $W$ , where

$\left(\begin{array}{l}d+1\\2\end{array}\right)=\dim$ SO $(d)+d$

($SO(d)$ is the rotation group of $R^{d}$ fixing the origin). Hence

dim $W\geq\left(\begin{array}{l}d+1\\2\end{array}\right)$ , and

dim $W=\left(\begin{array}{l}d+1\\2\end{array}\right)\Leftrightarrow F$ is infinitesimally rigid.

If a framework in $R^{d}$ admits a continous deformation, then it admits a smooth
deformation, see, e.g., Asimov-Roth [2]. If a framework $F$ in $R^{d}$ admits a smooth
deformation, then the velocity vectors of the joints at some instant constitute an
infinitesimal deformation of $F$ . Hence we have
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$flexible\Rightarrow infinitesimally$ flexible
and hence

infinitesimally $rigid\Rightarrow rigid$ .
Note that a rigid framework is not always infinitesimally rigid. For example, the
framework in $R^{2}$ shown in Figure 5(a) is rigid but not infinitesimally rigid. (By
assigning the dotted vector to the joint $x$ , and zero vectors to all other joints,
we get an infinitesimal deformation.)

Figure 5.

2.2 The rigidity matrix

Let $F$ be a framework in $R^{d}$ with joints $p_{1},$ $\ldots$ , $p_{n}$ and bars $e_{1},$
$\ldots,$

$e_{m}$ . Con-
sider an infinitesimal motion $f$ of $F$ , and put $x;=f(p_{i})$ . Then for each bar
$e_{k}=p_{j}p_{j}$ of $F$ , we have $(p_{i}-p_{j})\cdot(x_{i}-x_{j})=0$ , that is,

$(p;-p_{j})\cdot x;+(p_{j}-p_{i})\cdot x_{j}=0$ .
Collecting such equations for the bars $e_{1},$

$\ldots,$
$e_{m}$ , we have a linear equation for

the ‘unknown’ vector $(x_{1}, \ldots, x_{n})\in R^{dn}$ . The coefficient matrix of this linear
equation is called the rigidity matrix of $F$ , and it is denoted by $M_{F}$ . Note that
if $e_{k}=p;p_{j}(i<j)$ , then, the kth row of $M_{F}$ is

$(0, \ldots, 0,p;-p_{j}, 0, \ldots, 0,p_{j}-p_{j}, 0, \ldots, 0)\in R^{d}\times\ldots\times R^{d}=R^{dn}$ .

EXAMPLE 2.1. The rigidity matrix of the framework in $R^{2}$ illustrated in
Figure 5(b) is

$\left(\begin{array}{llll}p_{1}-p_{2} & p_{2}-p_{l} & 0 & 0\\0 & p_{2}-p_{3} & p_{3}-p_{2} & 0\\0 & 0 & p_{3}-p_{4} & p_{4}-p_{3}\\p_{l}-p_{4} & 0 & 0 & p_{4}-p_{l}\end{array}\right)$

(with all entries row-vectors in $R^{2}$ ) which is 4 $\times 8$ matrix as a matrix with
number-entries.
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Let $W$ denote the vector space of all infinitesimal motions of $F$ , and $\varphi$ :
$R^{dn}\rightarrow R^{m}$ be the linear map defined by $M_{F}$ . Then we have $ W=ker\varphi$ , and
dim $W+rank(M_{F})=dn$ . Hence the next theorem follows.

THEOREM 2.1. Let $F$ be a framework with $n(>d)$ joints in $R^{d}$ , and $M_{F}$ be
its rigidity matrix. Then

(1) rank $(M_{F})\leq dn-(^{d+1}2)$ ,
(2) $F$ is infinitesimally $\dot{n}gid\Leftrightarrow rank(M_{F})=dn-(^{d+1}2)$ .

Since rank $(M_{F})\leq m$ ( $m$ is the number of bars of $F$), the next follows.

COROLLARY 2.1. Let $F$ be a framework in $R^{d}$ with $n(>d)$ joints and $m$

bars. If $m<nd-(^{d+1}2)$ , then $F$ is infinitesimally flexible.

2.3 Regular points

Let $G$ be an abstract graph with vertices 1, 2, . .. , $n$ . By taking $n$ distinct
points $p_{1},p_{2},$ $\ldots$ , $p_{n}$ in $R^{d}$ , and defining $p_{i},p_{j}$ to be adjacent whenever $ij\in E$ ,
we have a framework in $R^{d}$ . This frmework is called a representation of $G$ and
denoted by

$G(P)$ or $G(p_{1},p_{2}, \ldots,p_{n})$ ,

where $P=(p_{1},p_{2}, \ldots,p_{n})$ is a point of $R^{d}\times R^{d}\times\ldots\times R^{d}=R^{nd}$ . Let $M_{G(P)}$ be
the rigidity matrix of $G(P)$ . Regarding rank $(M_{G(P)})$ as a function of $P\in R^{dn}$ ,
a point $P$ where rank $(M_{G(P)})$ takes its maximum value is called a regular point
of $G$ . Then the next theorem holds.

THEOREM 2.2. Let $G$ be a graph with $n(>d)$ vertices. Then,
(1) the set of regular points of $G$ in $R^{dn}$ is an open dense subset of $R^{dn}$ , and
(2) for any regular point $P\in R^{dn}$ of $G$ , the following three are equivalent:

1. $G(P)$ is ngid in $R^{d}$ ,
2. $G(P)$ is infinitesimally ngid in $R^{d}$ ,
3. rank$(M_{G(P)})=dn-(^{d+1}2)$ .

Thus, there is no big difference between the rigidity and the infinitesimal
rigidity. For more information on rigidity or flexibility, see, e.g., [2], [3], [33].

3. Bipartite frameworks in the plane

Suppose you have to construct a rigid framework in the plane. Then, usually
you will use triangles (3-cycles) to make the framework rigid. Since $K(3,3)$
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contains no 3-cycle, it would be an interesting fact that most representations of
$K(3,3)$ in the plane are rigid.

3.1 Conics

For two disjoint, nonempty (possibly infinite) sets $X,$ $Y\subset R^{2}$ , let $K(X, Y)$

denote the complete bipartite graph with partite sets $X$ and Y. The size (car-
dinality) of $X$ is denoted by $|X|$ . It is not hard to see that if $|X|\leq 2$ , then
$K(X, Y)$ is always infinitesimally flexible.

THEOREM 3.1. Suppose that $X,$ $Y\subset R^{2}$ are two disjoint sets of $size\geq 3$ such
that no three points in $X\cup Y$ are collinear. If $K(X, Y)$ admits an infinitesimal
deformation, then $X\cup Y$ lies on a conic.

Proof. Suppose that $f$ : $X\cup Y\rightarrow R^{2}$ is an infinitesimal deformation of $K(X, Y)$ ,
and let $p_{1},p_{2},p_{3}$ be any three points in $X$ . Then for any $q\in Y$ ,

(1) $(q-p_{i})\cdot(f(q)-f(p_{i}))=0(i=1,2,3)$ .

Hence for each $q\in Y$ , the value $f(q)$ is uniquely determined by the two val-
ues $f(p_{1}),$ $f(p_{2})$ , and similarly $f(p)(p\in X-\{p_{1}, p_{2}\})$ is also determined by
$f(p_{1}),$ $f(p_{2})$ via $s$ome two values $f(q),$ $f(q^{\prime})(q, q^{\prime}\in Y)$ . Therefore $f|\{p_{1},p_{2}\}$

must be an infinitesimal deformation, i.e., $(p_{1}-p_{2})\cdot(f(p_{1})-f(p_{2}))\neq 0$ . (For
otherwise, $f$ : $X\cup Y\rightarrow R^{2}$ becomes a trivial motion.) Now, letting $f(q)=(u, v)$ ,
we have

(1) $\Leftrightarrow(q-p;)\cdot f(q)-(q-p_{i})\cdot f(p_{i})=0(i=1,2,3)$

(2) $\Leftrightarrow(q-p_{3}q-p_{2}q-p_{1}$ $\left\{\begin{array}{l}q-p_{1})\cdot f(p_{1}\\q-p_{2})\cdot f(p_{2}\\q-p_{3})\cdot f(p_{3}\end{array}\right\})\left(\begin{array}{l}u\\v\\-1\end{array}\right)=\left(\begin{array}{l}0\\0\\0\end{array}\right)$

Let $p_{i}=(a_{i}, b_{i})(i=1,2,3)$ , and define a polynomial $\varphi(x, y)$ of $x,$ $y$ by

$\varphi(x)=\varphi(x, y)=|x-a_{3}x-a_{2}x-a_{1}$ $y-b_{3}y-b_{2}y-b_{1}$ $(x-a_{3},y-b_{3})\cdot f(p_{3}((xx--a_{2}a_{1},yy--b_{2}b_{1})).ff((p_{1}p_{2}\}|$

Then, it follows easily from $(p_{1}-p_{2})\cdot(f(p_{1})-f(p_{2}))\neq 0$ that $\varphi((p_{1}+p_{2})/2)\neq 0$ .
Hence $\varphi(x, y)$ is a nontrivial polynomial of $x,$ $y$ with degree at most 2. Since
$\varphi(q)=0$ for all $q\in Y$ by (2) and $\varphi(p_{i})=0(i=1,2,3)$ as verified easily, the set
$\{p_{1},p_{2},p_{3}\}\cup Y$ lie $s$ on the conic $\varphi(x, y)=0$ . Similarly, for any $p\in X-\{p_{1},p_{2}\}$ ,
the set $\{p_{1},p_{2},p\}\cup Y$ lies on a conic. Since a proper conic is determined by five
points on it, we can conclude that $X\cup Y$ lies on a conic. $\blacksquare$
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The following general result was essentially proved in Bolker-Roth [4]. The
precise form was given by Whiteley [41].

THEOREM 3.2. Let $X,$ $YCR^{d}$ be two disjoint sets such that $|X|$
)
$|Y|\geq d+1$ .

Then $K(X, Y)$ is infinitesimally flexible in $R^{d}$ if and only if one of the following
holds:

(1) $X$ and a point of $Y$ lie on a hyperplane.
(2) $Y$ and a point of $X$ lie on a hyperplane.
(3) $X\cup Y$ lies on a quadra tic hypersurface.

3.2 Flexible representations

Now a question: When does a representation of $K(m, n),$ $m,$ $n\geq 3$ , in $R^{2}$

admit a continuous deformation? Recently Maehara-Tokushige [30] proved the
following result.

THEOREM 3.3. Let $X,YCR^{2}$ be two disjoint finite-sets such that $|X|\geq$

$3,$ $|Y|\geq 5$ . Then $K(X, Y)$ admits a continuous defornation if and only if $X$ lies
on a line $L$ and $Y$ lies on a line perpendicular to $L$ .

The if part of the theorem is easy. To see this, suppose that $X=\{p_{1},p_{2}$ ,
$p_{3},$ $\ldots$ } lies on the x-axis and $Y=\{q_{1}, q_{2}, q_{3}, \ldots\}$ lies on the y-axis, with no $q_{j}$

at the origin. Then we can put

$p_{i}=(\sigma_{i}\sqrt{a_{1}-t}, 0),$ $i=1,2,$ $\ldots$ ,
$q_{j}=(0,\epsilon_{j}\sqrt{b_{j}+t}),$ $j=1,2,$ $\ldots$ ,

where $\sigma_{i},$ $\epsilon_{j}=\pm 1$ and $a_{i}\geq t>0,$ $b_{j}>0$ . Then the length of the bar $p_{1}q_{j}$ is
equal to $\sqrt{a_{i}+b_{j}}$, which is irrelevant to $t$ . Hence by varying $t$ , we can deform
$K(X,Y)$ . The only if part of the proof is not easy.

3.3 Bottema’s example

In Theorem 3.3, we cannot relax the condition $|Y|\geq 5$ to $|Y|\geq 4$ , as seen in
the following result due to Bottema (see Wunderlich [44]).

THEOREM 3.4. There is a flexible representation $K(X, Y)$ of $K(4,4)$ in the
plane such that the convex hulls of $X$ and $Y$ are both rectangles.
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Proof. Consider the simultaneou $s$ equation on $x,$ $y,$ $z$ containing the parameter $t$ :

$\left\{\begin{array}{ll}(x-t)^{2}+(y-z)^{2} & = a\\(x-t)^{2}+(y+z)^{2} & = b\\(x+t)^{2}+(y-z)^{2} & = c\\(x+t)^{2}+(y+z)^{2} & = d\end{array}\right.$

where $a,$ $b,$ $c,$
$d$ are positive constants such that $a+d=b+c$ . We can choose

$a,$ $b,$ $c,$
$d$ suitably so that the above equation has real solutions for some range of

$t$ . For example, letting $a=4,$ $b=6,$ $c=8,$ $d=10$ , we have the solutions

(3) $x=1/t,$ $y=\frac{\pm\sqrt{8-f(t)}\pm\sqrt{6-f(t)}}{2},$
$z=\frac{1}{2y}$

where $f(t)=(t^{4}+1)/t^{2}$ , which take real values for $\sqrt{2}-1\leq t\leq\sqrt{2}+1$ . Now
choosing, say, $+signs$ in (3), let

$p_{1}=(t, z)$ , $p_{2}=(-t, z)$ , $p_{3}=(-t, -z)$ , $p_{4}=(t, -z)$ ,
$q_{1}=(x, y)$ , $q_{2}=(-x, y)$ , $q_{3}=(-x, -y)$ , $q_{4}=(x, -y)$ ,

and put $X=\{p_{1},p_{2},p_{3},p_{4}\},$ $Y=\{q_{1}, q_{2}, q_{3}, q_{4}\}$ . Then, varying $t$ from $2-\sqrt{3}$

to $2+\sqrt{3}$, we have a continuous deformation of $K(X, Y)$ . $\blacksquare$

PROBLEM 3.1. Characterize the flexible representations of
$K(3,3),$ $K(3,4),$ $K(4,4)$

in the plane.

Let us call an (abstract) graph absolutely 2-rigid if it admits no flexible
representation in $R^{2}$ .

PROBLEM 3.2. Characterize absolutely $2$ -ngid graphs.

I conjecture that a graph $G$ of order $>2$ is absolutely 2-rigid if and only if $G$

can be obtained from $K_{2}$ by repeating the following operations: (1) attaching a
vertex of degree 2, and (2) adding an edge.

4. Unit-bar-frameworks

A framework $F$ in $R^{d}$ is called a unit-bar-framework if its all bars have the
unit length.
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4.1 Triangle-free frameworks

As seen in Theorem 3.1, there is a ‘bipartite’ framework that is rigid in $R^{2}$ .
How about unit-bar-frameworks? Can you think of a (nontrivial) rigid unit-
bar-framework in the plane that has no 3-cycle? Maehara [24] presented such a
one.

THEOREM 4.1. There is a rigid unit-bar-framework in the plane that is a
bipartite graph.

Since a bipartite graph contains no odd-cycle, it contains no 3-cycle. Un-
fortunately, the rigid framework presented in [24] is not infinitesimally rigid.
An infinitesimally rigid unit-bar-framework in the plane that has no 3-cycle is
constructed by Maehara-Chinen [28]. Figure 6 shows their framework.

Figure 6. A rigid unit-bar-framework in the plane

It is an easy exercise of elementary geometry to verify that the unit-bar-
framework in Figure 6 is rigid. The infinitesimal rigidity of this framework is
shown by calculating the rank of its rigidity matrix.

Maehara-Tokushige [29] constructed a rigid unit-bar-framework in $R^{3}$ that
contains no 3-cycle. It consists of 26 joints and 78 bars (unit-bars). Its infinites-
imal rigidity was checked by calculating the rank of rigidity matrix.

PROBLEM 4.1. Find an infinitesimally rigid bipartite unit-bar-ffamework in
the plane.

PROBLEM 4.2. Find a general construction of triangle-free, infinitesimally
rigid unit-bar-framework in $R^{d}$ .
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4.2 Extensions, distances, constructibility

Let $F$ be a flexible unit-bar-framework in $R^{d}$ . Then, by adding some bars of
appropriate lengths, we can always extend $G$ to a rigid framework in $R^{d}$ . But,
how about when only unit-bars are available? Can you always extend $F$ to a
rigid unit-bar-framework in $R^{d}$ ? If necessary, you may continuously deform $F$

as far as no two distinct joints come to the same position.
The following result was proved by Maehara [25].

THEOREM 4.2. Any unit-bar-framework in $R^{d}$ can be extended to a ngid
unit-bar-framework in $R^{d}$ .

The next theorem was proved in Maehara [23] by following the idea of Kempe
[18].

THEOREM 4.3. For any positive algebraic number $\alpha$ , there is a ngid unit-bar-
framework $F$ in $R^{2}$ that contains two joints exactly distance $\alpha$ apart.

This theorem was also extended to arbitrary dimension $d>2$ by [25].
Given a line-segment of unit length in the plane, a line-segment of, say, length

$2^{1/3}$ cannot be constructed by $m$ler and compass. Hence, by Theorem 4.3, there
is a rigid framework that cannot be constructed by ruler and compass from the
data of bar-lengths, and its graph-structure. It is known that 6 is the minimum
order of a rigid (not necessarily unit-bar-) framewrok that cannot be constructed
from its bar-lengths and graph-structure. Figure 7 is such a framework obtained
in [26].

$\ovalbox{\tt\small REJECT}_{1}^{1}2222111$

Figure 7. A nonconstructible framework

5. Generic rigidity of graphs

Let $G$ be an abstract graph with $n$ vertices. If a representation $G(P_{0})$ in $R^{d}$

for a regular point $P_{0}\in R^{dn}$ is rigid, then $G(P)$ is rigid for any regular point
$P\in R^{dn}$ , by Theorem 2.2. Let us call $G$ generically d-rigid (simply d-rigid)



54 H. MAEHARA

when $G(P)$ in $R^{d}$ is rigid for a regular point $P$ . If $G$ is not d-rigid, then $G$ is
called generically d-flexible (simply d-flexible).

5.1 Generic rigidity of $K(m,n)$

Let $X,Y$ be disjoint subsets of $R^{d}$ . It is not hard to see that if one of $|X|,$ $|Y|$

is less than $d+1$ , then $K(X, Y)$ is infinitesimally flexible in $R^{d}$ . Suppose that
$|X|>d,$ $|Y|>d$ and neither $X$ nor $Y$ lie on a hyperplane. Then it follows from
Theorem 3.2 that $K(X, Y)$ is infinitesimally flexible in $R^{d}$ if and only if $X\cup Y$

lie $s$ on a quadratic surface in $R^{d}$ .
Since a quadratic polynomial on $d$ variables has $d+(_{2}^{d})+d+1=(^{d+2}2)$

coefficients, a point-set Z C $R^{d}$ of $s$ize $|Z|<(^{d+2}2)$ lies on a quadratic surface
almost surely, and a point-set of size $\geq(^{d+2}2)$ does not lie on a quadratic surface
almost surely. Hence the next result follows from Theorem 3.2.

THEOREM 5.1. $K(m, n)$ is $d- rigid\Leftrightarrow m,$ $n\geq d+1$ and $m+n\geq(^{d+2}2)$ .

5.2 The Henneberg operations

It is clear that for any $d>0$ and for any $n>0$ , the complete graph $K_{n}$ is
d-rigid. We introduce here two operations $A_{d}$ and $\mathcal{B}_{d}$ which will be applied to
a d-rigid graph to produce another ‘bigger’ d-rigid graph. Let $G$ be an abstract
graph.

1. Operation $A_{d}$ :
Choose $d$ distinct vertices $v_{1},$ $v_{2},$

$\ldots,$
$v_{d}$ of $G$ and add a new vertex $v_{0}$

together with $d$ edges $v_{0}v_{1},$
$\ldots,$

$v_{0}v_{d}$ to $G$ . The resulting graph is denoted
by $A_{d}G$ .

2. Operation $\mathcal{B}_{d}$ :
Remove an edge $e=v_{1}v_{2}$ from $G$ and then add a new vertex $v_{0}$ together
with $d+1$ edges $v_{0}v_{1},$ $v_{0}v_{2},$

$\ldots,$ $v_{0}v_{d+1}$ , where $v_{1},$
$\ldots,$ $v_{d+1}$ are distinct ver-

tices of $G$ . The resulting graph is denoted by $\mathcal{B}_{d}G$ .
Note that $A_{d}$ is applicable only to a graph with at least $d$ vertices, $\mathcal{B}_{d}$ is

applicable to a graph with at least $d+1$ vertices and an edge. Further, $A_{d}G,$ $\mathcal{B}_{d}G$

depend on the choice of the vertices (and an edge) of $G$ . These operations are
known as generalized Henneberg operations, see Tay-Whiteley [39], Maehara [21].

THEOREM 5.2. (Tay-Whiteley 1985).
(1) $G$ is $d- ngid\Leftrightarrow A_{d}G$ is d-rigid
(2) $G$ is $d- ngid\Rightarrow \mathcal{B}_{d}G$ is $d- r\dot{\iota}gid$.
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EXAMPLE 5.1. $K(3,3)$ is 2-rigid, see Figure 8.

Figure 8.

EXAMPLE 5.2. $K(2,2,2)$ is 3-rigid, see Figure 9.

$B_{3}$

3-rigid $K(2,2,2)$

Figure 9.

5.3 Laman’s theorem

A d-rigid graph $G$ is called a minimal d-ngid graph if for any edge $e$ of $G$ ,
$G-e$ (the removal of e) is d-flexible. It is obvious that a minimal d-rigid graph
with at most $d+1$ vertices is complete. The next theorem follows $hom$ Theorem
2.1.

THEOREM 5.3. A minimal d-ngid graph with $n(>d)$ vertices has $dn-(^{d+1}2)$

edges.

For exmple, a minimal 2-rigid graph with $n(\geq 3)$ vertices has $2n-3$ edges.
The next result was obtained by Laman [19], see also Tay [38]. We denote the
set of vertices and the set of edges of $G$ by $V(G)$ and $E(G)$ , respectively.

THEOREM 5.4. (Laman 1970) A graph $G$ with $n(\geq 2)$ vertices is a minimal
$2- rig_{\dot{i}}d$ graph if and only if $|E(G)|=2n-3$ , and, for any subgraph $H$ of $G$ ,
$|E(H)|\leq 2|V(H)|-3$ .

Similarly, the next holds.
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THEOREM 5.5. Let $G$ be a minimal 2-rigid graph with at least 3 vertices.
Then $G$ can be obtained from $K_{2}$ by applying Henneberg operations.

5.4 Connectivity and rigidity

It will be clear that a graph with a cut point is not 2-rigid. Similarly the
following holds.

THEOREM 5.6. If a graph $G$ is d-ngid, then $G$ is d-connected.

Since an n-cycle $(n>3)$ is not 2-rigid, the converse of this theorem is not
true.

THEOREM 5.7. (Lov\’asz-Yenemi 1982) Any 6-connected graph is 2-ngid.

LovdSz and Yenemi [20] also constructed infinitely many 5-connected graphs
that are 2-flexible.

5.5 $3D$ replacement conjecture

Generally, a minimal 3-rigid graph cannot be constructed by Henneberg oper-
ations. For example, the graph $G$ of a regular icosahedron is 3-rigid by Cauchy’s
rigidity thorem or Gluck’s theorem. It has 12 vertices and $30=3\times 12-6$ edges.
Hence it is a minimal 3-rigid graph. However, since $G$ is 5-regular, it is impos-
sible to get $G$ from a 3-rigid graph by Henneberg operation. Is there any other
valid operation such as $A_{d},$ $\mathcal{B}_{d}$ ? The following would be a natural candidate of
such an operation we can think of.

$\bullet$ Operation $C_{d}$ :
remove two edges $v_{1}v_{2},$ $v_{3}v_{4}$ from a graph $G$ and add a new vertex $v_{0}$

together with $d+2$ edges $v0v_{1},$ $\ldots,$ $v_{0}v_{d+2}$ , where $v_{0},$ $v_{1},$
$\ldots,$ $v_{d+2}$ are all

distinct vertices of $G$ .

This operation is, however, not valid for $d=4[22]$ . To see this, consider
the graph $G_{0}=K_{6}-$ ( $an$ edge). $G_{0}$ is 4-rigid, since it can be obtained from
$K_{4}$ by applying $A_{4}$ two times. The graph $G_{0}$ has 14 edges and they can be
partitioned into seven non-adjacent edge-pairs, see Figure 10. Let $v_{1},$ $v_{2},$

$\ldots,$
$v_{6}$

be the vertices of $G_{0}$ . Con $s$ider the sequence of graphs $G_{0},$ $G_{1},$
$\ldots,$

$G_{7}$ , where
$G_{i}$ is obtained from $G_{i-1}$ by applying the operation $C_{4}$ : remove the i-th edge-
pair from $G_{i-1}$ and add a new vertex together with 6 edges connecting the new
vertex to $v_{1},$

$\ldots,$
$v_{6}$ . Then $G_{7}$ becomes the graph $K(6,7)$ , which is 4-flexible by
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Theorem 5.1. Hence $C_{4}$ is not a valid operation. Similarly, it can be seen that
$C_{d}$ is not valid for $d>4$ . Only the case $d=3$ remains unknown. The assertion
that $C_{3}$ is a valid operation is (a part of) the $3D$ replacement conjecture, see [11],
[39], [43].

–
$\cdot$.

$\rightarrow$

Figure 10.

5.6 Vertex splitting

Let $G$ be a graph, $x$ be a vertex of $G$ such that deg $x\geq d$ . The neighborhood
of $x$ (the set of vertices adjacent to x) is denoted by $N(x)$ . Take two disjoint
sets of vertices $A,$ $B$ such that

$A\cup B\subset N(x)\cup\{x\},$ $|A|=d,$ $x\not\in B$

and add a new vertex $y$ to $G$ together with $d$ edges $yu(u\in A)$ , and, for each
$v\in B$ , replace the edge $xv$ by $yv$ . Such an operation is called a vertex-split with
$d$ feet. Figure 11 shows two types of vertex-splits with 3 feet.

Figure 11. Two vertex-splits with 3 feet

The next theorem was proved by Whiteley (see [42], [43]) by considering the
rank of rigidity matrix.
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THEOREM 5.8. (Vertex-splitting) If $G$ is d-rigid then a graph obtained from
$G$ by applying a vertex-split with $d$ feet is also d-rigid.

Applying this theorem, let us show Gluck’s theorem: every maximal planar
graph $G$ is 3-rigid.

The proof is by induction on the number $n$ of the vertices of $G$ . If $n\leq 4$ then
$G$ is a complete graph, and hence it is 3-rigid. Suppose that maximal planar
graphs with $n(\geq 4)$ vertices are all 3-rigid, and let $G$ be a maximal planar graph
having $n+1$ vertices, embedded in the plane. Recall that any maximal planar
graph has a vertex whose degree is at most 5. If $G$ has a vertex $x$ of degree
3, then $G-x$ is a maximal planar graph with $n$ vertices, which is 3-rigid by
inductive hypothesis. Since $G$ is obtained from $G-x$ by applyng the Henneberg
operation $\mathcal{A}_{3},$ $G$ is 3-rigid.

If $G$ has a vertex $y$ of degree 4, then (recalling $G$ is embedded in the plane)
$G-y$ has a quadrilateral face. By adding a diagonal to this quadrilateral, we
get a maximal planar graph $G^{\prime}$ with $n$ vertices, which is 3-rigid by the inductive
as $s$umption. Since $G$ is obtained from $G^{\prime}$ by applying Henneberg operation $\mathcal{B}_{3}$ ,
$G$ is also 3-rigid.

Finally, suppose $G$ has no vertex of degree $\leq 4$ . Then $G$ has a vertex $z$ of
degree 5, and $G-z$ has a pentagonal face. By adding two diagonals to this
pentagonal face, we get a maximal planar graph $G^{\prime\prime}$ with $n$ vertices, which is 3-
rigid by the inductive assumption. Since $G$ can be obtained from $G^{\prime\prime}$ by applying
a vertex-split with 3 feet (see Figure 12), $G$ is 3-rigid.

Figure 12. A vertex-split with 3 feet

6. Configuration spaces of frameworks

A configumtion of $n$ points in $R^{d}$ is an ordered n-tuple $P=(p_{1}, \ldots,p_{n})$ of
$n$ points $p_{i}\in R^{d}$ . We may regard $P$ as a point in $R^{dn}$ . Two configurations
$P=(p_{1}, \ldots,p_{n})$ and $Q=(q_{1}, \ldots, q_{n})$ in $R^{d}$ are said to be isometric (denoted
by $P\simeq Q$) if there is an isometry $f$ : $R^{d}\rightarrow R^{d}$ such that $f(p_{i})=q_{i}$ $(i=$
$1,2,$

$\ldots,$
$n$). If the isometry $f$ preserves the orientation of $R^{d}$ , then the two

configurations are called congruent, and denoted by $P\cong Q$ .
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Let $F$ be a connected, flexible framework in $R^{d}$ with $n$ joints indexed in some
order. Then, $n$ joints of $F$ define a configuration in $R^{d}$ , which is regarded as a
point of $R^{dn}$ . Let $X$ be the set of points $P\in R^{dn}$ obtained as configurations
of $F$ by continuously deforming it in $R^{d}$ in all possible ways. The quotient
space $X/\cong obtained$ from $X$ by identifying congruent configuration $s$ is call$ed$
the (oriented) configuration space of $F$ in $R^{d}$ , and it is denoted by $\Gamma(F, d)$ . It
is regarded as the space of ‘shapes’ obtained by deforming $F$ in $R^{d}$ . If $F$ is a
connected framework, then its configuration space is clealy compact.

Thurston-Weeks [40] gave a few examples of configuration spaces of frame-
works in the plane.

6.1 Pentagonal hameworks

By a pentagonal framework, we mean a framework that is a 5-cycle. Let
$F(a, b, c, d, e)$ denote a pentagonal framework in $R^{2}$ whose consecutive bar-
lengths are $a,$ $b,$ $c,$ $d,$ $e$ .

The following result was proved by Havel [13]. He presented this result as an
application of distance geometry in computer-aided proofs of theorems.

THEOREM 6.1. Let $F=F(1,1,1,1,1)$ be an equilateral pentagonal framework
in the plane. Then the configuration space of $F$ is a connencted onentable 2-
dimensional manifold with genus 4.

Outline of the proof. Let $p_{1},p_{2},$ $\ldots,p_{5}$ be the five joints of F.’ $p;p_{i+1}$ $(i=$

$1,2,3,4,5)$ be the unit-bars of $F$ , where $p_{5+1}=p_{1}$ . It will be clear that the
configuration space of $F$ can be identified with the set $M$ of points $(p_{1}, \ldots , p_{5})\in$

$R^{10}$ such that

$p_{5}=(0,0),p_{1}=(1,0)$ , and $||p;-p_{t+1}||=1(i=1,2,3,4)$ .
For $i=1,2,3,4,5$ , let

$x_{i}=||p_{j}-p_{i+2}||^{2}$

$y;=||p_{i}-p_{i+3}||^{2}$ ,

where the index sums are computed mod 5. Then for any point $P\in M$ , some
$(x_{i}, y:)$ serves as the local coordinates in a neighborhood of $P$ , and $M$ turns out
to be a 2-dimensional $s$mooth manifold without boundary. It is clear that $M$ is
compact and connected.

Let $\alpha=\angle p_{1}p_{5}p_{4},$ $\beta=\angle p_{5}p_{4}p_{3},$ $\gamma=\angle p_{4}p_{3}p_{2}$ , where angles are always
measured in counterclockwise way. Consider the map

$ M\ni(p_{1}, \ldots,p_{5})\leftrightarrow$ ( $\alpha,$
$\beta$ , sin $\gamma$ ) $\in S^{1}\times S^{1}\times[-1,1]$ ,
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where $S^{1}$ denotes the unit circle and $\alpha,$
$\beta,$

$\gamma$ are taken mod $ 2\pi$ . It is not difficult
to see that this map is an embedding of $M$ into $S^{1}\times S^{1}\times[-1,1]$ . Since $ S^{1}\times$

$S^{1}\times[-1,1]$ is embeddable in $R^{3},$ $M$ is also embeddable in $R^{3}$ . Since a closed
surface embeddable in $R^{3}$ is orientable (for an intuitive proof of this fact, see
[14]), we can deduce that $M$ is orientable. Therefore, $M$ is characterized by its
Euler characteristic $\chi(M)$ .

To calculate $\chi(M)$ , we apply the 2-dimensional version of Morse theory. If
we can choose a ‘height function’ on $M$ that has a finite number of critical points
consisting of only maximal points, minimal point $s$ , and saddle points, then $\chi(M)$

is computed by

$\chi(M)=\#(minimalpoints)-\#$ ( $s$ addle points)+#(maximal points).

Let $f(P)(P=(p_{1}, \ldots,p_{5})\in M)$ be the 4 time $s$ the oriented area of the (possibly
self-intersecting) pentagon $p_{1}p_{2}p_{3}p_{4}p_{5}$ , that is,

$f(P)=2(\frac{\iota}{p_{1}p;+f}x^{\frac{\iota}{p_{i}p_{1+2}\prime}}+p_{i}p_{i+2\times}\rightarrow+\times\cdot)$ ,

where $\times denotes$ the vector product. (The RHS is independent of the choice
of $i.$ ) Using a suitable local coordinates $(x, y)=(x_{i}, y_{i})$ and applying Helon’s
formula, $f(P)=f(x, y)$ can be expressed as

$f(x, y)=\epsilon_{1}\sqrt{4x-x^{2}}+\epsilon_{2}\sqrt{2(x+y)-(x-y)^{2}-1}+\epsilon_{3}\sqrt{4y-y^{2}}$ ,

where $\epsilon_{k}=1$ or-l accordingly as $p_{i}\rightarrow p_{i+k}\rightarrow p_{i+k+1}\rightarrow p_{i}$ is counterclockwise
or not. Using this expression, we can find all the critical points of $f$ . There are
exactly 14 critical points of $f;2$ maximal points, 10 saddle points, and 2 minimal
points. Hence we have

$\chi(M)=2-10+2=-6$ .

Therefore, $M$ is an orientable closed surface of genus $g=(2-\chi(M))/2=4$ . $\blacksquare$

A framework $F$ in $R^{d}$ is called reversible in $R^{d}$ if $F$ can be continuously
deformed in $R^{d}$ to its mirror image (with respect to a hyperplane in $R^{d}$). For
example, consider a quadrilateral framework $F$ in $R^{2}$ with $4jointsx,$ $y,$ $z,$ $w$ and
4 bars $xy,$ $yz,$ $zw,$ $wx$ such that

II $x-y||=||y-z||=||z-w||=3,$ $||w-x||=1$ .

Then it is impossible to deform $F$ so that $x,$ $y,$ $z$ become collinear. Hence $ x\rightarrow$

$y\rightarrow z\rightarrow x$ is either always clockwise, or always counterclockwise. Therefore $F$

is not reversible.
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Let us call $F(a, b, c, d, e)$ a general pentagonal framework if $F(a, b, c, d, e)$

cannot be folded into a line, that is,

$a\pm b\pm c\pm d\pm e\neq 0$

for any choice of $s$igns.
The next result is obtained by Maehara [27].

THEOREM 6.2. Let $F$ be a general pentagonal framework in $R^{2}$ with bar-
lengths $a_{1}<a_{2}<a_{3}<a_{4}<a_{5}$ , Let

$s=\frac{a_{1}+a_{2}+a_{3}+a_{4}+a_{5}}{2}$

(1) If $a_{1}+a_{2}+a_{5}<s$ , then $F$ is not reversible, and $\Gamma(F, 2)$ is (homeomorphic
to) a 2-dimensional torus.

(2) If $s<a_{1}+a_{2}+a_{5}$ , then $F$ is reversible and $\Gamma(F, 2)$ is an orientable closed
2-dimensional manifold of genus $g$ , where

$g=\left\{\begin{array}{ll}0 & (a_{5}<s<a_{1}+a_{5})\\1 & (a_{1}+a_{5}<s<a_{2}+a_{5})\\2 & (a_{2}+a_{5}<s<a_{3}+a_{5})\\3 & (a_{3}+a_{5}<s<a_{4}+a_{5})\\4 & (a_{4}+a_{5}<s)\end{array}\right.$

EXAMPLE 6.1. For $F=F(1,2,3,4,5)$ , we have $s=7.5$ , and $\Gamma(F, 2)$ is a
double torus (an orientable closed surface of genus 2).

The configuration space of a flexible framework is not necessarily a manifold.
However, for a framework with $n+1$ joints in n-dimensions, the next result holds.

THEOREM 6.3. Let $F$ be a connected flexible fmmework in $R^{n}$ with $n+1$

joints and $(^{n+1}2)-k$ bars. Suppose that $F$ can be defonned so that the $n+1$ joints
do not lie on a hyperplane. Then $\Gamma(F, n)$ is homeomorphic to a k-dimensional
sphere.

This result follows easily from a theorem of Schoenberg, which we are going
to recall next.
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6.2 Schoenberg’s theorem

Let $F$ be a connected flexible framework in $R^{n}$ with $n+1$ joints and $(^{n+1}2)-k$

bars. Let $\sqrt{x_{1}},$ $\ldots\sqrt{x_{k}}$ be the distances between $k$ nonadjacent pair of joints
in some order, and let $x=(x_{1}, x_{2}, \ldots, x_{k})$ . Let $\Omega(F)$ denote the set of those
points $x=(x_{1}, \ldots x_{k})\in R^{k}$ obtained by continuously deforming $F$ in $R^{n}$ in
all possible ways, and let $\check{\Omega}(F)$ be the subset of $\Omega(F)$ consisting of the points $x$

corresponding to those deformed $F$ that lie on a hyperplane in $R^{n}$ .
Schoenberg [36] proved the following result.

THEOREM 6.4. (Schoenberg 1969) Let $F$ be a connected flexible framework in
$R^{n}$ with $n+1$ joints and $(^{n+1}2)-k$ bars. Suppose that $F$ can be deformed so
that the $n+1$ joints do not lie on a hyperplane. Then $\Omega(F)$ is a compact convex
set with intenor points in $R^{k}$ , and $\check{\Omega}(F)$ is the boundary of $\Omega(F)$ .

Instead of the proof, let us observe an example. Let $F$ be a quadrilateral
framework in $R^{3}$ with 4joints $p_{1},p_{2},p_{3},p_{4}$ and 4 bars $p_{i}p_{t+1}(i=1,2,3,4)$ with
$p_{5}\equiv p_{1}$ , such that

$||p_{1}-p_{2}||=||p_{3}-p_{4}||=1$ ,

II $p_{2}-p_{3}||=||p_{4}-p_{1}||=2$ .
Let $x=||p_{1}-p_{3}||^{2},$ $y=||p_{2}-p_{4}||^{2}$ . What are $\Omega(F)$ and $\Omega(F)$ ?

With fixing $x$ and fixing the three joints $p_{1},p_{2},p_{3}$ in a plane $H$ , the joint
$p_{4}$ can move with drawing a circle in the plane perpendicular to the line $p_{1}p_{3}$ .
This circle intersects the plane $H$ at two points, one is at the nearest position to
$p_{2}$ , the other is at the farthest position from $p_{2}$ . When $p_{4}$ comes to the nearest
position to $p_{2},$ $F$ forms a contra-parallelogram, and in this case, we have

$\sqrt{x}\sqrt{y}+1\cdot 1=2\cdot 2$

by Ptolemy’s theorem. When $p_{4}$ comes to the farthest position from $p_{2},$ $F$ forms
a parallelogram, and we have

$\sqrt{x}^{2}+\sqrt{y}^{2}=1^{2}+1^{2}+2^{2}+2^{2}=10$

by the parallelogram theorem. Hence we have

$9\leq xyg$and $x+y\leq 10$ .

Thus $\Omega(F)$ is a compact convex region in $R^{2}$ and $\check{\Omega}(F)$ is its boundary.

Proof of Theorem. Let $p_{0},p_{1},$ $\ldots,p_{n}$ denote the vertices of $F$ . Since every
configuration $P=(p_{0}, \ldots,p_{n})$ determines a point $x\in\Omega(F)$ , there is a natural
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continuous onto map $w$ : $\Gamma(F, n)\rightarrow\Omega(F)$ . Let vol $(P)$ denote the oriented
volume of the simplex spanned by $p_{0},$ $\ldots,p_{n}$ . Let $r_{+},$ $\Gamma_{-},$ $\Gamma_{0}$ be the subsets of
$\Gamma(F, n)$ consisting of the classes of configurations $P$ with vol $(P)>0$ , vol $(P)<$
$0$ , and vol $(P)=0$ , respectively. Then, $\Gamma(F, n)=r_{+}\cup\Gamma_{0}\cup\Gamma_{-}$ . Further,
$w$ : $r_{+}\cup\Gamma_{0}\rightarrow\Omega(F),$ $w$ : $\Gamma_{-}\cup\Gamma_{0}\rightarrow\Omega(F)$ , and $w$ : $\Gamma_{0}\rightarrow\check{\Omega}(F)$ are all
homeomorphisms. Hence, $\Gamma(F, n)$ is homeomorphic to the space obtained from
two copies of $\Omega(F)$ by attaching along their boundaries by identity map. $Sin\dot{c}e$

$\Omega(F)$ is a k-dimensional ball by Schoenberg’s theorem, $\Gamma(F, n)$ is a $k$-dilne$ns$ional
sphere. $\blacksquare$

The configuration spaces of general pentagonal frameworks in $R^{2}$ are clas-
sified by Theorem 6.2. Let $F$ be a general pentagonal framework in $R^{4}$ with
joints $p_{1},$ $\ldots,p_{5}$ . It is possible to deform $F$ in $R^{4}$ so that (1) the four joints
$p_{1},p_{2},p_{3},p_{4}$ span a 3-simplex, and (2) $p_{4},p_{5},p_{1}$ are not collinear. Then, we can
rotate $p_{5}$ around the line $p_{1}p_{4}$ in the hyperplane perpendicular to $p_{1}p_{4}$ so that $F$

does not lie on a hyperplane. Hence $\Gamma(F, 4)$ is homeomorphic to a 5-dimensional
sphere by Theorem 6.3.

PROBLEM 6.1. Classik $\Gamma(F, 3)$ for general pentagonal frameworks $F$ in $R^{3}$ .

It will not be difficult to see that for any general pentagonal framework
$F$ in $R^{3},$ $\Gamma(F, 3)$ is a 4-dimensional manifold. Kamiyama [17] proved that
$\Gamma(F(1,1,1,1,1), 3)$ is simply connected with Euler characteristic 7.
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