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1. Introduction

A triangulation $G$ on a surface is a simple graph embedded on the surface
so that each face is triangular and any two faces share at most one edge. (The
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second condition is needed only to exclude $K_{3}$ on the sphere.) So each face can

be identffied with the triple $\{u, v, w\}$ , simply denoted by $uvw$ , of the vertices on

its three corners. We shall denote the sets of vertices, edges and faces of $G$ by

$V(G),$ $E(G)$ and $F(G)$ , respectively.
Two triangulations $G_{1}$ and $G_{2}$ on $F^{2}$ are said to be equivalent or homeomor-

phic to each other if there is a homeomorphism $h$ : $F^{2}\rightarrow F^{2}$ with $h(G_{1})=G_{2}$ ,

that is, if there is a graph-isomorphism $\varphi$ : $V(G_{1})\rightarrow V(G_{2})$ which induces a
bijection between $F(G_{1})$ and $F(G_{2})$ . Furthermore, they are ambient isotopic

or simply isotopic to each other if the homeomorphism $h$ : $F^{2}\rightarrow F^{2}$ is iso-
topic to the identity map $id_{F^{2}}$ : $F^{2}\rightarrow F^{2}$ , that is, if there is a continuous map
$H$ : $F^{2}\times[0,1]\rightarrow F^{2}$ such that the restriction $H|_{F^{2}\times\{t\}}$ is a homeomorphism for
each $t\in[0,1],$ $H(x, 0)=x$ and $H(x, 1)=h(x)$ for each $x\in F^{2}$ . We shall say

that two triangulations are isomorphic when they are isomorphic to each other

as just abstract graphs.
A diagonal flip is a local deformation of a triangulation $G$ which replaces a

diagonal edge $ac$ with the other $bd$ in a quadrilateral region obtained from two
triangular faces abc and $acd$ , as shown in Figure 1. We however forbid flipping a
diagonal $ac$ if it breaks the simpleness of a graph, that is, if $b$ and $d$ are already

adjacent in $G$ . Two triangulations are said to be equivalent under diagonal flips

if they can be transformed into each other by a finite sequence of diagonal flips.

$\rightarrow$

Figure 1. A diagonal flips in a triangulation

There have already been many studies on the diagonal flips in triangulatoins
in the field of computational geometry; [9], [12], [20], [27], [34], [36], [79] and so
on. In those papers, each triangulation subdivides the convex hull of a set of
points with fixed position on the plane and each of its edges should be a straight
segment joining a pair of points in the set. On the other hand, this survey will
present many results in topological graph theory. So we may change the position
of vertices on the surfaces freely and bend edges suitably by homeomorphisms.

Classically, Wagner [85] proved in 1936 that any two triangulations on the
sphere with the same number of vertices are equivalent under diagonal flips.
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Dewdney [25], Negami and Watanabe [64] also have shown the same results for
the torus, the projective plane and the Klein bottle. Some of their arguments
work in some general situation, but an essential part of their proofs strongly
depend on those individual surfaces. So, it is hardly possible to generalize or
extend their proofs for other general surfaces.

As we shall show later, the same fact does not hold as it is in general, that
is, there exist a pair of triangulations which are not equivalent to each other
under diagonal flips. However, Negami [66] has found some “breakthroughs” and
showed that two triangulations on the same closed surface are equivalent under
diagonal flips if they have the same and sufficienty large number of vertices,
which is Theorem 15 in this survey. This result and his arguments to prove
this have motivated some people to develop them and to find many phenomena
related to triangulations of surfaces.

This survey includes those various topics, which are concerned with many
concepts in topological graph theory, and hence it will work as a course to learn
this field. Also, Negami and Nakamoto [65] have already written a survey on the
same subject together with an analogue for quadrangulations [48], [49], [52], [53].
Our survey covers more recent studies and contains many questions for further
research.

2. Wagner’s theorem

The following theorem, which we shall refer as Wagner’s theorem, is the
starting point of our studies on diagonal flips of triangulations. Wagner’s paper
[85] including this theorem is written in German. So we shall show a full proof
of his theorem for convenience of the reader.

Our proof is basicaly the same one as written in Ore’s book [73] on “Four
Color Problem”, and gives us a simple algorithm to transform any triangulation
on the sphere into the standard form as shown in Figure 2. Thus, two spherical
triangulations can be transformed into each other via this standard form. We
shall denote it by $\Delta_{n}$ with $n$ the number of vertices inside the peripheral triangle.
For example, $\Delta_{0}$ is isomorphic to $K_{3}$ , which is not however a triangulation by
our definition, and $\Delta_{1}$ is isomorphic to $K_{4}$ , the tetrahedron.

THEOREM 1. (Wagner [85]) Any two triangulations on the sphere with the
same number of vertices are equivalent to each other under diagonal flips, up to
homeomorphism.

$P$roof. Let $G$ be a triangulation on the sphere and identify it with a maximal
See the second edition of Ore’s book. Someone told me that his proof in the first edition

is incorrect.
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Figure 2. The standard form of spherical triagulations $\Delta_{n}$

planar graph on the plane with uvw its outer region. First, suppose that deg $ u\geq$

$4$ and let $v,$ $v_{1},$ $v_{2},$
$\ldots,$ $v_{m}=w$ be the neighbors of $u$ , lying around $u$ in this cyclic

order. If $v$ is not adjacent to $v_{2}$ in $G$ , then we can replace the diagonal $uv_{1}$ with
$vv_{2}$ in the quadrilateral region $uvv_{1}v_{2}$ . On the other hand, if $v$ is adjacent to $v_{2}$ ,
then $v_{1}$ cannot be adjacent to $v_{3}$ , which is possibly $w$ , and we can replace $uv_{2}$

with $v_{1}v_{3}$ . In either case, we can decrease the degree of $u$ by a diagonal flip.
Repeat this deformation as far as possible. Finally, we shall get a triangula-

tion with deg $u=3$ . Let $u_{1}$ be the unqiue neighbor of $u$ except $v$ and $w$ , and
consider the maximal planar graph $G_{1}$ bounded by $u_{1}vw$ . Carrying out the same
argument on $G_{1}$ as above, we shall obtain $G_{2}$ with deg $u_{1}=3$ in $G_{1}$ . Continue
these. Then we shall get the path $uu_{1}u_{2}\cdots u_{n}$ such that deg $u=\deg u_{n}=3$ ,
deg $u_{i}=4(i\neq n)$ and all $u_{i}’ s$ are adjacent to both $v$ and $w$ . The final form is
homeomorphic to the standard form $\Delta_{n}$ with $n+3$ vertices. $\blacksquare$

3. Basic tricks and pseudo-minimals

Our proof of Wagner’s theorem strongly depends on the planarity of triangu-
lations. The point is however how to make a vertex of degree 3. After making a
vertex of degree 3, we would like to reduce our arguments to those on another tri-
angulation with fewer vertices than the original. The following two tricks enable
us to do it. Figures 3 and 4 are telling us all. See [64] or [66] for the detail.

TRICK 1. A vertex of degree 3 can be moved to any face by diagonal flips.

TRICK 2. Let $G_{1}$ and $G_{2}$ be two triangulations with vertices $v_{1}$ and $v_{2}$ of
degree 3, respectively. A sequence of diagonal flips from $G_{1}-v_{1}$ to $G_{2}-v_{2}$ can
be translated into that from $G_{1}$ to $G_{2}$ .

By these tricks, if we can make vertices of degree 3 in two given triangulations
by diagonal flips, then we can conclude that they are equivalent under diagonal
flips, by the induction hypothesis and these tricks. So we have to consider those
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Figure 3. Moving a vertex of degree 3

$\uparrow$
$\uparrow$

Figure 4. Lifting a daigonal flip

triangulations from which we cannot make a vertex of degree 3, to establish the
first step of our induction. We shall call $G$ a pseudo-minimal triangulation if
it is not equivalent to any triangulation which has a vertex of degree 3 under
diagonal flips.

Let $G$ be a pseudo-minimal triangulation such that its minimum degree $\delta(G)$

is the smallest among those equivalent to $G$ under diagonal flips. Choose a vertex
$u$ of $G$ so that $u$ attains $\delta(G)$ and consider the structure of its neighborhood in
$G$ . Let $v_{0},$ $v_{1},$

$\ldots,$ $v_{n-1}$ be the neighbors of $u$ , with indices taken modulo $n$ , which
form a cycle surrounding $u$ in this order. Such a cycle is called the link of $u$ in $G$ ,
denoted by $1k(u)$ , and the star neighborhood $st(u)$ of $u$ is the wheel obtained as
the union of $u$ and $1k(u)$ with edges between them. Since any diagonal flip cannot
decrease deg $u$ by our assumption, there have to be edges $u_{i-1}u_{i+1}$ outside the
star neighborhood of $u$ for all $i$ , which looks like “a sunflower”.

For example, if deg $u\geq 7$ , then such a flower-like neighborhood cannot be
embedded in the torus. If deg $u=6$ , then there is only one way to embed it in
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the torus, and it extends to the embedding of $K_{7}$ uniquely. Similarly, classify the
embeddings of flower-like neighborhoods on a given susrface and extend them
to be triangulations. If we could conclude that those extensions, which should
be pseudo-minimal, are equivalent to one another, then we would obtain the
theorem for the surface corresponding to Wagner’s theorem.

Carrying out the above for the torus, the projective plane and the Klein
bottle, Dewdney [25], Negami and Watanabe [64] have proved the following the-
orems. For example, the only pseudo-minimal triangulation $s$ of the torus is $K_{7}$

while that of the projective plane is $K_{6}$ . On the other hand, the pseudo-minimal
triangulations of the Klein bottle are not unique and they have 8 vertices. More
detailed information on them will be shown in Section 5.

THEOREM 2. (Dewdney [25]) Any two triangulations on the torus are equivalent
under diagonal flips, up to homeomorphism, if they have the same number of
vertices.

THEOREM 3. (Negami and Watanabe [64]) Any two triangulations on the pro-
jective plane are equivalent under diagonal flips, up to homeomorphism, if they
have the same number of vert.ices.

THEOREM 4. (Negami and Watanabe [64]) Any two tnangulations on the Klein
bottle are equivalent under diagonal flips, up to homeomorphism, if they have the
same number of vertices.

As far as in cases of the torus, the projective plane and the Klein bottle, all
the pseudo-minimal triangulations are the triangulations with fewest vertices on
each of these sufaces, called minimal triangulations.

QUESTION 1. Is a pseudo-minimal triangulation minimal?

Negami [66] had conjectured that any pseudominimal triangulation is minimal
but the answer is negative in general, as shown in Section 18.

4. Contraction of edges

In their proofs of the previous theorems, the specified topology of each surface
plays an essential role to classify the pseudo-minimal triangulations. So it is
hardly possible to extend such a proof for general surface. However, Negami [66]
has devised a nice trick to make it possible, as follows.

Contraction of an edge $e$ in a triangulation $G$ is to shrink $e$ on the surface
and to eliminate digonal regions, as shown in Figure 5. The resulting graph on
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$\rightarrow$

Figure 5. Contracting an edge in a triangulation

the surface is denoted by $G/e$ . An edge $e$ is said to be contractible if $G/e$ also is
a triangulations. When $G$ is not isomorphic to $K_{4}$ , an edge $e$ is not contractible
if and only if $e$ lies on a cycle of length 3 which does not bound a face. We don’t
contract an edge $e$ when it is not contractible. For, if we did, then $G/e$ would
be a nonsimple graph. A triangulation $G$ is said to be contractible to another
triangulation $T$ if $T$ can be obtained from $G$ by contracting some edges in order.

Any sequence of diagonal flips does not change the number of vertices while a
sequence of edge contraction decreases it. Although this impresses us with their
difference, the following trick connects them and will enable us to establish a
theory of diagonal flips in triangulations on general surfaces with the notion of
irreducible triangulations defined in the next $s$ection.

TRICK 3. Contraction of an edge can be realized as a sequence of diagonal flips
followed by removing a vertex of degree 3.

Figure 6. Contraction and diagonal flips

Let $G$ be a triangulation and $\Delta$ one of it $s$ face. Attach the standard form $\Delta_{n}$

of spherical triangulations to the face $\Delta$ to obtain another triangulation on the
same surface. The resulting triangulation is denoted by $G+\Delta_{n}$ . This notation is
however ambiguous, but all the triangulations with the same notation $G+\Delta_{n}$ are
equivalent under diagonal flips, by Trick 1. The next lemma follows immediately
from hick 3.
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LEMMA 5. Let $G$ and $T$ be triangulations on a closed surface. If $G$ is con-
tractible to $T$ , then $G$ is equivalent to $T+\Delta_{m}$ with $m=|V(G)|-|V(T)|$ .

By this lemma, if two triangulations are contactible to a common triangula-
tion $T$ , then they are equivalent under diagonal flips via $T+\Delta_{m}$ . For example,
every triangulation on the sphere, except $K_{4}$ , contains a contractible edge and
hence it is contractible to $K_{4}[81]$ . Thus, it is equivalent to $K_{4}+\Delta_{m}$ , which is
nothing but the standard form $\Delta_{m+1}$ . This is another proof of Wagner’s theorem.
There is not however such a common triangulation for two given triangulations
in general.

5. Irreducible trianglations

A triangulation is said to be irreducible if it has no contractible edges. It is
clear that any triangulation is contractible to one of irreducible triangulations.
In other words, it can be obtained from some irreducible triangulation by a
sequence of the inverse operations, called splitting of vertices or venex-spl;uing.
Note that the following implicaiton:

$minimal\Rightarrow psendo- minimal\Rightarrow irreducible$

The second implication follows from Rick 3.
There have been already classified the irreducible triangulations of the pro-

jective plane, the torus and the Klein bottle.

THEOREM 6. (Barnette [10]) There are only two irreducible triangulations of
the projective plane, up to homeomorphism, given in Figure 7.

Figure 7. Irreducible triangulation$s$ of the projective plane

For our later arguments, we shall assign the notations $B_{1}$ and $B_{2}$ to the left
and right ones in Figure 7. Then $B_{1}$ is isomorphic to $K_{6}$ while $B_{2}$ to $K_{4}+\overline{K_{3}}$ as
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graphs. To obtain the actual triangulations on the projective plane, we should
identify each pair of antipodal points on the boundary of each hexagon. Note
that $B_{1}$ is psendo-minimal but $B_{2}$ is not.

THEOREM 7. (Lawrencenko [40]) There are precisely 21 irreducible triangula-
tions of the torus, up to homeomorphism.

THEOREM 8. (Lawrencenko and Negami [41]) There are precisely 25 irreducible
tnangulations of the Klein bottle, up to homeomorphism; 21 handle types Khl
to Kh21, and 4 crosscap types Kcl to Kc4.

In general, there exist only a finite number of irreducible triangulations for
each closed surface. This follows theoretically from Wagner’s Conjecture, solved
affirmatively by Robertson and Seymour [77]. A graph $H$ is called a minor of a
graph $G$ , denoted by $H\leq mG$ , if $H$ can be obtained from $G$ by contracting and
deleting edges. Note that the “contraction” used in graph minor contract only
an edge and does not eliminate digonal regions so well as ours.

THEOREM 9. (Wagner’s Conjecture; Robertson and Seymour [77]) Any infinite
senes $\{G_{1}, G_{2}, G_{3}, \ldots\}$ of graphs contains a pair $G_{i}$ and $G_{j}$ one of which is a
minor of the other.

There has been $s$ome works [11], [28], [47], [50] to give an upper bound for
the number of vertices of irreducible triangulations. Let $\chi(F^{2})$ denote the Euler
characteristic of a surface $F^{2}$ . The following is the best result at the present and
is best possible for the order with respect to the Euler genus $2-\chi(F^{2})$ .

THEOREM 10. (Nakamoto and Ota [50]) Any irreducible triangulations of a
closed surface $F^{2}$ with $\chi(F^{2})\leq 0$ has at most 171 $(2-\chi(F^{2}))-72$ vertices.

They have constructed a series of irreducible triangulations the number of
whose vertices are linear with respect to their Euler genus, by adding many
irreducible triangulations of the torus and the projective plane to faces of a
suitable spherical triangulation. So each of their examples contains a cycle of
length 3 which separates the surface into two pieces. Conversely, we ask:

QUESTION 2. Does any irreducible triangulation of the maximum order on
a closed surface with negative Euler characteristic contain a separating cycle of
length 3 ?

Now consider Figure 8 to visualize our theory. This expresses the set of all
the triangulations on a closed surface. The vertical axis represents the number
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Figure 8. Minimal, pseudo-minimal and irreducible triangulations

of vertices and hence the triangulations with the same number of vertices are
placed at the $s$ame horizontal level. Thus, the contraction of an edge moves a
triangulation downward while a diagonal flip carries it horizontally. Any tri-
angulation $G$ goes down to either a valley or a plateau of this figure through
contraction. The valley includes $s$ome pseudo-niminal triangulations, which can
be transformed into one another by diagonal flips but connot go out of this valley.
In particular, the bottom includes minimal triangulations. On the other hand,
the plateau includes irreducible triangulations which are not pseudo-minimal.
Thus, they goes horizontally and reach a triangulation which has a vertex of
degree 3. For example, the set of triangulations of the torus has only one valley
$\{T_{1}\}$ (7 vertices) and four plateaues:

$\{T_{2}, T_{3}, T_{4}, T_{5}\}$ (8 vertices); $\{T_{7}\},$ $\{T_{6}, T_{8}, \ldots , T_{20}\}$ ( $9$ vertices)
$\{T_{21}\}$ ( $10$ vertices)

The irreducible triangulations have their own right and have been discussed
in many other contexts. When we want to conclude that every triangulation
has some property, it may suffices to show that every irreducible triangulation
does after checking whether or not the property in question is preserved by
vertex-splitting. For example, Brunet, Nakamoto and Negami [19] has shown
the following theorem, based on the classification of irreducible triangulations of
the Klein bottle [41].

THEOREM 11. (Brunet, Nakamoto and Negami [19]) Every 5-connected tri-
angulation of the Klein bottle includes a hamilton cycle which bounds a 2-cell
region.

Although the hamiltonicity is not preserved by vertex-splitting, the following
fact is important for their proof; a triangulation of the Klein bottle includes two
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disjoint meridians if and only if it does not include an essential separating cycle
of length 3. This can be proved by the way mentioned above basically.

The next theorem [42] is another more direct application of Theorems 7 and
8. The property in the theorem is actually preserved by vertex-splitting and it
suffices to show that the intersection of the sets of irreducible triangulations of
the torus and of the Klein bottle consists of only graphs which have the property.
Such a graph in the intersection is unique and is $T_{3}$ for the torus and Khl for
the Klein bottle.

THEOREM 12. (Lawrencenko and Negami [42]) A graph $G$ triangulates both
the torus and the Klein bottle if and only if $G$ has the structure given in Figure
9.

Figure 9. Graphs which triangulate both the torus and the Klein bottle

The labeling of vertices in Figure 9 indicates the identification to make $T_{3}$

in the torus and Khl in the Klein bottle, and also the isomorphism between $T_{3}$

and Khl. The faces marked with $O$ should be subdivided arbitrarily. Adding
a suitable number of handles to those, we can construct easily an example of a
graph which triangulates two different closed surfaces with the same even Euler
characteristic, orientable and nonorientable, other than the torus and the Klein
bottle. The complete graph $K_{n}$ also is such a graph. Using Ringel’s solution of
“Map Color Theorem”, we can show that $K_{n}$ triangulates the different surfaces
if and only if $n\equiv 0,3,4$ or 7 $(mod 12)$ . See section 8 for triangulations with
complete graphs.

6. Common refinements and stable equivalence

First, consider the equivalence over triangulations of the projective plane.
Let $G_{1}$ and $G_{2}$ be two triangulations on the projective plane with the same
number of vertices. Each of them is contractible to either $B_{1}$ or $B_{2}$ . As we
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have already seen, if they are contactible to the same irreducible triangulation,
then they are equivalent to each other under diagonal flips. So we may assume
that $G_{1}$ is contractible to $B_{1}$ and $G_{2}$ to $B_{2}$ . In this case, $G_{i}$ is equivalent to
$B;+\Delta_{m:}$ , with $m_{1}=m_{2}+1$ , by Lemma 5. On the other hand, $B_{1}+\Delta_{1}$ can be
transformed into $B_{2}$ by two diagonal flips. Then $B_{1}+\Delta_{1}+\Delta_{m_{2}}$ and $B_{2}+\Delta_{m_{2}}$

are equivalent by $?$}$icks1$ and 2. Since $B_{1}+\Delta_{1}+\Delta_{m_{2}}$ is equivalent to $B_{1}+\Delta_{m_{1}}$

by Trick 1, $B_{1}+\Delta_{m_{1}}$ and $B_{2}+A_{m}$ , are equivalent, too. It follows that $G_{1}$ and
$G_{2}$ are equivalent under diagonal flips. This is an easy proof of Theorem 3, as
an applicaiton of our theory.

To generalize this argument, Negami [66] has considered the following trick.
A refinement of a triangulation $G$ is a triangulation which includes a subdivision
of $G$ as its subembedding. He has proved that any refinement of $G$ is contractible
to $G$ and hence:

TRICK 4. Any common refinement of two triangulations is contractible to both
of them.

Two triangulations $G_{1}$ and $G_{2}$ are said to be stably equivalent under diagonal
flips if $G_{1}+\Delta_{m_{1}}$ and $G_{2}+\Delta_{m}$, are equivalent with suitable numbers $m_{1}$ and $m_{2}$ .
Then, we can show the following lemma, using Trick 4 and Lemma 5. Put $G_{1}$ and
$G_{2}$ together on the same surface which they triangulate and divide each region
to be triangular. Then a common refinement of $G_{1}$ and $G_{2}$ will be obtained.
(The way to construct such a common refinement will be important for our later
argument.)

LEMMA 13. Any two tnangulations are stably equivalent to each other under
diagonal flips.

In particular, any pair of irreducible triangulations of the same surface are
stably equivalent as well as $B_{1}$ and $B_{2}$ in case of the profective plane. Not only
the notion of stable equivalence but also the finiteness of irredicible triangulations
in number will play very important roles through our theory.

A natural question arises; for what $m$ , are $G_{1}+\Delta_{m}$ and $G_{2}+\Delta_{m}$ equivalent
under diagonal flips if $G_{1}$ and $G_{2}$ have the same number of vertices? Negami
has already given an answer to this question with a new idea, which will appear
in Section 19. Also see Section 12 for the phrase “up to isotopy”.

THEOREM 14. (Negami [71]) Let $G_{1}$ and $G_{2}$ be two triangulations on a closed
surface $F^{2}$ with the same number of vertices, say $n$ . Then $G_{1}+\Delta_{m}$ and $G_{2}+\Delta_{m}$

can be transformed into each other, up to isotopy, by a sequence of diagonal flips
if $m\geq 18(n-\chi(F^{2}))$ .
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7. Diagonal flips on general surfaces

Now we have prepared all we need to prove the following theorem. This is
the first goal in our theory and has openeda new stage of the study on diagonal
flips in triangulation on surfaces.

THEOREM 15. (Negami [66]) Given a closed surface $F^{2}$ , there exists a natural
number $N=N(F^{2})$ such that two tnangulations $G_{1}$ and $G_{2}$ on $F^{2}$ are equivalent
under diagonal flips, up to homeomorphism, $if|V(G_{1})|=|V(G_{2})|\geq N$ .

Proof Let $T_{1},$ $T_{2},$
$\ldots$ be the irreducible triangulations of $F^{2}$ . By Lemma 13,

there are a pair of nonnegative integers $m_{ij}$ and $m_{ji}$ , for any pair $T_{j}$ and $T_{j}$ ,
such that $T_{1}+\Delta_{m_{ij}}$ and $T_{j}+\Delta_{m_{j:}}$ are equivalent under diagonal flips. Since
the irreducible triangulations of $F^{2}$ are finite in number, there exists a constant
$N$ such that

$|V(T_{1}+\Delta_{m:j})|=|V(T_{i})|+m_{1j}\leq N$

for all pairs $\{i,j\}$ .
Let $G_{1}$ and $G_{2}$ be any two triangulations of $F^{2}$ with $|V(G_{1})|=|V(G_{2})|\geq N$

and suppose that $G$; is contractible to $T_{i}$ . Then $G$; is equivalent to $T_{i}+\Delta_{m}$ : for
each $i$ by Lemma 5. Since $|V(T_{i}+\Delta_{m_{ij}})|\leq|V(T_{i}+\Delta_{m}.)|$ , then $T_{1}+\Delta_{m_{1}}$ and
$T_{2}+\Delta_{m_{2}}$ are equivalent to each other by Tricks 1 and 2. This implies that $G_{1}$

and $G_{2}$ are equivalent under diagonal flips via $T_{1}+\Delta_{m_{1}}$ and $T_{2}+\Delta_{m_{2}}$ . $\blacksquare$

Let $N(F^{2})$ denote the minimum value of $N$ in the theorem. With this nota-
tion, Theorems 1 to 4 can be expressed by the following formulas:

$N(S^{2})=4$ , $N(P^{2})=6$ , $N(T^{2})=7$ , $N(K^{2})=8$

where $S^{2},$ $P^{2},$ $T^{2}$ and $K^{2}$ stand for the sphere, the projective plane, the torus
and the Klein bottle in order. Each of these numbers is equal to the number
of a minimal triangulation for each surface. However, $N(F^{2})$ does not coincide
with such a value in general. In fact, there exist a pair of minimal triangulations
which are not equivalent under diagonal flips, as is shown in the next section. For
example, if a complete graph triangulates a closed surface in two or more ways,
those triangulations are not equivalent under diagonal flips. For, any diagonal
flip is not applicable to a complete graph since it yields multiple edges.

Note that our arguments in the proof also work well, assuming that $T_{1},$ $T_{2},$
$\ldots$

are pseudo-minimal. A triangulation $G$ is not contractible to a pseudo-minimal
one in general, but it is equivalent to $T_{1}+\Delta_{m}$ under diagonal flips for some
pseudo-minimal triangulation $T_{i}$ and with $m=|V(G)|-|V(T_{j})|$ . This leads to
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the following exact formula for $N(F^{2})$ :

$N(F^{2})=\min\{N$ : All $T_{i}+\Delta_{N-|V(T_{i})|}$

are equivalent to one another under diagonal flips}

where $T_{1},$ $T_{2},$
$\ldots$ are the pseudo-minimal triangulations on $F^{2}$ . However, this is

just an abstract formula and we don’t have a way to determine this value in a
general form. We shall discuss on an upper bound for $N(F^{2})$ in Section 15.

8. Inequivalent complete triangulations

Let $V_{\min}(F^{2})$ denote the order of minimal triangulations on $F^{2}$ , that is, the
minimum number $n$ such that there exist a triangulation on $F^{2}$ with $n$ vertices.
This value $V_{\min}(F^{2})$ is a trivial lower bound for $N(F^{2})$ , and $V_{\min}(F^{2})<N(F^{2})$

if and only if there exist a pair of minimal triangulations of $F^{2}$ which are not
equivalent to each other under diagonal flips.

The precise value of $V_{\min}(F^{2})$ has been determined in [37] and [74], as an
application of the solution of “Map Color Theorem”.

$V_{\min}(F^{2})=\lceil\frac{7+\sqrt{49-24\chi(F^{2})}}{2}]$

where $F^{2}$ is neither the orientable closed surface of genus 2, the nonorientable
ones of genus 3, nor the Klein bottle. The values of $V_{\min}(F^{2})$ are 10, 9 and 8 for
these exceptional surfaces, respectively.

It is well-known that if a closed surface $F^{2}$ admits a triangular embedding of
a complete graph, called a complete triangulation here, then such a triangulation
is minimal. Conversely, the complete graph $K_{n}$ triangulates an orientable closed
surface if and only if $n\equiv 0,3,4$ or 7 $(mod 12)$ , while $K_{n}$ triangulates a nonori-
entable one if and only if $n\equiv 0,1,3$ or 4 $(mod 6)$ and $n\neq 7$ . Ringel’s book [75]
on “Map Color Theorem” includes a construction of possible triangulations with
$K_{n}$ for all $n$ with the above conditions, but they are just “one of them”. We are
interested in the existence of another construction of complete triangulations, as
shown in the previous section.

Archo, Bracho and Neumann-Lara [7], [8] have discussed on the complete
triangulations in another context. A 3-uniform hypergraph or 3-graph $H$ with
vertex set $V(H)$ is said to be tight, in general, if for any partition $V(H)=$
$X\cup Y\cup Z$ with $X\neq\emptyset,$ $Y\neq\emptyset$ and $ Z\neq\emptyset$ , there is an edge $\{x, y, z\}$ of $H$

such that $x\in X,$ $y\in Y$ and $z\in Z$ . A triangulation $G$ of a closed surface also
is said to be tight (or untight) if the 3-graph $(V(G), F(G))$ is tight (or not).
They have shown a certain method to construct a series of tight triangulations
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with complete graphs and a series of untight ones. In particular, they have
constructed tight and untight triangulations of the nonorientable closed surface
of genus 117 with $K_{30}$ and found three inequivalent triangular embeddings of
$K_{16}$ into the nonorientable closed surface of genus 26, discussing the types of
partitions. However, their construction necessarily produces a triangulation on
a nonorientable closed surface.

QUESTION 3. Is there an untight triangulation on an orientable closed sur-
face?

Lawrencenko, Negami and White [43] also have found three inequivalent com-
plete triangulations with $K_{19}$ into the orientable closed surface of genus 20, which
are all tight. Bracho and Strausz [17] has determined the smallest $n$ for which
$K_{n}$ admits two or more inequivalent triangulations on the same closed surface;
$n=12$ for the orientable surfaces while $n=9$ for the nonorientable ones. In par-
ticular, Strausz [82] has found a triangular embedding of $K_{9}$ on the nonorientable
closed surface of genus 5, which is different from Ringel’s construction. Very re-
cently, Bonnington, Grannell, Griggs and J. \v{S}ir\’a\v{n} have developed a method to
construct exponentially many inequivalent complete triangulations, using Steiner
triple systems, in [13], [31] and [32]

9. Loosely-tightness of triangulations

The tightness is a good notion to distinguish inequivalent complete triangu-
lations, but does not work for non-complete triangulations at all; it is easy to
see that a tight triangulation is necessarily complete.

To extend the notion of tightness for other triangulations, Negami and Mi-
dorikawa [68] have given the following definition. A triangulation $G$ is said to
be k-loosely tight if for any surjective assignment $f$ : $V(G)\rightarrow\{1,2, \ldots, 3+k\}$ ,
there is a face $xyz\in F(G)$ such that the three vertices $x,$ $y$ and $z$ have three
distinct “colors”, that is, $|f(\{x, y, z\})|=3$ . Such a face is called a heterochrv-
matic face. Clearly, any triangulation $G$ of a closed surface is k-loosely tight for
some $k\leq|V(G)|-3$ . The minimum value of $k$ with $G$ k-loosely tight is called
the looseness of $G$ and is denoted by $\xi(G)$ . In particular, $G$ is tight if and only
if $\xi(G)=0$ .

They have discussed on various relationship between the looseness and other
combinatorial structures or deformations of triangulations. For example, they
have shown the following lemma.

LEMMA 16. Let $G$ be a triangulation on a closed surface $F^{2}$ and $e$ a contractible
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edge in G. Then:
$\xi(G/e)\leq\xi(G)\leq\xi(G/e)+1$

Furthermore, they have shown an upper bound for the looseness of com-
plete triangulations as follows, mimicking Arocha, Bracho and Neumann-Lara’s
arguments [8]. This inequality implies that $K_{n}$ does not admit an untight trian-
gulation if $n<12$ , but the smallest order of an untight complete triangulation
is 16.

THEOREM 17. (Negami and Midorikawa [68]) The looseness of any complete
tnangulation $G$ with $n$ vertices has the following upper bound:

Also, Negami and Midorikawa have proposed many problems related to the
looseness of triangulations.

QUESTION 4. Is there a constant $c$ , independent of the surfaces, such that
any complete triangulation has looseness at most $c$ ?

Define the looseness $\xi(F^{2})$ of a closed surface $F^{2}$ as the minimum value of
$\xi(G)$ taken over all the triangulations $G$ on $F^{2}$ . By Lemma 16, some irreducible
triangulation attains it. For example, $K_{4}$ in the sphere, $K_{6}$ in the projective
plane and $K_{7}$ in the torus are tight and have looseness $0$ .

$\xi(S^{2})=0$ , $\xi(P^{2})=0$ , $\xi(T^{2})=0$ , $\xi(K^{2})=1$

QUESTION 5. Find $\xi(F^{2})$ for each closed surface $F^{2}$ . Is there a minimum
triangulation of $F^{2}$ which attains $\xi(F^{2})$ ?

We are expecting that the looseness of triangulations works as an invariant
to distinguish the inequivalence of thier embeddings. However, it is also closely
related to some combinatorial structures of triangulations, as follows. We denote
the independence number and the diameter of a graph $G$ by $\alpha(G)$ and $dia(G)$ ,
respectively.

THEOREM 18. (Tanuma [83]) Let $G$ be a triangulation on the sphere, the
projective plane, the torus or the Klein bottle. Then $G$ is l-loosely tight if and
only if $\alpha(G)\leq 1$ and $dia(G)\leq 1$ .
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THEOREM 19. (Tanuma [84]) Two triangulations on the projective plane have
the same looseness if they are isomorphic as graphs.

To prove the last theorem, Tanuma has used a theory to investigate re-
embeddings of triangulations on closed surfaces, developed in [69].

QUESTION 6. Construct a pair of inequivalent triangulations on each closed
surface with different looseness, which are isomorphic as graphs and are not
complete.

10. Diagonal flips in labeled triangulations

Through these four consecutive sections, we shall discuss on some variations
of Theorem 15. First, we shall consider the labeled triangulation, that is, a
triangulation with vertices $v_{1},$

$\ldots,$
$v_{n}$ such that each $v_{i}$ has a fixed label $i$ . Two

labeled triangulations $G_{1}$ and $G_{2}$ on a closed surface $F^{2}$ should be equivalent
if there is a homeomorphism $h$ : $F^{2}\rightarrow F^{2}$ such that $h(G_{1})=G_{2}$ and that
$v\in V(G_{1})$ and $h(v)\in V(G_{2})$ have the same label.

TRICK 5. Let $G$ be a labeled triangulation with a vertex $v$ of degree 3. Then
we can exchange the labels of $v$ and of any other vertex by diagonal flips.

Figure 10. Exchanging labels

By the above trick, the vertex of degree 3 plays the role of a “label carrier”.
Since it can be moved freely to any place by Trick 1, it will carry the labels
between two vertices whose labels we want to transpose. The following theorem
is just a corollary of Theroem 15.

THEOREM 20. Given a closed surface $F^{2}$ , there exists a natural number
$L=L(F^{2})$ such that two labeled triangulations $G_{1}$ and $G_{2}$ are equivalent under
diagonal flips, up to homeomorphism, $\dot{i}f|V(G_{1})|=|V(G_{2})|\geq L.$ Futhermore,
we have:

$N(F^{2})\leq L(F^{2})\leq N(F^{2})+1$
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Proof Let $G_{i}$ be any labeled triangulations with at least $N(F^{2})+1$ vertices.
Choose and fix another triangulation $G_{0}$ with $|V(G_{i})|-1$ vertices. Then $G$;

is equivalent to $G_{0}+\Delta_{1}$ under diagonal flips as unlabeled triangulations, by
Theorem 15. Since $G_{0}+\Delta_{1}$ contains a vertex of degree 3, we can change the
labeling of $G_{0}+\Delta_{1}$ by Thick 5 and conclude that $G$; and $G_{0}+\Delta_{1}$ are equivalent
as labeled triangulations, too. Thus, any two triangulation $G_{1}$ and $G_{2}$ can be
transformed into each other via $G_{0}+\Delta_{1}$ by diagonal flips in the labeled sense.
$\blacksquare$

By the same logic, we can show that if $V_{\min}(F^{2})<N(F^{2})$ , then $N(F^{2})=$

$L(F^{2})$ . If a closed surface $F^{2}$ , except the sphere, has a complete triangulation,
which is necesarily minimal, then $V_{\min}(F^{2})<L(F^{2})\leq N(F^{2})+1$ , since such
a complete triangulation is not faithful as an embedding of a graph. An em-
bedding of a graph $G$ on a surface $F^{2}$ is said to be faithful, in general, if any
automorohism of $G$ extends to an auto-homeomorphism over $F^{2}$ . This concept
has been defined in [55] and discussed with the uniqueness of embedding through
a series of Negami’s papers [55] to [63]. Whitney’s theorem on the unique dual
[87] implies that $K_{4}$ on the sphere is faithful, that is, any two $K_{4}’ s$ on the sphere
labeled arbitrarily are equivalent up to homeomorphism. These arguments im-
plies the following equalities. Decide the value of $L(K^{2})$ for the Klein bottle; 8
or 9.

$L(S^{2})=4$ , $L(P^{2})=7$ , $L(T^{2})=8$ , $L(K^{2})=8$ or 9

11. Triangulations with boundaries

Now consider a triangulations $G$ of a surface $F^{2}$ with boundary $\partial F^{2}$ , that is,
a graph embedded on $F^{2}$ so that each face is triangular and that each component
of $\partial F^{2}$ is a cycle in $G$ . Our theory works also for those triangulations in the same
manner as for these without boundary and will conclude the following theorem
easily:

THEOREM 21. Given a surface $F^{2}$ which has $k$ boundary components as-
signed with natural numbers $c_{1},$

$\ldots,$
$c_{k}\geq 3$ , therue exists a natural number $D=$

$D(F^{2} ; c_{1}, \ldots, c_{k})$ such that two triangulations $G_{1}$ and $G_{2}$ on $F^{2}$ are equivalent
under diagonal flips, up to homeomorphism, if $|V(G_{1})|=|V(G_{2})|\geq D$ and if
the corresponding boundary cycles of both $G_{1}$ and $G_{2}$ have the prescribed length
$c_{i}$ .

It should be noticed that both $G_{1}$ and $G_{2}$ in the theorem have to have many
vertices not on $\partial F^{2}$ . We need other arguments to establish a similar theorem if
we forbid any vertex in the interior of $F^{2}$ .
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A triangulation $G$ on a surface $F^{2}$ is called a Catalan tnangulation on $F^{2}$

if all the vertiecs of $G$ lie on $\partial F^{2}$ . For example, a Cataran triangulation on a
disk is nothing but a polygon subdivided into triangles with only its diagonals.
The number of ways to subdivide an n-gonal disk is well-known as the Catalan
number:

$\frac{2\cdot 6\cdot 1.0\cdot.\cdot.\cdot.(4n-10)}{2\cdot 34(n-1)}$

This is the reason why such a triangulation is called a Catalan triangulation.
The dual of a Cataran triangulation of a disk is a binary tree and a diagonal

flip in the Cataran triangulation corresponds to what is called a rotation in a
binary tree, which is an important notion in computer science. Sleator, Tarjan
and Thurston [80] have shown a nice result on Catalan triangulations of the disk,
as follows.

THEOREM 22. (Sleator, Tarjan and Thurston [80]) Any two Cataran tnan-
gulations of an n-gonal disk with $n\geq 13$ can be transformed into each other by
diagonal flips in at most $2n-10$ steps.

It is important that this theorem specifies an upper bound for the num-
ber of diagonal flips needed to transform a given two Cataran triangulations.
Their proof of this theorem itself is not difficult, but they use a big theory of
3-dimensional hyperbolic geometry and computer experiments to show the ex-
istence of a pair of Catalan triangulations of an n-gonal disk for $n\geq 13$ which
attain the bound in the theorem.

The fist result for Cataran triangulations of a nonplanar surface has been
established by Edelman and Reiner [26]. They have enumerated Cataran trian-
gulation$s$ of the M\"obius band, showing the following theorem and some observa-
tions.

THEOREM 23. (Edelman and Reiner [26]) Any two Cataran triangulations of
the M\"obius band with the same number of vertices are equivalent under diagonal
flips, up to homeomorphism.

A punctured surface is a surface with precisely one boundary component.
For example, the punctured torus can be obtained from the torus by removing
an open disk to make a hole. The following two theorems might be said to be
applicatios of our theory in a sense, but other special arguments are needed to
prove them in fact.

THEOREM 24. (Cort\’es and Nakamoto [22]) Any two Cataran triangulations
of the punctured torus with the same number of vertices are equivalent under
diagonal flips, up to homeomorphism.
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THEOREM 25. (Cort\’es and Nakamoto [23]) Any two Cataran triangulations of
the punctured Klein bottle with the same number of vertices are equivalent under
diagonal flips, up to homeomorphism.

To prove the following theorem, we need another breakthrough, which will
be shown in Section 19. This is a very rencent work.

THEOREM 26. (Cort\’es, Glima, M\’arquez and Nakamoto [24]) Given a puc-
tured surface $F^{2}$ , there exists a natural number $N(F^{2})$ such that two Cataran
triangulations $G_{1}$ and $G_{2}$ of $F^{2}$ are equivalent under diagonal flips, up to home-
omorphism, $if|V(G_{1})|=|V(G_{2})|\geq N(F^{2})$ .

12. Isotopy and Dehn twists

Many theorems in this survey contain the phrase “up to homeomorphism”.
This means that any homeomorphic image of a triangulation should be regarded
as the $s$ame one as the original. For example, the mirror image $\overline{G}$ of a trian-
gulation $G$ on a closed surface $F^{2}$ is homeomorphic or is equivalent to $G$ up to
homeomorphism, but they cannot be transformed into each other continuously
on $F^{2}$ . In this case, we say that $\overline{G}$ and $G$ are not equivalent up to isotopy.

Consider the unique embedding of $K_{7}$ into the torus, which is a triangula-
tion of the torus. Cutting it along a non-trivial cycle of length 3, we obtain a
triangulated annulus. Now twist one of the two boundary cycles several times
and identify them again. This deformation is called a Dehn twist and induces
an auto-homeomorphism over the torus in this case. The resulting triangulation
is also $K_{7}$ on the torus. The latter looks more complicated than the former and
they are not equivalent up to isotopy. However, if we didn’t regard them as the
same one, then Theorem 2 would not hold since there is no way to transform
them into each other by diagonal flips. So we need such identification between
those triangulations, up to homeomorphism.

What we can say about the equivalence under diagonal flips, up to isotopy?
The following trick will enable us to answer this question.

TRICK 6. A Dehn twist along a cycle $C$ in a triangulation can be realized by
asequence of diagonal flips if the cycleC isapart ofa zigzag ladder as shown
in Figure 11.

Using this trick, Nakamoto and Ota [53] have improved Theorem 15 so that
it holds up to isotopy, as follows. However, the lower bound for the number of
vertices, corresponding to $N(F^{2})$ , will be so larger than $N(F^{2})$ in Theorem 15.
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Figure 11. Dehn twist and diagonal flips

THEOREM 27. (Nakamoto and Ota [53]) Given a closed surface $F^{2}$ , there ex-
ists a natural number $\tilde{N}=\tilde{N}(F^{2})$ such that two tnangulations $G_{1}$ and $G_{2}$ are
equivalent under diagonal flips, up to isotopy, $if|V(G_{1})|=|V(G_{2})|\geq\tilde{N}$ .

Let $\Lambda(F^{2})$ denote the mapping class grvup or the homeotopy group of $F^{2}$ ,
which is the group consisting of isotopy classes of auto-homeomorphisms over $F^{2}$ .
For example, $\Lambda(S^{2})\cong Z_{2}$ and any orientation-reversing auto-homeomorphism
represents its nontrivial element while $\Lambda(P^{2})$ is a trivial group. By Lickorish [44],
[45] and [46], it has been shown that all the Dehn twists generate a subgroup
$\Lambda_{0}(F^{2})$ in $\Lambda(F^{2})$ of index 2 and that $\Lambda_{0}(F^{2})$ is finitely generated. Humphries
[33] has determined a finite set of generators of $\Lambda_{0}(F^{2})$ for each orientable closed
surface, while Chillingworth [21] has done the same for each nonorientable one.
To generate the whole of $\Lambda(F^{2})$ , we need an arbitrarily chosen orientation-
reversing auto-homeomorphism for an orientable one and another kind of an
auto-homeomorphism, called a Y-homeomorphism, for a nonorientable one.

Nakamoto and Ota [53] have shown that if a triangulation $G$ can be trans-
formed into one which contains a subgraph consisting of “zigzag ladders” placed
along Humphries’ or Chillingworth’s generators, then $G$ can be transformed into
$h(G)$ by a sequence of diagonal flips for any auto-homeomorphism $h$ : $F^{2}\rightarrow F^{2}$

which belongs to $\Lambda_{0}(F^{2})$ . Not only the finiteness of irreducible triangulations
but also that of the index of $\Lambda_{0}(F^{2})$ in $\Lambda(F^{2})$ play essential roles in their proof
of Theorem 27.

13. Splitting-closed classes

Now consider a coditional version of Theorem 15. That is, we would like to
restrict the class of triangulations on a closed surface to the class consisting of
only triangulations with some property. Burunet, Nakamoto and Negami have
already formulated this problem abstractly, as follows.

A class $\mathcal{P}$ of triangulations of $F^{2}$ is said to be splitting-closed if it is closed
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under vertex splittings. Any member of $\mathcal{P}$ is called a $\mathcal{P}$ -triangulation (or a
triangulation with property $\mathcal{P}$ ). An edge $e$ of a $\mathcal{P}$-triangulation $G$ is said to
be $\mathcal{P}$ -contractible if $e$ is contractible and if $G/e\in \mathcal{P}$ . A $\mathcal{P}$-triangulation $G$

is $\mathcal{P}$ -irreducible if no edge of $G$ is $\mathcal{P}$-contractible. A $\mathcal{P}$ -diagonal flip in a $\mathcal{P}-$

triangulation $G$ is a diagonal flip such that the resulting graph is also a $\mathcal{P}-$

triangulation. Two triangulations $G_{1}$ and $G_{2}$ are said to be $\mathcal{P}$ -equivalent under
diagonal flips if they can be transformed into each other by a finite sequence of
$\mathcal{P}$-diagonal flips.

THEOREM 28. (Brunet, Nakamoto and Negami [18]) For any closed surface $F^{2}$

and for any splitting-closed class $\mathcal{P}$ of triangulations of $F^{2}$ , there exists a natural
number $N_{P}(F^{2})$ such that if $G_{1}$ and $G_{2}$ are two $\mathcal{P}$ -triangulations with $|V(G_{1})|=$

$|V(G_{2})|\geq N_{P}(F^{2})$ , then $G_{1}$ and $G_{2}$ are $\mathcal{P}$ -equivalent, up to homeomorphism.

A class $\mathcal{P}$ of triangulations of a closed surface $F^{2}$ is said to be closed under
homeomorphism if $h(G)\in \mathcal{P}$ for any member $G\in \mathcal{P}$ and for any homeomorphism
$h$ : $F^{2}\rightarrow F^{2}$ .

THEOREM 29. (Brunet, Nakamoto and Negami [18]) For any closed surface $F^{2}$

and for any splitting-closed class $\mathcal{P}$ of triangulations of $F^{2}$ which is closed under
homeomorphism, there exists a natural number $M_{\mathcal{P}}(F^{2})$ such that if $G_{1}$ and $G_{2}$

are two $\mathcal{P}$ -triangulations with $|V(G_{1})|=|V(G_{2})|\geq M_{P}(F^{2})$ , then $G_{1}$ and $G_{2}$

are P-equivalent, up to isotopy.

Although these theorems are quite abstract, we can create many theorems,
assigning concrete classes to $\mathcal{P}$ . For example, the classes of triangulations with
each of the following properties are splitting-closed and closed under homeomor-
phism, and hence they can be used as $P$ in Theorem 29.

$\bullet$ Being k-representative.
$\bullet$ Intersecting any non-separating $s$imple closed curve in at least $k$ points.
$\bullet$ Containing at least $k$ disjoint homotopic cycles.
$\bullet$ Containing at least $k$ disjoint cycles.
$\bullet$ Containing $k$ distinct spanning trees.
$\bullet$ Having looseness at least $k$ . (It follows from Lemma 16.)

In general, a graph $G$ embedded in a closed surface $F^{2}$ is said to be k-
representative if $G$ intersects any essential simple closed curve in at least $k$ points.
The minimum value $k$ such that $G$ is k-representative is called the representativity
of $G$ and is usually denoted by $\rho(G)$ . (These definitions can be found in [78].)
The second property in the above is a restrictive form of the representativity.
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Consider the property that $G$ contains $k$ disjoint cycles homotopic to a fixed
essential simple closed curve $\gamma$ on a closed surface $F^{2}$ . It is clear that this
property is not closed under homeomorphism. However, we don’t know whether
dr not the theorem with “up to isotopy” holds actually for this property.

QUESTION 7. Is there a splitting-closed class of tnangulations of a closed
surface that includes a pair of triangulations with the same but arbitrarily large
number of vertices which are not equivalent under diagonal flips, up to isotopy?

Let $\mathcal{P}_{d}(F^{2})$ be tha class of triangulations on a closed surface $F^{2}$ with mini-
mum degree at least $d$ . The class $\mathcal{P}_{3}(F^{2})$ coincides with the class consisting of
all the triangulations on $F^{2}$ while $\mathcal{P}_{d}(F^{2})$ is not however splitting-closed for any
$d\geq 4$ . Although we cannot apply the result given in this section to these classes,
we shall show a good theorem for them in Section 17.

14. Crossing numbers of embedding pairs

Recall that we embed two irreducible triangulations $T_{1}$ and $T_{j}$ together on a
closed surface $F^{2}$ to make a common refinement of them on $F^{2}$ in the proof of
Theorem 15. If they have few crossing points on their edges, then the order of
their refinement will be small. This leads us to an idea of a new invariant which
should be called the crossing number of two graphs.

We define the crossing number of two graphs in three phases as follows.
Let $G_{1}$ and $G_{2}$ be two graphs embedded separately on closed surfaces $F_{1}^{2}$ and
$F_{2}^{2}$ , both of which is homeomorphic to a common closed surface $F^{2}$ . Consider
homeomorphisms $h_{1}$ : $F_{1}^{2}\rightarrow F^{2}$ and $h_{2}$ : $F_{2}^{2}\rightarrow F^{2}$ and count the crossing points
of $h_{1}(G_{1})$ and $h_{2}(G_{2})$ embedded on $F^{2}$ .

$\bullet$ The crossing number $cr(G_{1}, G_{2})$ : This is defined as the minimum num-
ber of crossing points when $h_{1}$ and $h_{2}$ range over those homeomorphisms
such that $h_{1}(G_{1})$ and $h_{2}(G_{2})$ intersect each other only in their edges trans-
versely.

$\bullet$ The oriented crossing number $cr_{+}(G_{1}, G_{2})$ : This is defined for oriented
surfaces. Fix the orientations over $F^{2},$ $F_{1}^{2}$ and $F_{2}^{2}$ and consider only
orientation-preserving homeomorphisms as $h_{1}$ and $h_{2}$ with the same con-
dition as above.

$\bullet$ The diagonal crossing number $cr_{\Delta}(G_{1}, G_{2})$ : This is the minimum number
of crossing points evaluated under the following conditions.

(i) Any vertex does not lie on the interior of edges.
(ii) A pair of edges coincide fully or cross each other in a finite number

of points transversely with or without common ends if they intersect.
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By the definition, we have the following inequality:

$cr_{A}(G_{1}, G_{2})\leq cr(G_{1}, G_{2})\leq cr_{+}(G_{1}, G_{2})$

In particular, if $G_{1}$ and $G_{2}$ are embedded on the sphere, then $cr(G_{1}, G_{2})=0$

necessarily, since they can be embedded together disjointly on the sphere. It is
clear that $cr(G, G^{*})\leq|E(G)|$ for any 2-cell embedding $G$ and its dual $G^{*}$ , but
the equality will not hold in most cases. What is $cr(G, G)$ ? Don’t be confused
with the crossing number of a single graph, which is the minimum number of
crossing points in its drawings on the plane.

These notions have been defined first by Negami in [67]. He has given a
general upper bound for the crossing number of embedding pair $s$ , as follows. We
denote the Betti number or the cycle rtz $nk$ of a graph $G$ by $\beta(G)$ , and $\beta(G)=$

$|E(G)|-|V(G)|+1$ if $G$ is connected.

THEOREM 30. (Negami [67]) Let $G_{1}$ and $G_{2}$ be two graphs embedded on a
closed surface of genus $g$ , orientable or nonorientable. Then we have:

$cr(G_{1}, G_{2})<4g\cdot\beta(G_{1})\cdot\beta(G_{2})$

Following his proof in [67], we can construct an embedding pair $\{G_{1}, G_{2}\}$ so
that each pair of edges contains at most $4g$ crossings if $g\geq 2$ . In case of the
torus, we can carry out more accurate arguments and conclude that:

$cr(G_{1}, G_{2})\leq\frac{2}{3}|\beta(G_{1})|\cdot|\beta(G_{2})|$

The upper bound given in Theorem 30 contains a factor depending on the
surface $F^{2}$ . This is enough natural, but Negami has established an upper bound
for $cr(G_{1}, G_{2})$ independent of $F^{2}$ , as follows.

THEOREM 31. (Negami [67]) Given a closed surface $F^{2}$ , there is a natural
number $R=R(F^{2})$ such that if $G_{1}$ and $G_{2}$ are R-representative graphs on $F^{2}$ ,
then $cr(G_{1}, G_{2})<|E(G_{1})|\cdot|E(G_{2})|$ ,

This theorem may be said to be an application of the well-known powerful
theorem called “Graph Minor Theorem”, which state that:

THEOREM 32. (Graph Minor Theorem [76]) Given an embedding $H$ , there
enists a natural number $R_{H}$ such that $H\leq_{m}G$ for any embedding $G$ with $\rho(G)\geq$

$R_{H}$ .

Choose a 3-regular graph $H$ 2-cell embedded on a closed surface $F^{2}$ with only
one face. If both $G_{1}$ and $G_{2}$ have sufficiently large representativity, then each
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of $G_{1}$ and the dual $G_{2}^{*}$ of $G_{2}$ includes a subdivision of $H$ as its subembedding.
Embed $G_{1}$ and $G_{2}$ together on $F^{2}$ so that the subdivisions of $H$ in $G_{1}$ and in
$G_{2}^{*}$ coincide with each other. Then each pair of their edges will contain at most
one crossing as well as any pair of line segments on the plane does. This is a
sketch of Negami’s proof of Theorem 31.

Define the edge-oepoesentativity $\rho_{e}(G)$ of a graph $G$ embedded on a closed
surface $F^{2}$ as the minimum value of $|G\cap\gamma|$ taken over essential simple closed
curves $\gamma$ on $F^{2}$ which do not meet any vertex of $G$ . Then we have $p(G)\leq p_{e}(G)$

in general. Archdeacon and Bonnington [3] have established the exact formula
for $cr(G_{1}, G_{2})$ for any pair of graphs $G_{1}$ and $G_{2}$ embedded on the projective
plane, using this invariant. Their proof is very nice and they also have discussed
about $cr(G_{1}, G_{2})$ and $cr_{+}(G_{1}, G_{2})$ for pairs of graphs on the torus in [3].

THEOREM 33. (Archdeacon and Bonnington [3]) For any two graphs $G_{1}$ and
$G_{2}$ embedded on the prvjective plane, we have:

$cr(G_{1}, G_{2})=\rho_{e}(G_{1})\cdot\rho_{e}(G_{2})$

Theorem 31 might give a supporting evidence for the positive answer to the
following question, but most of people will conjecture the negative answer to it.

QUESTION8. Is there a costant $c$ with $cr(G_{1}, G_{2})\leq c\cdot|E(G_{1})|\cdot|E(G_{2})|$ ,
independent of the surface?

The diagonal crossing number $cr_{\Delta}(G_{1}, G_{2})$ might not be so interesting for
general graphs, but it is important for our arguments on diagonal flips in trian-
gulations. For example, conider the irreducible triangulations of the torus. Each
of those has a rectangle presentation, as given in [40]. We can pile each pair of
such rectangles so that they have many edges in common and very few crossings.
Such a picture suggests how to transform one to the other by diagonal flips.
However, it seems difficult to establish a general theory to analyze the diagonal
crossing number.

QUESTION 9. Find a reasonable upper bound for $cr_{\Delta}(G_{1}, G_{2})$ , applicable to
any pair of triangulations $G_{1}$ and $G_{2}$ on a closed surface.

15. Bounding $N(F^{2})$

Combining the arguments on the crossing number in the previous section
with those in our proof of Theorem 15, we can give a theoretical upper bound
for $N(F^{2})$ .
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THEOREM 34. (Negami [70]) Let $F^{2}$ be a closed surface of geuns $g$ , orientable
or nononentable. Then:

$N(F^{2})=O(g^{3})$

Proof. Let $T_{1}$ and $T_{j}$ be any two irreducible triangulations of $F^{2}$ . We can embed
$T_{i}$ and $T_{j}$ together on $F^{2}$ with $cr(T\cdot,T_{j})$ crossing points on edges and construct
their common refinement $T_{ij}$ , adding new edges to $T_{i}\cup T_{j}$ . By Theorem 30, we
have:

$|V(T_{ij})|\leq|V(T_{i})|+|V(T_{j})|+cr(T_{1},T_{j})$

$\leq|V(\tau_{:})|+|V(T_{j})|+4g\cdot|E(T_{1})|\cdot|E(T_{j})|$

Then, $T_{1j}$ is equivalent to both $T_{1}+\Delta_{m_{ij}}$ and $T_{j}+\Delta_{m_{ji}}$ for suitable numbers
$m_{ij}$ and $m_{ji}$ by Lemma 5 and Trick 4.

Following our proof of Theorem 15, we can show that $N(F^{2})$ does not exceed
$\max\{|V(\tau_{:j})|\}$ and this maximum is bounded by a cubic function of $g$ since both
$|V(T_{1}\cdot)|$ and $|E(\tau_{:})|$ are bounded by a linear function of $g$ for any irreducible
triangulation $T_{i}$ of $F^{2}$ by Theorem 10. Thus, we have $N(F^{2})=O(g^{3})$ . $\blacksquare$

Evaluating the cubic function which bounds $N(F^{2})$ with the above argument,
we will obtain the following inequality for the orientable closed surface $F^{2}$ of
genus $g$ :

$N(F^{2})\leq 4,260$ , 096g3–l, 832, $832g^{2}+197,820g-144$

This is however so far from the truth.
Negami [71] has already improved the order of an upper bound for $N(F^{2})$

to be linear, using Theorem 14. Recall that $\tilde{N}(F^{2})$ is the quantity which has
appeared in Theorem 27, which is the isotopy version of Theorem 15, and we
have $N(F^{2})\leq\tilde{N}(F^{2})$ in general.

THEOREM 35. (Negami [71]) Let $V_{pse}(F^{2})$ denote the maximum number of
vertices taken over all the pseudo-minimal triangulations of a closed surface $F^{2}$

with Euler charactenstic $\chi(F^{2})$ . Then we have:

$\tilde{N}(F^{2})\leq 19V_{p_{8}e}(F^{2})-18\chi(F^{2})$

16. Distance between triangulations

How many diagonal flips do we need to transform two given triangulations
into each other? This question is closely related to an algorithm which generates
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a sequence of diagonal flips from one to the other. For example, our proof of
Wagner’s theorem suggests one of such algorithms which transforms a given
triangulation on the sphere into the standard form. The algorithm decreases
the degree of $u$ by deg $u-3$ diagonal flips and hence it will generate at most
$\sum_{i=4}^{n}(i-3)=\frac{1}{2}(n-3)(n-2)$ diagonal flips for a given triangulation on the
sphere with $n$ vertices. For example, put the standard form $\Delta_{n-3}$ after rotating
it so that $v\rightarrow u,$ $u\rightarrow w$ and $w\rightarrow v$ and carry out the algorithm for it. This will
attain the upper bound.

Komuro [38] has already improve this algorithm, introducing the following
invariant for triangulations on the sphere. Let $G$ be a spherical triangulation
embedded on the plane so that a triangle uvw bounds it, as like the standard
form $\Delta_{n-3}$ in Figure 2. Consider 3 deg $v+\deg w$ . This value is equal to $4n-4$ for
$\Delta_{n-3}$ and is the largest among the triangulations on the sphere with $n$ vertices.
Roughly speaking, his algorithm generates a sequence of diagonal flips so that
one diagonal flip increases 3 deg $v+\deg w$ by one.

LEMMA 36. (Komuro [38]) Any triangulation on the sphere with $n$ vertices
bounded by a triangle uvw can be transformed into the standad form $\Delta_{n-3}$ by
$4n-4-$ ( $3$ deg $v+\deg w$ ) diagonal flips, up to isotopy.

Finding a pair of vertices $v$ and $w$ so as to maximize 3 deg $v+\deg w$ , he has
established the following theorem.

THEOREM 37. (Komuro [38]) Any two triangulations with $n$ vertices on the
sphere can be transformed into each other, up to isotopy, by at most $8n-54$
diagonal flips if $n\geq 13$ and by at most $8n-48$ diagonal flips if $n\geq 7$ .

Gao, Urrutia and Wang [30] also have proved the $s$imilar theorem for labeled
triangulations on the sphere, considering an algorithm to sort the labels of ver-
tices with a binary-tree method. However, their theorem specifies only the order
of the numebr of diagonal flips with respect to the number of vertices.

THEOREM 38. (Gao, Urrutia and Wang [30]) Any two labeled triangulations
with $n$ vertices on the sphere can be transformed into each other, up to isotopy,
by $O$ ( $n$ log $n$) diagonal flips.

It is not so difficult to construct a pair of triangulations on the sphere with
$n$ vertices such that we need at least $O(n)$ diagonal flips to transform them into
each other. For example, Komuro [38] has given a series of triangulations $G_{n}$

such that at least $n-7$ diagonal flips are needed to transform $G_{n}$ into $\Delta_{n-3}$ ,
considering the difference of their degree sequences and the effect of diagonal
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flips to them. Gao, Urrutia and Wang [30] have conjectured that there exist
pairs of triangulations which guarantee the best possibility of their theorem, but
never constructed those yet.

For general closed surfaces, Negami has evaluated the length of a sequence
of diagonal flips which Theorem 15 guarantees. Let $G_{1}$ and $G_{2}$ be two triangu-
lations on a closed surface $F^{2}$ . Define the distance $d(G_{1}, G_{2})$ as the minimum
number of diagonal flips which we need to transform $G_{1}$ into $G_{2}$ , up to homeo-
morphism.

THEORBM 39. (Negmai [70]) Given a closed surafce $F^{2}$ , there are two constants
$\alpha_{1}$ and $\alpha_{0}$ , depending only on $F^{2}$ , such that

$d(G_{1}, G_{2})\leq 2n^{2}+\alpha_{1}n+\alpha_{0}$

for any pair of triangulations $G_{1}$ and $G_{2}$ on $F^{2}$ with precisely $n$ vertices.

Note that if we defined $d(G_{1}, G_{2})$ up to isotopy, then there would not exist an
upper bound for $d(G_{1}, G_{2})$ . Consider any triangulation $G_{1}$ on $F^{2}$ and another
one $G_{2}$ which is obtained from $G$ by applying Dehn twists. They are equivalent
to each other, up to homeomorphism. If they have enough many vertices, then
they are equivalent under diagonal flips, up to isotopy, by Theorem 27, but we
can make $d(G_{1}, G_{2})$ arbitrarily large, applying Dehn twists many times.

17. Minimum degree conditions

Recall the first paragraph in Section 3. The vertices of degree 3 has been
playing a very important role in our theory through the previous sections. They
can be neglected to obtain a triangulation with fewer vertices, can be moved
to elsewhere when it disturbs a diagonal flip we want to do, and carry labels
between two vertices in a labeled triangulation to exchange their labels. What
happens if we forbid the existence of those?

As is mentioned in Section 13, the class $\mathcal{P}_{4}(F^{2})$ , consisting of triangulations
with minimum degree at least 4, is not splitting-closed and hence we cannot use
the theory given in that section. However, Komuro, Nakamoto and Negami have
proved the following theorem.

THEOREM 40. (Komuro, Nakamoto and Negami [39]) For any closed surface
$F^{2}$ except the sphere, there exists a natural number $N_{4}(F^{2})$ such that two tnan-
gulations $G_{1}$ and $G_{2}$ on $F^{2}$ with minimum degree at least 4 can be transformed
into each other by a finite sequence of diagonal $fl\dot{\iota p}s$ , up to homeomorphism,
thrvugh those triangulations $if|V(G_{1})|=|V(G_{2})|\geq N_{4}(F^{2})$ ,
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The point of their proof is to distinguish two kinds of vertices of degree 4.
Let $G$ be a triangulation on a closed surface $F^{2}$ with minimum degree 4 and $v$

a vertex of degree 4 in $G$ with $lk(v)=abcd$ . The vertex $v$ is said to be inserted
if either $(G-v)+ac$ or $(G-v)+bd$ is a triangulation on $F^{2}$ . Any inserted
vertex of degree 4 can be moved freely over a triangulation while a vertex not
inserted cannot be. Thus, the inserted vertices of degree 4 play the $s$ame role
as the vertices of degree 3 do in the previous. According to their theory, we can
show the following equalities:

$N_{4}(P^{2})=6$ , $N_{4}(T^{2})=7$ $N_{4}(K^{2})=8$

It should be noticed that the sphere is excepted from Theorem 40. Actually,
the theorem does not hold for the sphere. For example, consider $C_{n}+\overline{K}_{2}$

embedded on the sphere; there is a cycle $C_{n}$ of length $n$ along its equator and
two vertices corresponding to $\overline{K}_{2}$ are placed at the north pole and the south
pole so that they are adjacent to all the vertices along the equator. We call this
triangulation a double wheel with rim $C_{n}$ . The octahedron can be regarded as
a double wheel with rim $C_{4}$ . Since each edge of a double wheel is incident to a
vertex of degree 4, any diagonal flip cannot be applied to it without producing
vertices of degree 3. Thus, a double wheel cannot be transformed into any other
triangulation on the sphere with the degree condition. However, they have shown
that the double wheels are isolated exceptions for the theorem on the sphere, as
follows.

THEOREM 41. (Komuro, Nakamoto and Negami [39]) Two tnangulations on
the sphere, except the double wheels, with minimu $m$ degree at least 4 can be
transformed into each other, up to isotopy, by a finite sequence of diagonal flips
through those tnangulations if they have the same number of vertices.

Figure 12. Rhombus twist

We need another kind of deformations, other than diagonal flips, to trans-
form the double wheels into other triangulations on the sphere. Let $G$ be a
triangulation on a closed surface and abcd a cycle of length 4 in $G$ bounding a
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quadrilateral region $R$ which is not a face of $G$ . Suppose that $R$ contains only
a pair of adjacent vertices $u$ and $v$ and that $u$ is adjacent to $a,$ $c,$

$d$ and $v$ to
$a,$ $b,$ $c$ . The rhombus twist is to deform the inside of $R$ so that $u$ is adjacent to
$a,$ $b,$ $d$ and $v$ to $b,$ $c,$

$d$ afterward, as shown in Figure 12. We do not perform
this deformation to keep the minimum degree at least 4 unless deg $a\geq 5$ an.d
deg $c\geq 5$ in $G$ .

THEOREM 42. (Komuro, Nakamoto and Negami [39]) Two tnangulations on
the sphere with minimum degree at least 4 can be transformed into each other,
up to isotopy, by a finite sequence of diagonal flips and rhombus twists through
those tnangulations if they have the same number of vertices.

We can define $N_{d}(F^{2})$ just formally as the minimum number $N$ such that
two triangulations $G_{1}$ and $G_{2}$ on $F^{2}$ with minimum degree at least $d$ can be
transformed into each other, up to homeomorsphim, by a finite sequence of
diagonal flips through those triangulations if $|V(G_{1})|=|V(G_{2})|\geq N$ . However,
$N_{d}(F^{2})$ for $d\geq 7$ is not so meaningful since there are only finitely many graphs $G$

embedded on $F^{2}$ with $\delta(G)\geq 7$ . (It follows from Euler’s formula that $|V(G)|\leq$

$6|\chi(F^{2})|$ for such a graph $G.$ ) On the other hand, $N_{d}(F^{2})$ connot be a finite
constant for $d=5$ and 6, as shown below.

A triangulation $G$ is said to be d-covered if each edge is incident to a vertex
of degree $d$ . If $G$ is d-covered with $\delta(G)=d$ , then flipping any edge decreases
the degrees of it $s$ both ends and results in a triangulation with minimum degree
$d-1$ . Thus, we cannot transform $G$ into any other triangulation, keeping their
minimum degree at least $d$ . It is not difficult to construct an infinite series of
5-covered triangulations on each closed surface $F^{2}$ and that of 6-covered ones on
$F^{2}$ with $\chi(F^{2})\leq 0$ . This denies the existence of $N_{d}(F^{2})$ for $d=5$ and 6.

Furthermore, Nakamoto and Negami [54] have shown a constructive char-
acterization of 5-covered and of 6-covered triangulations, and discussed on an
upper bound for such an integer $d$ that a closed surface $F^{2}$ admits a d-covered
triangulation. For example, if $\chi(F^{2})\leq 0$ , then we have

$ d\leq 2\lfloor\frac{5+\sqrt{49-24\chi(F^{2})}}{2}\rfloor$

and there are only finitely many d-covered triangulations, up to homeomorphism,
with any positive integer $d\geq 13$ . See [54] for details.

18. Frozen triangulations

Any d-covered triangulation, discussed in the previous section, does not admit
any diagonal with the minimum degree condition. Here, we shall consider a
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similar property for usual triangulations.
A triangulation is said to be frozen if any diagonal flip is not applicable to it,

that is, if any diagonal flip yields a pair of multiple edges. Thu $s$ , a triangulation
$G$ is frozen if and only if the four vertices lying on the quadrilateral with $e$ as its
diagonal induces $K_{4}$ for any edge $e\in E(G)$ .

For example, any complete triangulation is frozen. Is there a fozen triangu-
lation which is not complete? The answer to this question is “Yes”. We can
construct such a frozen triangulation, as follows.

Let $K_{n(m)}$ denote the complete n-partitle graph with partite sets of the same
size $m$ , that is, $K_{m,\ldots,m}$ with $nm’ s$ . The following theorem is one of corollaries of
Theorem 7.5 in [2], and suggests a covering construction of a frozen triangulation.

THEOREM 43. (Archdeacon [2]) If the complete graph $K_{n}$ triangulates a closed
surface $F^{2}$ and if each pnme factor of $m$ is at least $n-1$ except the case of
$n=4,$ $m=3$ , then $K_{n(m)}$ tnangulates another surface.

Following Archdeacon’s method in [2], we can construct the triangulation
with $K_{n(m)}$ on a closed surface $\tilde{F}^{2}$ as a wrapped covering of $K_{n}$ embedded on
$F^{2}$ . That is, there is an $m^{2}$-fold branched covering $p:\tilde{F}^{2}\rightarrow F^{2}$ , only branched
over $V(K_{n})$ , such that the neighborhood of each vertex $v\in V(K_{n(m)})$ wraps
that of $p(v)\in V(K_{n})$ cyclically. (See [2] and [35] for the precise definition of a
wrapped covering.) If $F^{2}$ is non-orientable, then $\tilde{F}^{2}$ is non-orientable, too, since
any feasible $m$ in the theorem is odd for $n\geq 4$ .

This structure guarantees that if abcd is a quadrilateral with $ac$ its diagonal
in $K_{n(m)}$ , then $b$ and $d$ belong to two different partite sets of $K_{n(m)}$ for $n\geq 4$ .
Thus, $b$ and $d$ are joined with an edge and hence $ac$ cannot be flipped. This
implies that $K_{n(m)}$ is a frozen triangulation of $\tilde{F}^{2}$ . Of cource, $K_{n(m)}$ is not
complete unless $m=1$ .

For example, since $K_{4}$ triangulates the sphere, $K_{4(m)}$ triangulates an ori-
entable closed surface with any odd integer $m\neq 3$ and each of the triangulations
with $K_{4(m)}$ is frozen. To construct a non-complete frozen triangulations on non-
orientable closed surfaces, we can use $K_{6(m)}$ with $m$ not divisible by 2 and 3
since $K_{6}$ triangulates the projective plane. (We can find other constructions of
triangulations with $K_{n(m)}$ in [14], [15] and [16].)

This discovery of frozen triangulations gives the negative answer to Question
1 in Section 3. Any frozen triangulation is pseudo-minimal, by their definition.
It is not difficult to show that the frozen triangulations $K_{4(m)}$ and $K_{6(m)}$ are not
minimal, evaluating the number of their vertices. It is clear that if $F^{2}$ admits
a frozen triangulation $G$ , then $|V(G)|<N(F^{2})$ . These imply the following
theorems.
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THEOREM 44. (Negami [72]) Let $F^{2}$ be the orientable closed surface of genus
$g$ . If $g$ is an even square number more than 4, then we have:

$V_{\min}(F^{2})<4+4\sqrt{g}<N(F^{2})$

THEOREM 45. (Negami [72]) Let $F^{2}$ be the non-orientable closed surface of
genus $q$ . If $5q-1$ is an even square number and if $q\not\equiv 2$ mod 3, then we have:

$V_{\min}(F^{2})<18+6\sqrt{5q-1}<N(F^{2})$

See [72] for details. In that paper, Negami has discussed on the relationship
among many properties of triangulation $s$ ; namely complete, minimal, pseudo-
minimal, irreducible and frozen.

19. Pseudo-triangulations

A triangulation on a closed surface is a simple graph, that is, a graph without
loops and multiple edges. This restriction on the simpleness of triangulations
yields some difficulity in our theory on diagonal flips. What happens if we
allowed loops or multiple edges in triangulations. One might expect that every-
thing becomes easier. In fact, we can establish a good theory on such unusual
triangulations, as follows.

We call a graph $G$ on a closed surface $F^{2}$ a pseudo-triangulation on $F^{2}$ if
each face is just three-edged. It may have loops or multiple edges. To avoid the
reader’s confusion, we shall call a usual triangulation a simple triangulation in
this section.

The theorem corresponding to Theorem 15 holds for pseudo-triangulations,
too, but with no restriction on the number of vertices. That is, $N(F^{2})=1$

for all of closed surfaces $F^{2}$ . Moreover, we can evaluate the distance between
two given pseudo-triangulations, using a kind of crossing numbers different from
those given in Section 14.

Let $G_{1}$ and $G_{2}$ be two labeled pseudo-triagulations on a closed surface $F^{2}$ .
The diagonal crossing number $cr_{\nabla}(G_{1}, G_{2})$ of $G_{1}$ and $G_{2}$ under vertex coinci-
dence is defined as the minimum number of crossing points on edges counted in
$h(G_{1})\cup G_{2}$ for all the homeomorphisms $h$ : $F^{2}\rightarrow F^{2}$ such that:

(i) The homeomorphism $h$ induces the label-preserving bijection between
$V(G_{1})$ and $V(G_{2})$ .

(ii) Each pair of edges $e_{1}\in E(G_{1})$ and $e_{2}\in E(G_{2})$ either coincide with each
other $(h(e_{1})=e_{2})$ or cross each other transversely in a finte number of
points, via $h$ .
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We also define $c^{\sim_{r_{\nabla}(G_{1},G_{2})}}$ , requiring the homeomorphisms $h$ to be isotopic to
the identity map over $F^{2}$ in addition. When $G_{1}$ and $G_{2}$ are regarded as unlabeled
graphs, the homeomorphisms $h$ should be ones such that $h(V(G_{1}))=V(G_{2})$ ,
instead of the first condition. We denote the diagonal crossing number in this
unlabeled sense by $\overline{cr}_{\nabla}(G_{1}, G_{2})$ , and we have:

$\overline{cr}_{\nabla}(G_{1}, G_{2})\leq cr_{\nabla}(G_{1}, G_{2})\leq c^{\sim_{r_{\nabla}(G_{1},G_{2})}}$

THEOREM 46. (Negami $[71]$ ) $LetG_{1}$ and $G_{2}$ be two labeled pseudo-triangulations
on a closed surface $F^{2}$ with the same number of vertices. Then they can be
transformed into each other, up to homeomorphism, by a sequence of diagonal
flips of length at most $cr_{\nabla}(G_{1}, G_{2})$ .

The unlabeled verion and the isotopy verion of this theorem also hold if
$cr_{\nabla}(G_{1}, G_{2})$ is replaced with $\overline{cr}_{\nabla}(G_{1}, G_{2})$ and $c^{\sim_{r_{\nabla}(G_{1},G_{2})}}$ , respectively. The
proof given in [71] presents a “greedy” algorithm to transform $G_{1}$ into $G_{2}$ by
diagonal flips in a sense, decreasing $cr_{\nabla}(G_{1}, G_{2})$ .

After establishing this theorem, Negami [71] has proved Theorems 14 and
35, as follows. Let $G_{1}$ and $G_{2}$ be two simple triangulations on a closed surface
$F^{2}$ . Since they are also pseudo-triangulations, they can be transformed into
each other by a sequence of diagonal flips, by Theorem 46, although such a
sequence may include non-simple triangulations. Make a refinement of each
pseudo-triangulation in the sequence in a well-mannered way so that it becomes
a simple triangulation, and join each consecutive pair of those refinements by
a sequence of diagonal flips. In his method, such a refinement can be obtained
from its original $G$ by adding $18(|V(G)|-\chi(F^{2}))$ extra vertices. This idea has
motivated Nakamoto to prove Theorem 26.

Now we shall forbit only loops. In fact, we can establish a beautiful theory
on pseudo-triangulations without loops. Basically, the same arguments as for
simple triangulations proceed and the vertices of degree 2 play the same role in
turn as those of degree 3 in the previous. Thus, a pseduo-triangulation without
loops is said to be pseudo-minimal if it cannot be transformed into one which
includes a vertex of degree 2 by diagonal flips. To prove the following theorem,
it suffices, as well as for $s$imple triangulations, to show that any two pseudo-
minimal pseudo-triangulations are stable equivalent.

THEOREM 47. (Negami and Watanabe [86]) Given a closed surface $F^{2}$ , there
exists a natural number $n(F^{2})$ such that two pseudo-tnangulations $G_{1}$ and $G_{2}$

on $F^{2}$ without loops can be transformed into each other, up to homeomorphism,
by a sequence of diagonal flips through those pseudo-triangulations $\dot{i}f|V(G_{1})|=$

$|V(G_{2})|\geq n(F^{2})$ .
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The key fact in the theory for pseudo-triangulations without loops is the
following lemma, which tells us what is pseudo-minimal. Frozen, minimal and
irreducible pseudo-triangulations are defined in the same way as those for simple
triangulations. It is not difficult to find irreducible pseudo-triangulations which
are not pseudo-minimal.

LEMMA 48. (Negami and Watababe [86]) For a pseudo-triangulation $G$ on a
closed surface without loops, the following four are equivalent to one another:

(i) $G$ is frozen.
(ii) $G$ is pseudo-minimal.

(iii) $G$ is minimal.

(iv) $G$ has precisely three vertices.

Let $n(F^{2})$ denote its minimum value, as well as $N(F^{2})$ . Since we can con-
struct or classify pseudo-minimal ones concretely, we can give a good upper
bound for $n(F^{2})$ , which does not contain any unknown quantity.

THEOREM 49. (Negami and Watanabe [86]) If a closed surface $F^{2}$ is one of
the sphere, the prvjective plane, the torus and the Klein bottle, then $n(F^{2})=3$ .
Otherwise, we have:

$4\leq n(F^{2})\leq 18-5\chi(F^{2})$

For example, we can show that there are only two inequivalent pseudo-
minimal pseudotriangulations on the orientable closed surface of genus 2 and
that they become equivalent under diagonal flips after adding one vertex of de-
gree 2 to them. Thu$s$ , we have $n(F^{2})=4$ for the orientable closed surface $F^{2}$ of
genus 2.

QUESTION 10. Detennine the precise value of $n(F^{2})$ for each closed surfaces
$F^{2}$ with $\chi(F^{2})<0$ . (Conjecture: $n(F^{2})=4$ for all.)

20. Quadrangulations

A quadrvrngulation on a closed surface $F^{2}$ is a simple graph embedded on $F^{2}$

so that each face is bounded by a cycle of length 4. In particular, a bipartite
quadrangulation appears as what is called the $m$dial graph $R(G)$ , associated
with a general graph $G$ embedded on a closed surface $F^{2}$ . (Put a vertex at the
center of each face of $G$ and join it to all the vertices lying on the boundary of
the face. Delete the edges of G. the resulting graph is $R(G)$ and is a bipartite
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graph with partite sets $V(G)$ and $V(G^{*})$ , where $G^{*}$ is the dual of $G$ . It is clear
that $R(G)=R(G^{*})$ and hence $R(G)$ is useful to investigate both the primal
$G$ and its dual $G^{*}$ together. See [2], [4] and [5] for the usage of radial graphs.
The medial graph $M(G)$ is the dual of $R(G).)$ Note that any quadrangulation
on the sphere is bipartite and there are non-bipartite quadrangulations on other
closed surfaces. Let $V_{B}(G)$ and $V_{W}(G)$ denote the two partite sets of a bipartite
quadrangulation $G$ , black and white, with $V(G)=V_{B}(G)\cup V_{W}(G)$ .

There have been many studies on quadrangulations; [1], [48], [49], [52], [53]
and so on. In particular, Nakamoto’s thesis [51] includes most of those. Both the-
ories for triangulations and for quadrangulations have been devepoled together
and some of their arguments proceed actually in parallel. There are however some
special phenomena for only quadrangulations, which we shall describe here.

We need two operations for quadrangulations, called a diagonal slide and
a diagonal rotation, corresponding to a diagonal flip for triangulations. The
diagonal slide just slides a diagonal in a hexgonal region while the diagonal
rotation rotates two edges around a vertex of degree 2, as shown in the left and
right of Figure 13, respectively. The following theorem gives us the starting point
for the studies on quadrangulations, and is one corresponding to Theorem 15 for
triangulations.

Figure 13. Diagonal slide and diagonal rotation

THEOREM 50. (Nakamoto [48]) For any closed surface $F^{2}$ , there is a natural
number $Q(F^{2})$ such that two bipartite quadrangulations $G_{1}$ and $G_{2}$ on $F^{2}$ can
be transformed into each other, up to homeomorphism, by a sequence of diagonal
slides and diagonal rotations if $|V(G_{1})|=|V(G_{2})|\geq Q(F^{2})$ .

It should be noticed that both a diagonal $s$lide and a diagonal rotation pre-
serve the bipartiteness of quadrangulations, as Figure 13 suggests. Thus, a bi-
partite quadrangulation and a non-bipartite one cannot be transformed into each
other by these operations. Also, two bipartite quadrangulations $G_{1}$ and $G_{2}$ can-
not be transformed into each other by only diagonal slides if $|V_{B}(G)|\neq|V_{B}(G)|$

or if $|V_{W}(G)|\neq|V_{W}(G)|$ . The diagonal rotation changes the size of $V_{B}(G)$ and
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of $V_{W}(G)$ and is needed actually to establish the theorem for bipartite quadran-
gulations.

To establish another theorem which covers all quadrangulations, we shall
prepare a topological invariant, called a cycle parity of $G$ . Let $G$ be a quadran-
gulation on a closed surface $F^{2}$ . It is easy to see that the lengths of two cycles
in $G$ have the same parity, even or odd, if they are homotopic on $F^{2}$ . Thus,
we can define a homomorphism $\sigma$ : $\pi(F^{2})\rightarrow Z_{2}$ so that $\sigma([C])=0$ (or 1) if
the length of a cycle $C$ in $G$ is even (or odd), where $[C]$ stands for the homo-
topy class including $C$ . This homomorphism $\sigma$ can be represented uniquely as
the composition of the canonical projection $\pi(F^{2})\rightarrow H_{2}(F^{2}, Z_{2})$ and a homo-
morphism $\sigma_{*}$ : $H_{2}(F^{2}, Z_{2})\rightarrow Z_{2}$ and $\sigma_{*}$ can be regarded as an element in the
$Z_{2}$-cohomology group $H^{2}(F^{2}, Z_{2})$ . The cycle parity of $G$ on $F^{2}$ is defined as
this $\sigma_{*}=\sigma_{*}(G)\in H^{2}(F^{2}, Z_{2})$ . Two cycle parities $\sigma_{*}$ and $\sigma_{*}^{\prime}\in H^{2}(F^{2}, Z_{2})$

are $s$aid to be congruent if there is a homeomorphism $h$ : $F^{2}\rightarrow F^{2}$ such that
$h^{*}(\sigma_{*})=\sigma_{*}^{\prime}$ , where $h^{*}$ stands for the homomorphism $H^{2}(F^{2}, Z_{2})\rightarrow H^{2}(F^{2}, Z_{2})$

induced by $h$ .
It is easy to see that a diagonal slide and a diagonal rotation preserve the

cycle parity. Thus, if $\sigma_{*}(G_{1})\neq\sigma_{*}(G_{2})$ , then those quadrangulations $G_{1}$ and $G_{2}$

cannot be transformed into each other by diagonal flips and diagonal rotations.
For example, a quadrangulation $G$ is bipartite if and only if $\sigma_{*}(G)=0$ . Thus,
the following theorem contains the previous.

THEOREM 51. (Nakamoto [49]) For any closed surface $F^{2}$ , there is a natural
number $Q^{\prime}(F^{2})$ such that two quadrangulations $G_{1}$ and $G_{2}$ on $F^{2}$ with $|V(G_{1})|=$

$|V(G_{2})|\geq Q^{\prime}(F^{2})$ can be trunsformed into each other, up to heomeomorphism,
by a sequence of diagonal slides and diagonal rotations if their cycle panties are
congruent.

In fact, there are not so many congruence classes of cycle parities. For any
orientable closed surface $F^{2}$ except the sphere, there are only two congruence
classes, trivial or non-trivial. Thus, any non-bipartite quadrangulations $G_{1}$ and
$G_{2}$ on $F^{2}$ can be transformed into each other by diagonal slides if $|V(G_{1})|=$

$|V(G_{2})|\geq Q^{\prime}(F^{2})$ . In this case, a diagonal rotation is not needed. Furthermore,
Nakamoto and Ota [52] have already established the isotopy verion of these
theorems for orietable closed surfaces, discussing on transition of cycle parities
by Dehn twists. How about such a theorem for nonorientable closed surface?

21. Conclusion

The theory of diagonal flips in triangulations on surfaces has been developed
so much, related to many other notions in topological graph theorey, some of
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which are new. However, we knows about only abstract phenomena for hyper-
bolic closed surfaces, that is, ones with negative Euler characteristic and do not
know much about the equivalence over triangulation $s$ on such surfaces with the
number of vertices smaller than $N(F^{2})$ . We would like to expect further studies
to make them clear in near future.
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