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Abstract. The exponent of a.semi-selfsimilar process is shown to exist under
the mere assumption of stochastic continuity at t = 0, and related examples are
given. A relationship between long range dependence of the increments and the
exponent is also discussed.

1. Introduction

Let {X(t),t > 0} be an R%valued Lévy process in the sense that it is stochas-
tically continuous for ¢ > 0, X(0) = 0 a.s. and it has independent stationary
increments. If the law of X (1) is strictly semi-stable in the sense that the char-
acteristic function i of X (1) satisfies 1(2)?® = fi(bz) for some a € (0,1) U (1, )
and b > 0, then the process {X(t)} satisfies

{X(at),t > 0} £ {bX(2),t > 0}, (1.1)

where £ denotes the equality in all joint distributions.

Non-Gaussian stable distributions have heavy tails and are widely used in
stochastic modeling. Non-Gaussian strictly semi-stable distributions have also
heavy tails and since the class of those distributions is much wider than that of
non-Gaussian strictly stable distributions, they offer more variety in stochastic
modeling.

As strictly stable Lévy processes are extended to selfsimilar processes, strictly
semi-stable Lévy processes can be extended to more general processes, namely,
to semi-selfsimilar processes. In general, if an R%-valued process {X (t)} satisfies
a scaling property (1.1) for some a € (0,1) U (1,00) and b > 0, then we want to
call {X(t)} semi-selfsimilar.

Selfsimilar processes have contributed a lot to stochastic modeling of phe-
nomena with long range dependence, (see e.g. and [3]). However, selfsimilar
processes have to satisfy (1.1) for all a > 0. Because of the weaker scaling prop-
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erty, semi-selfsimilar processes are expected to offer higher flexibility in stochastic
modeling of phenomena with long range dependence.

Semi-selfsimilar (but not selfsimilar) processes in the sense of this paper have
already appeared in the literature about diffusions on Sierpinski gaskets, (see

[1], and [7]), although such terminology is not used. Namely, if {X(t)} is
such a diffusion on RY, then {X ((d + 3)"t)} 2 {2" X (t)} for any n € Z. So the
semi-selfsimilarity might also be an important notion in mathematical physics.
In @], several topics on semi-selfsimilar processes have been studied, and
among them, there is the existence of exponents of semi-selfsimilarity. In this
paper, we shall discuss again exponents of semi-selfsimilarity and show that
stochastic continuity of semi-selfsimilar processes at the origin is delicately re-
lated to the existence of exponents of semi-selfsimilarity, which has a sharp con-
trast to selfsimilar processes. We also show when increments of semi-selfsimilar
processes have long range dependence in terms of value of their exponents.

2. Examples

If bin (1.1) can be expressed as b = af for a unique H > 0, then we call H
the exponent of a selfsimilar or semi-selfsimilar process {X (¢),t > 0}. Then we
may say that {X(t)} is H-selfsimilar or H-semi-selfsimilar. In this section, we
give several examples of semi-selfsimilar processes to explain our motivation of
this paper.

Throughout the examples below, let {Y'(t),t > 0} be an H-selfsimilar pro-
cess with H > 0 suth that Y (¢) is stochastically continuous at any ¢ > 0 and

nonconstant for every ¢ > 0. Note that Y (0) = 0 a.s., since Y (0) < a®Y (0) for
any a > 0. Here £ denotes the equality in law.

If {X(t)} is H-selfsimilar with H > 0, then {X ()} is always stochastically
continuous at t = 0. For, X(0) = 0 a.s. and

P{IX(t)| > e} = P{t¥|X(1)| > e} =0

when ¢t — 0. This is not true for semi-selfsimilar processes. The first example
below shows that there exists an H-semi-selfsimilar process, H > 0, which is not
stochastically continuous at ¢ = 0.

To construct such a process, let g : R — R be a function satisfying

g(u+v)=g(uv) +9(v), VYu,v€eR, (2.1)
9(1) >0, (2.2)
limsup g(u) = +\oo, liminf g(u) = —o0. (2.3)

U——00 U——o00
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The existence of such a function is shown in [6]. It follows easily from (2.1) that
g(ru) =rg(u), VreQ,VYueR, (2.4)

where Q is the set of rational numbers. Therefore
g(r+u)=rg(1)+g(uv), VreqQ, VueR. (2.5)

Let f(t) = e9(1°8%) for t > 0. We may and do suppose that g(1) = H, where H
is the exponent of {Y (¢)}. We see from that

f(at) = a®f(t) if loga€ Q.

For any given process {X ()}, let " be the set of all @ > 0 such that there exists
b > 0 satisfying (1.1), and log T’ be the set of loga with a € T'.

Example 1. Define {X(t),t > 0} by

0, ift=0,
X(t)=4 f(t), ift>0and logt¢Q,
Y(t), if logt€Q,

we have
{X(at)} £ {a®X(t)}, if loga€Q, (2.6)

because logat € Q if and only if logt € Q. Also, if a > 0 and loga ¢ Q, then we

cannot find b > 0 satisfying (1.1), as is seen by choosing ¢t = a~!. Thus we have

logT = Q, and {X(¢)} is semi-selfsimilar with a unique exponent H. We have
lim g(u) = —oc0

U—>—00

ueqQ
by (2.2) and [2.4). On the other hand,

limsup g(u) = 400
u——00

ug€Q
by (2.3). Hence,

limsup f(t) = +oo.
t30
logt€Q

Namely, {X (t)} is not stochastically continuous at ¢ = 0. (Actually, this {X (t)}
is not stochastically continuous at any ¢ > 0.)
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As we have seen above, some semi-selfsimilar processes with a unique ex-
ponent are not stochastically continuous at the origin. However, if we do not
assume the stochastic continuity at the origin, we cannot assure the existence of
a unique exponent for a semi-selfsimilar process, as seen in the next example.

Example 2. Define {X(¢),t > 0} by

X(t) = 0, ift=0or logt ¢ Q+v2Q,
T\ Y(ert?), iflogt=r+sv2€Q+v2Q.

It is easily seen that {X(t)} is not stochastically continuous at any ¢ > 0. Let
a € Q. Then

0, ift=0o0r logt ¢ Q+2Q,

ap) — av24) —
X(e t)—X(C t)_{Y(ea'H'H), iflogt=r+s\/§€Q+\/§Q.

It follows that {X(e“t)} 4 {X(e*V21)} 4 {e*HX(t)}. Thus {X(t)} is semi-
selfsimilar but does not have an exponent, and logI' = Q + v/2Q.

The third example in this section is an H-semi-selfsimilar process which is
stochastically continuous at ¢ = 0 but not at any ¢t > 0.

Example 3. Define {X(t),t > 0} by

ift =
X(t) = 0, 1 Oor logt ¢ Q,
Y(t), if logt€ Q.

Obviously {X(t)} is stochastically continuous at ¢ = 0 but not at any other
t > 0. We have (2.6) by the same reasoning as for Example 1. If 2 > 0 and
loga ¢ Q, then there does not exist b > 0 satisfying (1.1), as is seen by choosing
t = a~! again. Thus we have again logT' = Q, and it follows from (2.6) that
{X(t)} is H-semi-selfsimilar.

A slight modification enables us to give the following example which is H-
semi-selfsimilar, stochastically continuous at ¢ = 0 but not at any ¢ > 0, and has

the additional property that {X (at)} 4 {a¥ X ()} for some a = a;, a, such that
log a; / log a, is irrational.

Example 4. Define {X(t),t > 0} by

X(t) = 0, ift=0o0r logt ¢ Q +2Q,
T Y (), iflogte Q+v2Q.
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Then
{X(at)} £ {aFX()}, iflogacQ+V2Q,
and logT = Q +/2Q.

3. The existence of a unique exponent

In [9], to show the existence of a unique exponent, it was assumed that
the semi-selfsimilar process {X(t),t > 0} is stochastically continuous at any
t > 0. However, the examples in the previous section suggest that the stochastic
continuity only at ¢ = 0 would be needed for the existence of a unique exponent.
Actually this is true as the following theorem shows. We call {X(t)} a zero
process if, for each t, P{X(t) = 0} = 1. Otherwise it is called nonzero.

Theorem 1. Let {X(t),t > 0} be an R%-valued, nonzero semi-selfsimilar
process. Suppose that it is stochastically continuous att = 0. Then the following
statements are true.

(i) There exists a unique H > 0 such that, ifa € (0,1)U(1,00) and b > 0 satisfy
(1.1), then b = afl.

(ii)) X(0) =0 a.s. if and only if H > 0. X(t) = X(0) a.s. for everyt if and only
if H=0.

Recall Example 2, which shows that a semi-selfsimilar process does not nec-
essarily have a unique exponent, unless it is stochastically continuous at ¢ = 0.
So, we cannot entirely remove the assumption of the stochastic continuity at
t = 0 to prove the existence of a unique exponent.

Proof of Theorem 1. The nonzero property of {X(t)} implies that b is
uniquely determined by a. Thus we write b = b(a) for a € T'. It is easy to prove
the following.

(1) 1€l and b(1) =1.

(2) Ifa€Tl,thena ! €T and b(a~?) = b(a)~ L.

(3) Ifa and o’ are in I, then ad’ € T and b(aa’) = b(a)b(a’).
Furthermore, we observe '

(4) If X(0) =0 a.s., then b(a) > 1 for any a € I' N (1, 00).

() If b(a) # 1 for some a € I' N (1, 00), then X (0) = 0 a.s.

(6) Ifb(a) =1 for some a € T' N (1,00), then X (t) = X(0) a.s. for every t.

To see (4), suppose that X(0) = 0 a.s. and that b(a) < 1 for some a €
' N (1,00). Denote the characteristic function of X (t) by ji:(z). Then by semi-
selfsimilarity, we have fign;(b(a)~"2) = fi¢(2) for all n € Z and for all z € R4.
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Since X(0) = 0 a.s. and {X (%)} is stochastically continuous at ¢t = 0, we have
flant(w) — 1 uniformly in w in any compact set as n - —oo. Thus f:(2) = 1
and this contradicts the nonzero property of the process. This proves (4). (5) is
obvious from the relationship fio(z) = fio(b(a)”2) for all n € Z. If b(a) = 1 for
some a > 1, then {X(¢)} 4 {X(a™t)} for all n € Z and the stochastic continuity
at t = 0 yields

P{|X(t) — X(0)| > e} = P{|X(a"t) — X (0)| > €} =0

as n — —oo, which proves (6).

Hence, by (4) and (5), b(a) > 1 for any @ € ' N (1,00). By (1), (2), and
(3), log I is an additive subgroup of R and (logT') N (0,00) # 0. Let ry be the
infimum of (log ') N (0, o).

Suppose that 7y > 0. Then ry € logI'. In fact, if 7y & log T, then there are
sp,n=1,2,...,in log I strictly decreasing to ry and we have ro > s, — sp4; €
(log ') N (0, 00) for sufficiently large n, contrary to the definition of ry. This
implies that {nr, : n € Z} C logT. If nry < r < (n + 1)ry for some r € logT,
then r — nrg € logI' and 0 < r — nry < ry, which is a contradiction. Hence
log' = {nry : n € Z} and there is a unique exponent H > 0.

In the rest of the proof assume that ro = 0. Maejima and Sato @ proved
that logI' = R in this case. But it does not work any more, since the argument
in [9] to show the closedness of logT' uses the stochastic continuity of {X(t)}
for t > 0. (Actually log T is not always closed under the condition that {X(t)}
1s stochastically continuous only at ¢ = 0, as have been seen in Example 3 in
the previous section.) So we have to use another idea to show the existence of
an exponent. Suppose that H > 0 with the desired property does not exist.
Then there exist 0 < H; < Hj such that, for i = 1,2, the set I'; defined by
I = {a € T : b(a) = af*} contains some a; # 1. If a € Ty, then a~! € I},
since b(a~!) = b(a)~! = a~#:. Hence, for each i, there is a; € T; N (1,00). If
H; = 0 (and Hz > 0), then, by (5) and (6), X(t) = 0 a.s. for each ¢ > 0, which
contradicts the nonzero assumption of {X(¢)}. Hence H; > 0. For any positive
integer m, there exists a positive integer n such that

Hz logaz m

— <l1.
" H, log a; -

Therefore we can find two sequences {my}, {nx} such that my,ny — oo and

—npH,loga; + mpHyloga; > b as k — oo

for some b € (—o00,0). Let sx = a7 "*aj'*. Since

Bk —H210g0,2 as k — o0,
my H,loga,
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we have, as k — oo,
23
log sx = my (-——— log a; + loga2> — —00,
mg

namely sy — 0. Noting that X (0) = 0 a.s. by (5), we can choose 1o > 0 so that
X (to) is nonzero. Notice that

X (skto) = X (a7 a5 *to) i ay ik gfame x (1)

Let k tend to co here. Use the stochastic continuity of {X ()} at ¢ = 0 and the
fact that X (0) = 0 a.s. Then we have e®X (o) = 0 a.s., which contradicts that
X(to) is nonzero. Therefore the exponent H > 0 uniquely exists. Hence (i) is
true. The assertion (ii) follows from (4), (5) and (6). This completes the proof
of Theorem 1. O

4. Long range dependence of increments of semi-selfsimilar pro-
cesses

Suppose that {X(t),¢ > 0} has stationary increments and finite second mo-
ments with mean zero, and let {, = X(n+ 1) — X(n), n = 0,1,2,... and
r(n) = E[€no]. If Y oL, 7(n) is divergent, then it is said that stationary in-
crements {£,} have long range dependence, because the slow decrease of the
correlations is considered as an expression of long range dependence. (See e.g.
2] [8], aud [10))

Note that if {X(¢)} is H-selfsimilar, H > 0, with stationary increments and
has finite first moment, then H of this process should satisfy H <1, and in
case H < 1 we have E[X(t)] = 0, while in case H = 1 we have X(t) = tX
a.s. for some random variable X. (See e.g. [8].) Similarly, if {X ()} is H-semi-
selfsimilar, H > 0, with stationary increments and stochastically continuous at
t = 0, and if it has finite first moment and

sup E[|X(t)|]] < oo, forsomee >0, (4.1)
0<te

then H < 1. This can be shown as follows.
There is a > 1 such that {X(at)} 2 {a¥X(t)}. Thus, for any n € Z,

X(a") 2 a™? X (1). We have

[a™]-1
E[|X(@@")|] < ) E[IX(a" —k) - X(a" — k= 1)[] + E [|X(a" - [a"])]],

k=0




-

100 M. MAEJIMA, K. SATO AND T. WATANABE

where [a"] is the largest integer less than or equal to a”. Thus, using X(0) =0
a.s., we have

T E[IXD)] < @E XN+ sup EIXOI],

and for any n € Z,
(@ - @) E (X)) < sup E[IX(2)]. (4.2

If H > 1, then letting n — 0o gives supg<;<1 E [|X (t)|] = oo, which contradicts
(4.1) together with stationary increments. Hence H < 1.

Also observe that if furthermore H < 1, then E [X (1)] = 0 and thus E [X (a")]
= 0 for all n € Z. For, similarly to we have

@ — @) E[x)]| < sup E[X ()]

and, if H < 1 and E [X(1)] # 0, then letting n — oo yields again a contradiction.
We now consider only the case 0 < H < 1. Then, if {X (t)} is H-selfsimilar
with stationary increments having finite second moment, we have

r(n) = 3 {(n+ 1?7 + |n = 1P — 202} B [X (1)

and we see that 5.5 r(n) = oo if and only if § < H < 1.

This argument of using r(n) does not work for semi-selfsimilar processes,
because the semi-selfsimilarity is not enough to give an explicit expression for
r(n). However, there are several other ways to understand long range depen-
dence. Among those, one of the characterizations of long range dependence of
stationary increments is that the variance of the process {X (t)} diverges to in-
finity faster than the order t. (See [2]. Also see the non-central limit theorems
for strongly dependent stationary random variables in [4] and )

Now suppose that {X(t)} is H-semi-selfsimilar with 1 < H < 1, has finite
second moment, and satisfies (4.1). Then, recalling that E [X(a™)] = 0 for all
n € Z, we have

. -1 . -n n
limsupt™ VarX (t) > nlgrgo a~"VarX(a")

t—o0

- 1 -n ny\2

_nl_l*ngoa E [X(a")?]

13 n(2H-1) 271 _

= lim a E[X(1)?] =oo. (4.3)
If {X(¢)} has stationary increments, then (4.3) means that the variance of sums
of stationary increments (the variance of the original process itself) cannot have
the same order as the number of the summands. So, it is reasonable to under-
stand that stationary increments of H-semi-selfsimilar processes have long range
dependence if H > 3.



EXPONENTS OF SEMI-SELFSIMILAR PROCESSES 101

5. Concluding remarks

Let {X(t),t > 0} be stochastically continuous for ¢ > 0. In [9], it is shown
that if {X(¢)} is semi-selfsimilar, then

(i) T = {ao”,n € Z} for some ag > 1 and {X(t)} is not selfsimilar but
semi-selfsimilar, or

(ii) ' = (0, 00) and {X(t)} is selfsimilar

Suppose one wants to check the selfsimilarity of a process. If we follow the
definition of selfsimilarity, one has to check (1.1) for all a > 0. However, suppose
one could show the relationship (1.1) only for two a’s, (a1, a2, say), such that
log a; / log a; is irrational. Then by the observation above, the fact that a;,as € T
implies I' = (0, 00), and one can conclude that {X(t)} is selfsimilar. This gives
us an easy way to check selfsimilarity of a given process. Namely, we have

Proposition 1. Suppose {X(t),t > 0} is stochastically continuous at any
t20. If {X(t)} satisfies (1.1) for some a; and ay such that loga,/loga, & Q,
then it is selfsimilar with some unique ezponent H > 0.

In this proposition, we cannot relax the assumption of stochastic continuity
at any ¢t > 0 to that at t = 0, because of Example 4 in Section 2.

Another remark is concerning extension of Theorem 1 to wide-sense semi-
selfsimilar processes. If an RA-valued stochastic process {X(t),t > 0} is
called wide-sense semi-selfsimilar if there are a € (1,0) U (1,00), b > 0, and an
R4-valued nonrandom function c(t) such that

{X(at),t >0} £ {8X(t) +c(t),t > 0} . (5.1)

Semi-stable Lévy processes are special cases of such processes with linear func-
tions ¢(t). Let us call a process {X(t)} trivial if, for each ¢, P{X (t) = const.} = 1.
Otherwise it is called nontrivial. The existence of a unique exponent for any non-
trivial wide-sense semi-selfsimilar process stochastically continuous for ¢ >0i1s
proved in [9]. Its proof combined with the proof of our Theorem 1 readily gives
the following result.

Proposition 2. Let {X(t),t > 0} be an R%-valued, nontrivial wide-sense
semi-selfsimilar process, stochastically continuous att = 0. Then the following
statements are true.

(1) There exists a uniqgue H > 0 such that, ifa € (0,1) U(1,00), b > 0, and c(t)
satisfy (5.1), then b = af .

(ii) X (0) = const. a.s. if and only if H > 0. There is an R%-valued Junction h(t)
satisfying X (t) = X(0) + h(t) a.s. for every t if and only if H = 0.
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