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Abstract. The exponent of a semi-selfsimilar process is shown to exist under
the mere assumption of stochastic continuity at $t=0$ , and related examples are
given. A relationship between long range dependence of the increments and the
exponent is also discussed.

1. Introduction

Let {X$(t),t\geq 0$ } be an $R^{d}$-valued L\’evy process in the sense that it is stochas-
tically continuous for $t\geq 0,$ $X(O)=0$ a.s. and it has independent stationary
increments. If the law of $X(1)$ is strictly semi-stable in the sense that the char-
acteristic function $\hat{\mu}$ of $X(1)$ satisfies $\hat{\mu}(z)^{a}=\hat{\mu}(bz)$ for some $a\in(0,1)\cup(1, \infty)$

and $b>0$ , then the process {X $(t)$ } satisfies

{X (at), $t\geq 0$ } $=d\{bX(t),t\geq 0\}$ , (1.1)

where $=d$ denotes the equality in all joint distributions.
Non-Gaussian stable distributions have heavy tails and are widely used in

stochastic modeling. Non-Gaussian strictly semi-stable distributions have also
heavy tails and $s$ince the class of those distributions is much wider than that of
non-Gaussian strictly stable distributions, they offer more variety in stochastic
modeling.

As strictly stable L\’evy processes are extended to selfsimilar processes, strictly
semi-stable L\’evy processes can be extended to more general processes, namely,
to semi-sel&imilar processes. In general, if an $R^{d}$-valued process {X $(t)$ } satisfies
a scaling property (1.1) for some $a\in(O, 1)\cup(1, \infty)$ and $b>0$ , then we want to
call {X $(t)$ } semi-selfsimilar.

Selfsimilar processes have contributed a lot to stochastic modeling of phe-
nomena with long range dependence, (see e.g. [2] and [3]). However, selfsimilar
processes have to satisfy (1.1) for all $a>0$ . Because of the weaker scaling prop-
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erty, semi-selfsimilar processes are expected to offer higher flexibility in stochastic
modeling of phenomena with long range dependence.

Semi-selfsimilar (but not selfsimilar) processes in the sense of this paper have
already appeared in the literature about diffusion $s$ on Sierpinski gaskets, (see
[1], [5] and [7]), although such terminology is not used. Namely, if {X $(t)$ } is
such a diffusion on $R^{d}$ , then {X $((d+3)^{n}t)$ } $=d\{2^{n}X(t)\}$ for any $n\in Z$ . So the
semi-selfsimilarity might also be an important notion in mathematical physics.

In [9], several topics on semi-selfsimilar processes have been studied, and
among them, there is the existence of exponents of semi-selfsimilarity. In this
paper, we shall discuss again exponents of semi-selfsimilarity and show that
stochastic continuity of semi-selfsimilar processes at the origin is delicately re-
lated to the existence of exponents of semi-selfsimilarity, which has a sharp con-
trast to selfsimilar processes. We also show when increments of semi-selfsimilar
processes have long range dependence in terms of value of their exponents.

2. Examples

If $b$ in (1.1) can be expressed as $b=a^{H}$ for a unique $H\geq 0$ , then we call $H$

the exponent of a selfsimilar or semi-selfsimilar process {X $(t),t\geq 0$ }. Then we
may say that {X $(t)$ } is H-selfsimilar or H-semi-selfsimilar. In this section, we
give several examples of semi-selfsimilar processes to explain our motivation of
this paper.

Throughout the examples below, let $\{Y(t),t\geq 0\}$ be an H-selfsimilar pro-
cess with $H>0$ suth that $Y(t)$ is stochastically continuous at any $t\geq 0$ and
nonconstant for every $t>0$ . Note that $Y(O)=0$ a.s., since $Y(0)\sim da^{H}Y(0)$ for
any $a>0$ . Here $\sim d$ denotes the equality in law.

If {X $(t)$ } is H-selfsimilar with $H>0$ , then {X $(t)$ } is always stochastically
continuous at $t=0$ . For, $X(0)=0a.s$ . and

$P\{|X(t)|>\epsilon\}=P\{t^{H}|X(1)|>\epsilon\}\rightarrow 0$

when $t\rightarrow 0$ . This is not true for semi-selfsimilar processes. The first example
below shows that there exists an H-semi-selfsimilar process, $H>0$ , which is not
stochastically continuous at $t=0$ .

To construct such a process, let $g$ : $R\rightarrow R$ be a function $s$atisfying

$g(u+v)=g(u)+g(v)$ , $\forall u,$ $v\in R$ , (2. 1)

$g(1)>0$ , (2.2)

$\lim_{u\rightarrow-}\sup_{\infty}g(u)=+\infty$ , $\lim_{u\rightarrow}\underline{\inf_{\infty}}g(u)=-\infty$ . (2. 3)
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The existence of such a function is shown in [6]. It follows easily from (2.1) that

$g(ru)=rg(u)$ , $\forall r\in Q,$ $\forall u\in R$ , (2.4)

where $Q$ is the set of rational numbers. Therefore

$g(r+u)=rg(1)+g(u)$ , $\forall r\in Q,$ $\forall u\in R$ . (2.5)

Let $f(t)=e^{g(\log t)}$ for $t>0$ . We may and do suppose that $g(1)=H$ , where $H$

is the exponent of $\{Y(t)\}$ . We see from (2.5) that

$f(at)=a^{H}f(t)$ if log $a\in Q$ .

For any given process $\{X(t)\}$ , letF be the set of alla $>0suchthatthereexists$

$b>0$ satisfying (1.1), and log $\Gamma$ be the set of log $a$ with $ a\in\Gamma$ .

Example 1. Define {X $(t),$ $t\geq 0$ } by

$X(t)=\left\{\begin{array}{ll}0, & if t=0,\\f(t), & if t>0 and log t\not\in Q,\\Y(t), & if log t\in Q,\end{array}\right.$

we have

{X (at)} $=d\{a^{H}X(t)\}$ , if log $a\in Q$ , (2. 6)

because log $at\in Q$ if and only if log $t\in Q$ . Also, if $a>0$ and log $a\not\in Q$ , then we
cannot find $b>0$ satisfying (1.1), as is seen by choosing $t=a^{-1}$ . Thus we have
log $\Gamma=Q$ , and {X $(t)$ } is semi-selfsimilar with a unique exponent $H$ . We have

$\lim g(u)=-\infty$
$u\rightarrow-\infty u\in Q$

by (2.2) and (2.4). On the other hand,

lim $supg(u)=+\infty$

$u\rightarrow-\infty u\not\subset Q$

by (2.3). Hence,

$\lim\sup f(t)=+\infty$ .
$\log t\not\in Qt\downarrow 0$

Namely, {X $(t)$ } is not stochastically continuous at $t=0$ . (Actually, this $\{X(t)\}$

is not stochastically continuou $s$ at any $t\geq 0.$ )



96 M. MAEJIMA, K. SATO AND T. WATANABE

As we have seen above, some semi-selfsimilar processes with a unique ex-
ponent are not stochastically continuous at the origin. However, if we do not
assume the stochastic continuity at the origin, we cannot assure the existence of
a unique exponent for a semi-selfsimilar process, as seen in the next example.

Example 2. Define {X $(t),$ $t\geq 0$ } by

$X(t)=\left\{\begin{array}{ll}0, & if t=0 or log t\not\in Q+\sqrt{2}Q,\\Y(e^{r+s}), & if log t=r+s\sqrt{2}\in Q+\sqrt{2}Q.\end{array}\right.$

It is easily seen that $\{X(t)\}$ is not stochastically continuous at any $t\geq 0$ . Let
$\alpha\in Q$ . Then

$X(e^{\alpha}t)=X(e^{\alpha\sqrt{2}}t)=\left\{\begin{array}{ll}0, & if t=0 or log t\not\in Q+\sqrt{2}Q,\\Y(e^{\alpha+r+s}), & if log t=r+s\sqrt{2}\in Q+\sqrt{2}Q.\end{array}\right.$

It follows that $\{X(e^{\alpha}t)\}=d\{X(e^{\alpha\sqrt{2}}t)\}=d\{e^{\alpha H}X(t)\}$ . Thus $\{X(t)\}$ is semi-
selfsimilar but does not have an exponent, and log $\Gamma=Q+\sqrt{2}Q$ .

The third example in this section is an H-semi-selfsimilar process which is
stochastically continuous at $t=0$ but not at any $t>0$ .

Example 3. Define {X $(t),$ $t\geq 0$ } by

$X(t)=\left\{\begin{array}{ll}0, & if t=0 or log t\not\in Q,\\Y(t), & if log t\in Q.\end{array}\right.$

Obviously $\{X(t)\}$ is stochastically continuous at $t=0$ but not at any other
$t>0$ . We have (2.6) by the same reasoning as for Example 1. If $a>0$ and
log $a\not\in Q$ , then there does not exist $b>0s$atisfying (1.1), as is seen by choosing
$t=a^{-1}$ again. Thus we have again log $\Gamma=Q$ , and it follows from (2.6) that
{X $(t)$ } is H-semi-selfsimilar.

A slight modification enables us to give the following example which is H-
semi-selfsimilar, stochastically continuous at $t=0$ but not at any $t>0$ , and has
the additional property that {X (at)} $=d\{a^{H}X(t)\}$ for some $a=a_{1},$ $a_{2}$ such that
log $a_{1}/\log a_{2}$ is irrational.

Example 4. Define {X $(t),$ $j\geq 0$ } by

$X(t)=\left\{\begin{array}{ll}0, & if t=0 or log t\not\in Q+\sqrt{2}Q,\\Y(t), & if log t\in Q+\sqrt{2}Q.\end{array}\right.$
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Then

{X (at)} $=d\{a^{H}X(t)\}$ , if log $a\in Q+\sqrt{2}Q$ ,

and log $\Gamma=Q+\sqrt{2}Q$ .

3. The existence of a unique exponent

In [9], to show the existence of a unique exponent, it was assumed that
the semi-selfsimilar process {X $(t),$ $t\geq 0$ } is stochastically continuous at any
$t\geq 0$ . However, the examples in the previous section suggest that the stochastic
continuity only at $t=0$ would be needed for the existence of a unique exponent.
Actually this is true as the following theorem shows. We call {X $(t)$ } a zero
process if, for each $t,$ $P\{X(t)=0\}=1$ . Otherwise it is called nonzero.

Theorem 1. Let $\{X(t),t\geq 0\}$ be an $R^{d}$ -valued, nonzero semi-selfsimilar
process. Suppose that it is stochastically continuous at $t=0$ . Then the following
statements are true.
(i) There exists a unique $H\geq 0$ such that, if $a\in(O, 1)\cup(1, \infty)$ and $b>0$ satisfy
(1.1), then $b=a^{H}$ .
(ii) $X(O)=0a.s$ . if and only if $H>0$ . $X(t)=X(O)a.s$ . for every $t$ if and only
if $H=0$ .

Recall Example 2, which shows that a semi-selfsimilar process does not nec-
essarily have a unique exponent, unless it is stochastically continuous at $t=0$ .
So, we cannot entirely remove the assumption of the stochastic continuity at
$t=0$ to prove the existence of a unique exponent.

Proof of Theorem 1. The nonzero property of $\{X(t)\}$ implies that $b$ is
uniquely determined by $a$ . Thus we write $b=b(a)$ for $ a\in\Gamma$ . It is easy to prove
the following.

(1) $ 1\in\Gamma$ and $b(1)=1$ .
(2) If $ a\in\Gamma$ , then $ a^{-1}\in\Gamma$ and $b(a^{-1})=b(a)^{-1}$ .
(3) If $a$ and $a^{\prime}$ are in $\Gamma$ , then $ aa^{\prime}\in\Gamma$ and $b(aa^{\prime})=b(a)b(a^{\prime})$ .

Furthermore, we observe

(4) If $X(0)=0a.s.$ , then $b(a)>1$ for any $a\in\Gamma\cap(1, \infty)$ .
(5) If $b(a)\neq 1$ for some $a\in\Gamma\cap(1, \infty)$ , then $X(0)=0$ a.s.
(6) If $b(a)=1$ for some $a\in\Gamma\cap(1, \infty)$ , then $X(t)=X(0)$ a.s. for every $t$ .

To see (4), suppose that $X(O)=0a.s$ . and that $b(a)\leq 1$ for some $ a\in$

$\Gamma\cap(1, \infty)$ . Denote the characteristic function of $X(t)$ by $\hat{\mu}_{t}(z)$ . Then by semi-
selfsimilarity, we have $\hat{\mu}_{a\cdot t}(b(a)^{-n}z)=\hat{\mu}_{t}(z)$ for all $n\in Z$ and for all $z\in R^{d}$ .
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Since $X(O)=0$ a.s. and $\{X(t)\}$ is stochastically continuous at $t=0$ , we have
$\hat{\mu}_{a^{n}t}(w)\rightarrow 1$ uniformly in $w$ in any compact set as $ n\rightarrow-\infty$ . Thus $\hat{\mu}_{t}(z)=1$

and this contradicts the nonzero property of the process. This proves (4). (5) is
obvious from the relationship $\hat{\mu}_{0}(z)=\hat{\mu}_{0}(b(a)^{n}z)$ for all $ n\in$ Z. If $b(a)=1$ for
some $a>1$ , then $\{X(t)\}=d\{X(a^{n}t)\}$ for all $n\in Z$ and the stochastic continuity
at $t=0$ yields

$P\{|X(t)-X(O)|>\epsilon\}=P\{|X(a^{n}t)-X(0)|>\epsilon\}\rightarrow 0$

as $ n\rightarrow-\infty$ , which proves (6).
Hence, by (4) and (5), $b(a)\geq 1$ for any $a\in\Gamma\cap(1, \infty)$ . By (1), (2), and

(3), log $\Gamma$ is an additive subgroup of $R$ and $(\log\Gamma)\cap(0, \infty)\neq\emptyset$ . Let $r_{0}$ be the
infimum of $(\log\Gamma)\cap(0, \infty)$ .

Suppose that $r_{0}>0$ . Then $ r_{0}\in\log$ F. In fact, if $ r_{0}\not\in\log\Gamma$ , then there are
$s_{n},$ $n=1,2,$ $\ldots$ , in log $\Gamma$ strictly decreasing to $r_{0}$ and we have $ r_{0}>s_{n}-s_{n+1}\in$

$(\log\Gamma)\cap(0, \infty)$ for $s$ufficiently large $n$ , contrary to the definition of $r_{0}$ . This
implies that $\{nr_{0} : n\in Z\}\subset\log\Gamma$ . If $nr_{0}<r<(n+1)r_{0}$ for some $ r\in\log\Gamma$ ,
then $ r-nr_{0}\in$ log $\Gamma$ and $0<r-nr_{0}<r_{0}$ , which is a contradiction. Hence
log $\Gamma=\{nr_{0} : n\in Z\}$ and there is a unique exponent $H\geq 0$ .

In the rest of the proof as $s$ume that $r_{0}=0$ . Maejima and Sato [9] proved
that log $\Gamma=R$ in this case. But it does not work any more, since the argument
in [9] to show the closedness of log $\Gamma$ uses the stochastic continuity of {X $(t)$ }
for $t\geq 0$ . (Actually log $\Gamma$ is not always closed under the condition that {X $(t)$ }
is stochastically continuous only at $t=0$ , as have been seen in Example 3 in
the previous section.) So we have to use another idea to show the existence of
an exponent. Suppose that $H\geq 0$ with the desired property does not exist.
Then there exist $0\leq H_{1}<H_{2}$ such that, for $i=1,2$ , the set $\Gamma_{i}$ defined by
$\Gamma_{i}=\{a\in\Gamma : b(a)=a^{H}\cdot\}$ contains some $a_{i}\neq 1$ . If $a\in\Gamma;$ , then $a^{-1}\in\Gamma;$ ,
since $b(a^{-1})=b(a)^{-1}=a^{-H_{i}}$ . Hence, for $e$ach $i$ , there is $a_{i}\in\Gamma;\cap(1, \infty)$ . If
$H_{1}=0$ (and $H_{2}>0$), then, by (5) and (6), $X(t)=0$ a.s. for each $t\geq 0$ , which
contradicts the nonzero assumption of {X $(t)$ }. Hence $H_{1}>0$ . For any positive
integer $m$ , there $e$xists a positive integer $n$ such that

$|n-\frac{H_{2}\log a_{2}}{H_{1}\log a_{1}}m|\leq 1$ .

Therefore we can find two sequences $\{m_{k}\},$ $\{n_{k}\}$ such that $m_{k},$ $ n_{k}\rightarrow\infty$ and

$-n_{k}H_{1}\log a_{1}+m_{k}H_{2}$ log $a_{2}\rightarrow b$ as $ k\rightarrow\infty$

for some $b\in(-\infty, \infty)$ . Let $s_{k}=a_{1}^{-n_{k}}a_{2}^{m_{k}}$ . Since

$\frac{n_{k}}{m_{k}}\rightarrow\frac{H_{2}\log a_{2}}{H_{1}\log a_{1}}$ as $ k\rightarrow\infty$ ,
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we have, as $ k\rightarrow\infty$ ,

log $s_{k}=m_{k}$ $(-\frac{n_{k}}{m_{k}}$ log $ a_{1}+\log a_{2})\rightarrow-\infty$ ,

namely $s_{k}\rightarrow 0$ . Noting that $X(0)=0$ a.s. by (5), we can choose $t_{0}>0$ so that
$X(t_{0})$ is nonzero. Notice that

$X(s_{k}t_{0})=X(a_{1}^{-n_{k}}a_{2}^{m_{k}}t_{0})\sim a_{1}^{-H_{1}n_{k}}a_{2}^{H_{2}m_{k}}X(t_{0})d$ .

Let $k$ tend to $\infty$ here. Use the stochastic continuity of {X $(t)$ } at $t=0$ and the
fact that $X(O)=0a.s$ . Then we have $e^{b}X(t_{0})=0a.s.$ , which contradicts that
$X(t_{0})$ is nonzero. Therefore the exponent $H\geq 0$ uniquely exists. Hence (i) is
true. The assertion (ii) follows from (4), (5) and (6). This completes the proof
of Theorem 1. $\square $

4. Long range dependence of increments of semi-selfsimilar pro-
cesses

Suppose that {X $(t),t\geq 0$ } has stationary increments and finite second mo-
ments with mean zero, and let $\xi_{n}=X(n+1)-X(n),$ $n=0,1,2,$ $\ldots$ and
$r(n)=E[\xi_{n}\xi_{0}]$ . If $\sum_{n=0}^{\infty}r(n)$ is divergent, then it is $s$aid that stationary in-
crements $\{\xi_{n}\}$ have long range dependence, because the $s$low decrease of the
correlations is considered as an expression of long range dependence. (See e.g.
[2], [3], and [10].)

Note that if {X $(t)$ } is H-selfsimilar, $H>0$ , with stationary increments and
has finite first moment, then $H$ of this process should satisfy $H\leq 1$ , and in
case $H<1$ we have $E[X(t)]=0$ , while in case $H=1$ we have $X(t)=tX$
a.s. for some random variable X. (See e.g. [8].) Similarly, if {X $(t)$ } is H-semi-
selfsimilar, $H>0$ , with stationary increment $s$ and stochastically continuous at
$t=0$ , and if it has finite first moment and

$\sup_{0\leq t<e}E[|X(t)|]<\infty$ , for $s$ome $\epsilon>0$ , (4. 1)

then $H\leq 1$ . This can be shown as follows.
There is $a>1$ such that $\{X(at)\}=d\{a^{H}X(t)\}$ . Thus, for any $n\in Z$ ,

$X(a^{n})\sim a^{nH}X(1)d$ . We have

$E[|X(a^{n})|]\leq\sum_{k=0}^{[a^{n}]-1}E[|X(a^{n}-k)-X(a^{n}-k-1)|]+E[|X(a^{n}-[a^{n}])|]$ ,
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where $[a^{n}]$ is the largest integer less than or equal to $a^{n}$ . Thus, using $X(O)=0$

$a.s.$ , we have

$a^{nH}E[|X(1)|]\leq[a^{n}]E[|X(1)|]+\sup_{0\leq t<1}E[|X(t)|]$ ,

and for any $n\in Z$ ,

$(a^{nH}-[a^{n}])E[|X(1)|]\leq\sup_{0\leq t<1}E[|X(t)|]$ . (4.2)

If $H>1$ , then letting $ n\rightarrow\infty$ gives $\sup_{0\leq t<1}E[|X(t)|]=\infty$ , which contradicts
(4.1) together with stationary increments. Hence $H\leq 1$ .

Also observe that if furthermore $H<1$ , then $E[X(1)]=0$ and thus $E[X(a^{n})]$

$=0$ for all $n\in Z$ . For, similarly to (4.2) we have

$|(a^{nH}-[a^{n}])E[X(1)]|\leq\sup_{0\leq t<1}E[|X(t)|]$

and, if $H<1$ and $E[X(1)]\neq 0$ , then letting $ n\rightarrow\infty$ yields again a contradiction.
We now consider only the case $0<H<1$ . Then, if {X $(t)$ } is H-selfsimilar

with stationary increments having finite second moment, we have

$r(n)=\frac{1}{2}\{(n+1)^{2H}+|n-1|^{2H}-2n^{2H}\}E[X(1)^{2}]$

and we see that $\sum_{n=0}^{\infty}r(n)=\infty$ if and only if $\frac{1}{2}<H<1$ .
This argument of using $r(n)$ does not work for semi-selfsimilar processes,

because the semi-selfsimilarity is not enough to give an explicit expression for
$r(n)$ . However, there are several other ways to understand long range depen-
dence. Among those, one of the characterizations of long range dependence of
stationary increments is that the variance of the process {X $(t)$ } diverges to in-
finity faster than the order $t$ . (See [2]. Also see the non-central limit theorero
for strongly dependent stationary random variables in [4] and [10].)

Now suppose that {X $(t)$ } is H-semi-selfsimilar with $\frac{1}{2}<H<1$ , has finite
second moment, and $s$atisfies (4.1). Then, recalling that $E[X(a^{n})]=0$ for all
$n\in Z$ , we have

$\lim_{t\rightarrow}\sup_{\infty}t^{-1}VarX(t)\geq\lim_{n\rightarrow\infty}a^{-n}$ Var$X(a^{n})$

$=\lim_{n\rightarrow\infty}a^{-n}E[X(a^{n})^{2}]$

$=\lim_{n\rightarrow\infty}a^{n(2H-1)}E[X(1)^{2}]=\infty$ . (4. 3)

If {X $(t)$ } has stationary increments, then (4.3) means that the variance of sums
of stationary increments (the variance of the original process itself) cannot have
the $s$ame order as the number of the summands. So, it is reasonable to under-
stand that stationary increments of H-semi-selfsimilar processes have long range
dependence if $H>\frac{1}{2}$
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5. Concluding remarks

Let $\{X(t),t\geq 0\}$ be stochastically continuous for $t\geq 0$ . In [9], it is shown
that if $\{X(t)\}$ is semi-selfsimilar, then

(i) $\Gamma=\{a_{0^{n}}, n\in Z\}$ for $s$ome $a_{0}>1$ and $\{X(t)\}$ is not selfsimilar but
semi-selfsimilar, or

(ii) $\Gamma=(0, \infty)$ and {X $(t)$ } is selfsimilar
Suppose one want $s$ to ch $e$ck the selfsimilarity of a process. If we follow the

definition of selfsimilarity, one has to check (1.1) for all $a>0$ . However, suppose
one could show the relationship (1.1) only for two $a’ s,$ ( $a_{1},$ $a_{2}$ , say), such that
log $a_{1}/\log a_{2}$ is irrational. Then by the observation above, the fact that $a_{1},$ $ a_{2}\in\Gamma$

implies $\Gamma=(0, \infty)$ , and one can conclude that {X $(t)$ } is selfsimilar. This gives
us an easy way to check selfsimilarity of a given process. Namely, we have

Proposition 1. Suppose $\{X(t), t\geq 0\}$ is stochastically continuous at any
$t\geq 0$ . If $\{X(t)\}$ satisfies (1.1) for some $a_{1}$ and $a_{2}$ such that log $a_{1}/\log a_{2}\not\in Q$ ,
then it is selfsimilar with some unique exponent $H\geq 0$ .

In this proposition, we cannot relax the assumption of stochastic continuity
at any $t\geq 0$ to that at $t=0$ , because of Example 4 in Section 2.

Another remark is concerning extension of Theorem 1 to wide-sense semi-
selfsimilar processes. If [9] an $R^{d}$-valued stochastic process {X $(t),$ $t\geq 0$ } is
called wide-sense semi-selfsimilar if there are $a\in(1,0)\cup(1, \infty),$ $b>0$ , and an
$R^{d}$-valued nonrandom function $c(t)$ such that

{X (at), $t\geq 0$ } $=d\{bX(t)+c(t),t\geq 0\}$ . (5. 1)

Semi-stable L\’evy processes are special cases of such processes with linear func-
tions $c(t)$ . Let us call a process {X $(t)$ } trivial if, for each $t,$ $P\{X(t)=const.\}=1$ .
Otherwise it is called nontrivial. The $e$xistence of a unique exponent for any non-
trivial wide-sense semi-sel&imilar process stochastically continuous for $t\geq 0$ is
proved in [9]. Its proof combined with the proof of our Theor$em1$ readily gives
the following result.

Proposition 2. Let $\{X(t), t\geq 0\}$ be an $R^{d}$ -valued, nontnvial wide-sense
semi-selfsimilar process, stochastically continuous at $t=0$ . Then the following
statements are true.
(i) There exists a unique $H\geq 0$ such that, if $a\in(O, 1)\cup(1, \infty),$ $b>0$ , and $c(t)$

satisfy (5.1), then $b=a^{H}$ .
(ii) $X(O)=const$ . $a.s$ . if and only if $H>0$ . There is an $R^{d}$ -valued fimction $h(t)$

satisfying $X(t)=X(0)+h(t)a.s$ . for every $t$ if and only if $H=0$ .



102 M. MAEJIMA, K. SATO AND T. WATANABE

References

[1] M.T. Barlow and E.A. Perkins, Brownian motion on the Sierpinski gasket, Pro bab. Th.

Rel. Fields, 79 (1988), 543423.
[2] J. Beran, Statistics for Long Memory Processes, Chapman&Hall, 1995.
[3] D.R. Cox, Long-range dependence: A review, in H.A. David and H.T. David (Eds.)

Statistics: An Appraisal, Iowa State Univ. Press, 1984, 55-74.
[4] R.L. Dobrushin and P. Major, Non-central limit theorems for non-linear functionals of

Gaussian fields, Z. Wahrsch. Verw. Geb., 50 (1979), 27-52.
[5] S. Goldstein, Random walks and diffusions on fractals, in H. Kesten (Ed.) Percola-

tion Theory and Ergodic Theory of Infinite Particle Systems, IMA Vol. Math. Appl. 8,

Springer, 1987, 121-128.
[6] G. Hamel, Eine Basis aller Zahlen und die unstetige L\"osungen der Funktionalgleichungen:

$f(x+y)=f(x)+f(y)$ , Math. Ann., 60 (1905), 459-462.
[7] S. Kusuoka, A diffusion process on a fractal, in K. It\^o and N. Ikeda (Eds.) Probabilis-

tic Models in Mathematical Physics, Proceedings Taniguchi Symposium, Katata 1985,

Kinokuniya-North Holland, 1987, 251-274.
[8] M. Maejima, Self-similar processes and limit theorems, Sugaku Expositions, 2 (1989),

103-123.
[9] M. Maejima and K. Sato, Semi-selfsimilar processes, J. Theor. Probab., 12 (1999), 347-

373.
[10] M.S. Taqqu, Convergence of integrated processes of non-linear functions of Gaussian

$variables53-83$

.
that exhibit a long range dependence, Z. Wahrsch. Verw. Geb., 50 (1979),

Department of Mathmatics,
Keio University,
Hiyoshi, Yokohama 223-8522,
JAPAN

Hachiman-yama 1101-5-103,
Tenpaku-ku, Nagoya 46&0074,
JAPAN

Center for Mathematical Sciences,
The University of Aizu,
Aizu-Wakamatsu, Fukushima $\Re 5-8580$ ,
JAPAN


	1. Introduction
	2. Examples
	3. The existence of a ...
	4. Long range dependence ...
	5. Concluding remarks
	References

